NATIONAL FIRE PROTECTION ASSOCIATION

The leading information and knowledge resource on fire, electrical and related hazards

AGENDA

NEC Code-Making Panel 17 (NEC P17) NFPA 70 Second Draft Meeting (Annual 2025)

October 24 - 26, 2024 8:00 a.m. - 5:00 p.m. (PT)

Torrance Marriott Redondo Beach, CA

- 1. Call to order. Michael Weaver.
- 2. Introductions. See committee roster attached.
- 3. Chair Report. Michael Weaver.
- 4. Staff liaison report/presentation. Steve Kaitharath.
- 5. Previous meeting minutes. January 2024, Charleston, SC. See attached.
- 6. NFPA 70 Second Draft.
 - a. Review of Public Comments. See attached.
 - i. Task group report(s).
 - b. Extract updates (if applicable)
- 7. Other Business.
- 8. Future meetings.
- 9. Adjournment.

Address List No Phone

Code-Making Panel 17

National Electrical Code[®]

Michael Weaver	IM 12/06/2019	Kenneth Castronovo	<u>E 03/20/2023</u>
Chair	NEC-P17	Principal	NEC-P17
M&W Electric		Board of Rules and Appeals	
29889 Highway 34 SW		3201 Port Royal Drive S.	
Albany, OR 97321-9431		Apartment K	
National Electrical Contractor Association	on (NECA)	Fort Lauderdale, FL 33308	
Alternate: Timothy R. O'Brien		International Association of Electrical Insp Alternate: Bruce Alan Hoffman	ectors
Jacob C. Colston	UT 08/24/2021	David A. Gray	E 11/29/2023
Principal	NEC-P17	Principal	NEC-P17
Georgia Power Company		Arkansas Department of Labor & Licensing	
5150 Joel Lane		126 Wildwood Forest Road	
Dunwoody, GA 30360		Hot Springs, AR 71913	
Electric Light & Power Group/EEI Alternate: Michael Kevin Blum		NFPA Electrical Inspection Section (EIS)	
E. P. Hamilton, III	M 7/23/2008	Ryan Jackson	U 04/12/2022
Principal	NEC-P17	Principal	NEC-P17
E. P. Hamilton & Associates, Inc.		Self-employed	
Arthitects, Engineers, Technical Serivces		5930 West Fox River Lane	
1406 Three Points Road		West Valley City, UT 84118	
1 too 1 mee 1 child feew			
Building A, Suite 100			
Building A, Suite 100 Pflugerville, TX 78660			
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA)			
Building A, Suite 100 Pflugerville, TX 78660			
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA)	RT 08/17/2017	Armando M. Lozano	IM 04/04/2017
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal		Principal	IM 04/04/2017 NEC-P17
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC		Principal MSF Electric, Inc.	
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road		Principal MSF Electric, Inc. 10455 Fountaingate Drive	
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096		Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119	
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road		Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc.	
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096		Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119	
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers	NEC-P17 L 4/14/2005	Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc. Alternate: Edward Alan Brown John Park	NEC-P17 M 08/29/2024
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers Principal	NEC-P17 L 4/14/2005	Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc. Alternate: Edward Alan Brown John Park Principal	NEC-P17 M 08/29/2024 NEC-P17
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers Principal IBEW Local Union 98	NEC-P17 L 4/14/2005	Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc. Alternate: Edward Alan Brown John Park Principal Association of Home Appliance Manufactures	NEC-P17 M 08/29/2024 NEC-P17
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers Principal IBEW Local Union 98 1909 East Moyamensing Avenue	NEC-P17 L 4/14/2005	Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc. Alternate: Edward Alan Brown John Park Principal Association of Home Appliance Manufacturer 1111 19th Street, NW	NEC-P17 M 08/29/2024 NEC-P17
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers Principal IBEW Local Union 98 1909 East Moyamensing Avenue Philadelphia, PA 19148	NEC-P17 L 4/14/2005 NEC-P17	Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc. Alternate: Edward Alan Brown John Park Principal Association of Home Appliance Manufacturer 1111 19th Street, NW Suite 1150	NEC-P17 M 08/29/2024 NEC-P17
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers Principal IBEW Local Union 98 1909 East Moyamensing Avenue Philadelphia, PA 19148 International Brotherhood of Electrical	NEC-P17 L 4/14/2005 NEC-P17	Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc. Alternate: Edward Alan Brown John Park Principal Association of Home Appliance Manufacturer 1111 19th Street, NW Suite 1150 Washington, DC 20036	NEC-P17 M 08/29/2024 NEC-P17 rs (AHAM)
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers Principal IBEW Local Union 98 1909 East Moyamensing Avenue Philadelphia, PA 19148	NEC-P17 L 4/14/2005 NEC-P17	Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc. Alternate: Edward Alan Brown John Park Principal Association of Home Appliance Manufacturer 1111 19th Street, NW Suite 1150	NEC-P17 M 08/29/2024 NEC-P17 rs (AHAM)
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers Principal IBEW Local Union 98 1909 East Moyamensing Avenue Philadelphia, PA 19148 International Brotherhood of Electrical	NEC-P17 L 4/14/2005 NEC-P17 Workers	Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc. Alternate: Edward Alan Brown John Park Principal Association of Home Appliance Manufactures 1111 19th Street, NW Suite 1150 Washington, DC 20036 Association of Home Appliance Manufactu	NEC-P17 M 08/29/2024 NEC-P17 rs (AHAM)
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers Principal IBEW Local Union 98 1909 East Moyamensing Avenue Philadelphia, PA 19148 International Brotherhood of Electrical V Alternate: Ryan Andrew	NEC-P17 L 4/14/2005 NEC-P17 Workers E 08/03/2016	PrincipalMSF Electric, Inc.10455 Fountaingate DriveStafford, TX 77477-4119Independent Electrical Contractors, Inc.Alternate: Edward Alan BrownJohn ParkPrincipalAssociation of Home Appliance Manufacturer1111 19th Street, NWSuite 1150Washington, DC 20036Association of Home Appliance ManufactuAlternate: Greg Woyczynski	NEC-P17 M 08/29/2024 NEC-P17 rs (AHAM) rers U 04/04/2009
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers Principal IBEW Local Union 98 1909 East Moyamensing Avenue Philadelphia, PA 19148 International Brotherhood of Electrical V Alternate: Ryan Andrew	NEC-P17 L 4/14/2005 NEC-P17 Workers E 08/03/2016 NEC-P17	Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc. Alternate: Edward Alan Brown John Park Principal Association of Home Appliance Manufacturen 1111 19th Street, NW Suite 1150 Washington, DC 20036 Association of Home Appliance Manufactu Alternate: Greg Woyczynski Chester L. Sandberg	NEC-P17 M 08/29/2024 NEC-P17 rs (AHAM) rers U 04/04/2009
Building A, Suite 100 Pflugerville, TX 78660 Pool & Hot Tub Alliance (PHTA) Alternate: Kenneth Lee Gregory Stephen R. Kuscsik Principal UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 Alternate: Robert Dellavalle Brian Myers Principal IBEW Local Union 98 1909 East Moyamensing Avenue Philadelphia, PA 19148 International Brotherhood of Electrical V Alternate: Ryan Andrew Larry Reichle Principal	NEC-P17 L 4/14/2005 NEC-P17 Workers E 08/03/2016 NEC-P17	Principal MSF Electric, Inc. 10455 Fountaingate Drive Stafford, TX 77477-4119 Independent Electrical Contractors, Inc. Alternate: Edward Alan Brown John Park Principal Association of Home Appliance Manufactures 1111 19th Street, NW Suite 1150 Washington, DC 20036 Association of Home Appliance Manufactu Alternate: Greg Woyczynski Chester L. Sandberg Principal	NEC-P17 <u>M 08/29/2024</u> NEC-P17 rs (AHAM) rers

Address List No Phone

Code-Making Panel 17

National Electrical Code[®]

09/27/2024 Jeffrey S. Sargent NEC-P17

Kenneth M. Shell	M 11/2/2006	Kam Fai Siu	RT 10/27/2009
Principal		Principal	NEC-P1'
nVent Thermal Management		Intertek Testing Services	
1351 Halibut Street		2/F, Garment Centre	
Foster City, CA 94404		576 Castle Peak Road	
Copper Development Association Inc.		Kowloon, Hong Kong	
Alternate: Paul W. Abernathy		Intertek Testing Services	
·		Alternate: Brunno Prosperi Covolan	
Marcelo E. Valdes	M 10/29/2012	Paul W. Abernathy	M 04/08/2015
Principal	NEC-P17	Alternate	NEC-P17
Asea Brown Boveri Ltd. (ABB)		Encore Wire Corporation	
412 Stoney Creek Way		1324 Millwood Road	
Chapel Hill, NC 27517		McKinney, TX 75069	
National Electrical Manufacturers Association	on	Copper Development Association Inc.	
Alternate: Vincent Della Croce		Principal: Kenneth M. Shell	
Ryan Andrew	L 08/17/2017	Michael Kevin Blum	UT 11/29/2023
Alternate		Alternate	NEC-P17
Alaska Joint Electrical Apprenticeship and Trai		CenterPoint Energy	112011
IBEW Local Union 1547	ing met	14010 Grand Heights Court	
5800 B Street		Houston, TX 77062	
Anchorage, AK 99518		Electric Light & Power Group/EEI	
International Brotherhood of Electrical Wor Principal: Brian Myers	kers	Principal: Jacob C. Colston	
Edward Alan Brown		Brunno Prosperi Covolan	RT 12/07/2021
Alternate		Alternate	NEC-P17
Independent Electrical Contractors, Inc. (IEC)/I	Indy	Intertek Testing Services	
5736 West Woodview Trail		1809 10th Street, Suite 400	
McCordsville, IN 46055		Plano, TX 75074	
Independent Electrical Contractors, Inc.		Principal: Kam Fai Siu	
Principal: Armando M. Lozano			
Vincent Della Croce	<u>M 04/02/2020</u>	Robert Dellavalle	RT 04/02/2020
Alternate	NEC-P17	Alternate	NEC-P17
Siemens		UL LLC	
6167 NW East Deville Circle		1285 Walt Whitman Road	
Port Saint Lucie, FL 34986		Melville, NY 11747	
National Electrical Manufacturers Association	on	Principal: Stephen R. Kuscsik	
Principal: Marcelo E. Valdes			
Kenneth Lee Gregory	M 08/29/2024	Bruce Alan Hoffman	E 03/20/2023
Alternate	NEC-P17	Alternate	NEC-P17
Pentair		State of Nebraska	
493 E 1575 South		3300 Elkhorn Street	
Washington, UT 64780		whitney, NE 6936/	
Washington, UT 64780 Pool & Hot Tub Alliance (PHTA)		Whitney, NE 69367 International Association of Electrical In	spectors

Address List No Phone

Code-Making Panel 17

National Electrical Code®

Timothy R. O'Brien	IM 04/12/2022	Greg Woyczynski	M 08/24/2021
Alternate	NEC-P17	Alternate	NEC-P17
Retired		Association of Home Appliance Manufacturers	(AHAM)
PO Box 2423		1111 19th Street, NW	
Borrego Springs, CA 92004		#402	
National Electrical Contractor Association (NECA)	Washington, DC 20036	
Principal: Michael Weaver		Association of Home Appliance Manufacture	ers
		Principal: John Park	
Andrew M. Trotta	C 1/10/2002	Einstein Miller	C 04/14/2021
Nonvoting Member	NEC-P17	Alt. to Nonvoting Member	NEC-P17
US Consumer Product Safety Commission		US Consumer Product Safety Commission (CP	SC)
5 Research Place		5 Research Place	
Rockville, MD 20850		Rockville, MD 20850	
US Consumer Product Safety Commission (CPSC)	US Consumer Product Safety Commission (CPSC)
Alternate: Einstein Miller		Principal: Andrew M. Trotta	
Jeffrey S. Sargent	08/31/2019		
Staff Liaison National Fire Protection Association	NEC-P17		
1 Batterymarch Park			
Quincy, MA 02169-7471			

NATIONAL FIRE PROTECTION ASSOCIATION

The leading information and knowledge resource on fire, electrical and related hazards

MINUTES

NEC Code-Making Panel 17 NFPA 70 First Draft Meeting (Annual 2025) January 24-26, 2024 8:00 AM – 5:00 PM (ET)

Charleston, SC

- 1. Call to order. Michael Weaver, chair, called the meeting to order at 8:00 AM on 1/24/24.
- **2. Introductions.** Attendees introduced themselves and identified their affiliation and NFPA staff took attendance.
- **3.** Chair report. Michael Weaver welcomed attendees and provided an overview of the meeting.
- **4. Staff liaison report.** Matthew Barker provided an overview of the standards development process and the revision cycle schedule.
- **5. Previous meeting minutes.** The minutes from October 2021 Second Draft virtual meeting were approved without revision.

6. NFPA 70 First Draft.

- a. **Review of Public Inputs.** The Technical Committee reviewed the Public Inputs and developed First Revisions and Committee Inputs as necessary. These will be available in the First Draft Report at www.nfpa.org/70.
- b. **Task group reports.** The following task groups provided their reports and recommendations.
 - i. CMP 17 Task Group 1. Vincent Della Croce, Chair. The task group provided a report and revisions were made. The task group was reconstituted to continue work. See attached.
 - **ii. CMP 17 Task Group 2**. Ryan Jackson, Chair. The task group provided a report and revisions were made. The task group was reconstituted to continue work. See attached.
 - iii. CMP 17 Task Group 3. Stephen Kuscsik, Chair. The task group provided a report and revisions were made. The task group was reconstituted to continue work. See attached.
 - **iv.** Task Group on PI 3733. Ryan Jackson, Ken Shell, Steve Kuscsik, Ed Brown, Bobby Dellavalle, Bill Hamilton. The task group provided a report, and a revision was made. The task group has been discharged with thanks.

These minutes are considered preliminary until approved at the next committee meeting.

- v. Task Group on PI 4465. Jacob Colston, Ed Brown, Bill Hamilton, Steve Kuscsik. The task group provided a report, and a revision was made. The task group has been discharged with thanks.
- vi. Task Group on PI 1325. Ryan Jackson, Bill Hamilton, Ryan Andrew, David Gray, Marcelo Valdes, Steve Kuscsik, Ken Shell. The task group provided a report, and a revision was made. The task group has been discharged with thanks.
- vii. Task Group on 680.26/PI 1624/TIA 23-9. Ryan Jackson, Bobby Dellaville, Bill Hamilton, Vince Della Croce, Steve Kuscsik, Jacob Colston, Ryan Andrew, Steve Gates, Ed Brown, Mike Weaver. The task group provided a report, and revisions were made. The task group has been discharged with thanks.
- c. **Presentation(s).** The committee heard presentations from the following individuals.
 - **i. PI 2484.** Mark Earley, Alumni Code Consulting Group, LLC. Approximately 1 minute. Verbal presentation.
 - ii. PIs 4486, 4570, 4571, 4518, 4520, 4527. Mark Pollock, Littelfuse. 5 minutes. Presentation attached.
 - iii. Pis 3479, 4168. Chuck Mello, CDC Mello Consulting, LLC. 5 minutes/15 minutes Q&A. Presentation attached.
 - iv. Proposed Reorganization of NEC[®]. Alan Manche Approximately 35 minutes including Q&A. Presentation attached.
- 7. Other Business. There was no other business taken up by the CMP.
- 8. Future meetings. The next committee meeting will be October 14-26/2024. A meeting notification will be posted at www.nfpa.org/70next when the meeting is scheduled.
- 9. Adjournment. The meeting was adjourned at [Time] on 1/26/24.

Con	ommittee Members:						
\checkmark	Michael Weaver	Chair	NECA				
\checkmark	Kenneth Castronovo	Principal	IAEI				
\checkmark	Jacob Colston	Principal	Electric Light & Power Group/EEI				
\checkmark	Stephen Gatz	Principal	Whirlpool Corporation				
\checkmark	David Gray	Principal	NFPA Electrical Inspectors Section				
\checkmark	E.P. Hamilton	Principal	Pool & Hot Tub Alliance (PHTA)				
\checkmark	Ryan Jackson	Princpal	Self-employed				
\checkmark	Stephen Kuscsik	Principal	UL Solutions				
\checkmark	Armando Lozano	Principal	IEC, Inc.				

Attendees Committee Members:

	D · M	Duin ain al	IDEW
✓	Brian Myers	Principal	IBEW
✓	Larry Reichle	Principal	TX Department of Licensing & Regulation
✓	Chester Sandberg	Principal	C.L. Sandberg & Associates, LLC
\checkmark	Kenneth Shell	Principal	Copper Development Association Inc.
	Kam Fai Siu	Principal	Intertek Testing Services
\checkmark	Marcelo Valdes	Principal	NEMA
~	Greg Woyczynski	Voting Alternate	Association of Home Appliance Manufacturers
\checkmark	Paul Abernathy	Alternate	Copper Development Association Inc.
✓	Ryan Andrew	Alternate	IBEW
\checkmark	Michael Blum	Alternate	Electric Light & Power Group/EEI
\checkmark	Edward Brown	Alternate	IEC, Inc.
	Brunno Covolan	Alternate	Intertek Testing Services
✓	Vincent Della Croce	Alternate	NEMA
✓	Robert Dellavalle	Alternate	UL Solutions
✓	Bruce Hoffman	Alternate	IAEI
✓	Timothy O'Brien	Alternate	NECA
✓	Andrew Trotta	Nonvoting	US Consumer Product Safety Commission
✓	Einstein Miller	Nonvoting alternate	US Consumer Product Safety Commission
✓	Matthew Barker	Staff	NFPA
✓	Steve Kaitharath	Staff	NFPA

Guests:

- 1. Patty Barron STYX Platforms
- 2. Amy Cronin Strategic Code Solutions/STYX
- 3. Joel Martinez MSF Electric
- 4. Gerry O'Connor Eaton
- 5. Mark Pollock Littelfuse
- 6. Kenneth Gregory PHTA/Pentair
- 7. Scott Harding FB Harding/IEC
- 8. Chuck Mello cdc Mello Consulting, LLC
- 9. John McCamish Eaton
- 10. Mark Earley Alumni Code Consulting Group, LLC
- 11. Brian Baughman NEMA
- 12. Chad Roberts Flour-BWXT
- 13. Don Iverson Schneider Electric

Total number in attendance: 40

NEC[®] Code-Making Panel 17 First Draft Chair Report

Signature:

Date of Meeting: 1-24-24 to 1-26-24

- 1. List names of NEC[®] Code-Making Panel Members in Attendance: See attached.
- 2. List names of Guests in Attendance: See attached.
- 3. List names of Guests who addressed the Panel, the subject of their presentation and the length of time they spoke:

Mark Early spoke for less than a minute on PI 2484 Mark Pollock spoke for 5 minutes on PI's 4486,4570,4571,4518,4520, and 4527.. Chuck Mello spoke for 5 minutes on PI's 3479 and 4168, followed by a 15 minute question and answer period regarding conductive pavement heating systems followed.

- 4. Number of Public Inputs/Comments acted upon:171.
- 5. Number of First/Second Revisions Created: 99.
- 6. List any Task Groups appointed to work subsequent to the First/Second Draft Meeting, along with the names of Task Group Chair/members:

A TG was formed to work on PI 3733 with regards to 424.6 and 424.102. The group consisted of Ryan Jackson, Ken Shell, Steve Kuscsik, Ed Brown, Bobby Dellavalle, and Bill Hamilton.

A TG was formed to work on PI 4465 with regards to 680.10(B). The group consisted of Jacob Colston, Ed Brown, Bill Hamilton, and Steve Kuscsik.

A TG was formed to work on PI 1325 with regards to 680.21(D). The group consisted of Ryan Jackson, Bill Hamilton, Ryan Andrew, David Gray, Marcelo Valdes, Steve Kuscsik, and Ken Shell.

A TG was formed that worked until 9:07 pm one evening on several PI's with regards to 680.26 and the global PI 1624 and TIA 23-9. The Group consisted of Ryan Jackson, Bobby Dellavalle, Bill Hamilton, Vince Della Croce, Steve Kuscsik, Jacob Colston, Ryan Andrew, Steve Gates, Ed Brown, and Mike Weaver.

- 7. List any Public Input/Comment or First/Second Revision that may need to be referred to another Panel for information or correlation: None.
- 8. List any Public Input/Comment that requires NEC[®] Correlating Committee attention:

CMP 17 reviewed Global Input 3085 and reviewed informational notes to comply with NEC style manual 2.1.10. The following revisions were made to comply. FR 8871, FR 9200, and FR 9239.

CMP 17 reviewed Global Input 3086 and reviewed numbering conventions to comply with the NEC Style manual 2.2.1. The following first revision was made to comply. FR 9044.

CMP 17 reviewed Global Input 3099 and reviewed definitions within CMP 17 purview and the following first revision was made. FR 8950.

CMP 17 reviewed Global Input 4050 on the terms regarding overcurrent protection and the following first revision was made to comply. FR 8877.

CMP 17 reviewed Global Input 4287 on ac and dc circuits and no changes were made as CMP 17 believes the Articles within its purview are clear on the use of ac and dc circuits.

CMP 17 reviewed Global Input 1624 with regards to TIA 23-9 and 680.26(A). CMP 17 Made First Revision 9239 which incorporated the language of the TIA and other language requested in PI's. that was non-controversial, and then created 5 ballotable details for the remaining changes.

9. List any general requests for information or assistance from the NEC[®] Correlating Committee:

CMP2 has purview of the requirements in 210.8(D) and CMP 17 has purview of the requirements in 422.5(A). CMP 17 asks for guidance from the Correlating Committee as to if there is purview or correlation issue that should be addressed.

10. List any issues that should be brought to the attention of the NFPA Research Foundation:

None

11. List any additional information that would be helpful to the NEC[®] Correlating Committee, NFPA Staff, or process in general:

The internet was lacking and dropped individuals from their devices continually or would lag updating on their screen making it very hard to follow. Improved internet access and returning to the big screen in the room is requested as it is difficult to look up various forms of information on the topic we are working on and also follow staff and what they were doing. If big screen is not possible more room at the table per person and 120 volt receptacles is requested.

The food and snacks at the hotel were good but a venue closer to downtowns and other options for food would be appreciated.

2026 NEC[®] Public Input Task Group Report

CMP #	17
TG#	1
TG Chair	Vince Della Croce
TG Members	Jerry Lee Daniel, Stephen Gatz, Robert Dellavalle
	Armando Lozano, Andrew Trotta, Brunno Prosperi Covolan
	Greg Woyczynski, Ryan Andrew, Michael Blum
	Michael Weaver, Paul Abernathy, Stephen Kuscsik
	Larry Reichle, Ryan Jackson, Mark Early
	David Gray, Marcelo Valdes

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.6	<mark>3730</mark>	55	Recommendation: FR XXXX
			Statement: Listing requirements are relocated to 422.2 to comply with the NEC Style Manual Section 2.2.1
			Vote: 14-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.6	<mark>3462</mark>	44	Recommendation: Resolve
			Statement:
			If this type of protection is needed the
			requirements would need to be coordinated
			with the applicable product safety standards for
			the appliance it is used with.
			The public input seeks to require a "listed safety
			interlock outlet," but the CMP is not aware of
			specific product safety standards that exist for
			such an outlet.
			The device shown in the substantiation is listed
			to UL 498 and UL 60730-2-9, neither of which
			address "safety interlock outlet" or smoke
			detection capabilities.
			Smoke detection in localized areas may be
			better addressed in NFPA 72 or the applicable
			building code.
			Vote: 11-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.10(A)	<mark>2685</mark>	56	Recommendation: FR XXXX
			Statement: The text is revised to comply with the NEC Style Manual Section 4.1.4
			Vote: 14-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.11(E)	<mark>3138</mark>	57	Recommendation: Resolve
			Statement: Item three is a maximum value, not an absolute value. By removing the text of "not exceed," the number becomes absolute. There are instances where 125% could be desired and should remain code compliant.
			Vote: 14-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.11(G)	<mark>2686</mark>	58	Recommendation: FR XXXX
			Statement: The text is revised to comply with the NEC Style Manual Section 4.1.4
			Vote: 14-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.11(G)	<mark>4421</mark>	59	Recommendation: Resolve
			Statement: The references enhance usability and are valuable to users of the Code. Although the text contains requirements from another article, it is the CMP's opinion that it does not violate 4.1.1 of the 2023 NEC Style Manual.
			Vote : 14-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.16(B)(1)	<mark>2117</mark>	68	Recommendation: FR XXXX
			Statement: "Power-supply" is added to correlate with the existing defined term power-supply cord in Article 100
			Vote: 14-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.16(B)(2)	<mark>2118</mark>	69	Recommendation: FR XXXX
			Statement: "Power-supply" is added to correlate with the existing defined term power-supply cord in Article 100
			Vote: 14-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.16(B)(3)	<mark>2119</mark>	70	Recommendation: FR XXXX
			Statement: "Power-supply" is added to correlate with the existing defined term power-supply cord in Article 100
			Vote: 14-0

<mark>422.16(B)(4)</mark> 2234	71	Recommendation: FRXXXX
		Chatamanta
		Statement: The receptacle is typically installed in a location that reduces the likelihood of it being used for other purposes, so a single receptacle is not needed. A duplex receptacle is permitted on an individual branch circuit, provided it does not supply other utilization equipment. "Power-supply" is added to correlate with the existing defined term power-supply cord in Article 100. Vote: 13-1

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.18	<mark>2484</mark>	72	Recommendation: Resolve
			Statement: Existing text in the NEC already provides for use of a weight supporting ceiling receptacle or factory installed weight supporting fitting as an option, and not a required construction. Although these devices may improve safety and ease of installation, requiring these devices as the only method may restrict other options which are still in use and supported by manufacturers, installers and AHJs. CMP 17 reaffirms not including the proposed exception, see Public Comment 1136 from the 2023 NEC revision cycle.
			Vote: 11-1 (Earley)

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.18(B)	<mark>242</mark>	126	Recommendation: FR XXXX
			Statement: The reference to metal parts is removed to correlate with the requirements in 410.10(D)(1)
			Vote : 12-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
100	4233	14	Appliance.
Definitions- Appliance	-233		Utilization equipment, generally other than industrial, that is normally built in a standardized size or type; and is installed or connected as a unit to perform one or more functions such as clothes washing, air- conditioning, food mixing, deep frying, and so
			forth. (CMP-17) Note to NFPA staff : A word doc copy of Article 100 was not provided so the proposed changes to the definition are noted above
			Recommendation: FR XXXX Statement: The existing list items were removed to improve clarity as they could be viewed as all-inclusive and unintentionally omit other types of appliances.
			Vote: 12-0

Article/Section	Public	PI Report	TG Recommendation & Statement
	Input #	Page #	
422.13	1295	65	Recommendation: FR XXXX

32	<mark>266</mark>	66	
			Statement: This section was revised to clarify that the load is considered continuous. The text now applies to feeders, not just branch circuits, and recognizes 210.19, 210.20, 215.2 and 215.3 for conductor ampacity and overcurrent protective device rating.
			Vote: 13-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.13	<mark>741</mark>	67	Recommendation: Resolve
			Statement : CMP 17 reaffirms, notwithstanding weather conditions, that water heaters may operate for more than 3 hours. Insufficient technical substantiation has been submitted to support the proposed exception.
			Vote: 13-0

Article/Section	Public	PI Report	TG Recommendation & Statement
	Input #	Page #	
422.31	<mark>1872</mark>	127	Recommendation: FR XXXX

<mark>2527</mark>	130	
		Statement:
		The text concerning lockable is revised to
		comply with the NEC Style Manual Section 3.2.5.
		Sections 422.31(A) and (B) are consolidated as
		the requirements were redundant.
		The title of 422.31(A) is revised for clarity to
		address appliances of any volt-ampere or
		appliances not over 1/8 horsepower.
		Additionally, the language in (A) is revised to
		"branch-circuit overcurrent protective device" to
		correlate with the defined term in Article 100.
		Vote: 13-0

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.31	<mark>2343</mark>	128	Recommendation: Resolve
			Statement: Section 4.1.1 of the NEC Style Manual states that the use of redundant references be avoided. Section 240.24 requires circuit breakers to be readily accessible, and 404.8 requires switches and circuit breakers used as switches to be readily accessible. Because appliances include a broad range of equipment and their disconnecting means vary, 110.26(A) requirements should be determined by the AHJ on a case-by-case basis.
			Vote: 13-0

Article/Section	Public	PI Report	TG Recommendation & Statement
	Input #	Page #	

422.12	<mark>3467</mark>	62	Recommendation: FRXXXX
	<mark>4424</mark>	64	Statement:
	1292	60	CMP 17 reaffirms that the requirements for
	<mark>4108</mark>	63	central heating equipment are necessary to be retained in this article in order to provide specific installation requirements to industry.
			The permission to connect other loads to the central heating equipment individual branch circuit in Exception No. 2 was expanded to include the receptacle required in 210.63(A) and the lighting outlet required in 210.70(C) as these loads would not typically overload an individual branch circuit.
			In order to not continually expand the list, Exception No.1 was revised to include "similar equipment" which will permit equipment such as germicidal irradiation luminaires to be connected to the branch circuit.
			Mike Weaver- Chair Report? NFPA StaffCorrelation issue 210.8
			Vote: 11-0

Article/Section	Public	PI Report	TG Recommendation & Statement
	Input #	Page #	

422.5(A)	<mark>1548</mark>	46	Recommendation: Resolve
	1770	48	Insufficient technical substantiation has been submitted to expand the list. Additionally, representatives for both UL 101 Leakage Current for Utilization Equipment and UL 943 GFCIs, as well as other industry stakeholders, are engaged in ongoing discussions concerning GFCI protection and appliance compatibility. A timeframe for compatibility within these product standards has not been established. Code Making Panel 2 has purview of the branch circuit requirements in 210.8(D) and Code Making Panel 17 has purview over the requirements in 422.5(A).
			Mike Weaver- Chair Report? Code Making Panel 2 has purview of the requirements in 210.8(D) and Code Making Panel 17 has purview over the requirements in 422.5(A). Code Making Panel 17 is asking the Correlating Committee for guidance as to if there is a purview or correlation issue that needs to be addressed.
			Vote: 13-1 (Valdes)

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.5(A)	<mark>4486</mark>	50	Recommendation: Resolve Statement: Insufficient technical substantiation has been submitted to support the proposed change. Vote: 13-1 (Valdes)

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.5(A)	3205 1677	49 47	Recommendation: FR XXXX
	91	51	Statement:
	98	54	This section is editorially revised by creating sub-divisions (A), (B) and (C), including a charging statement. The permission for multiple GFCI devices is now in the charging statement and Class A is revised to the defined term acronym GFCI. First level sub-division (A) is retitled to "circuit rating" to more accurately describe the requirements that follow. This sub-division is also revised to base the appliance GFCI protection on the branch circuit rating and not the rating of the appliance. The voltage and rating thresholds are put into list item form for clarity. A reference to the low voltage contact limit, a defined term in Article 100, is added to clarify that GFCI protection is not required when the branch circuit voltage is below the defined thresholds. First level sub-division (B) is created for clarity and includes the appliances that require GFCI protection. List item (1) is revised to "branch- circuit overcurrent protective device" to correlate with the defined term in Article 100. An informational note is added to provide guidance to industry that an electrically cooled drinking water fountain is a type of water cooler. The existing informational note is revised to comply with the NEC Style Manual, Section 2.1.10. Insufficient technical substantiation has been submitted to expand the list. Additionally, representatives for both UL 101 Leakage Current

for Utilization Equipment and UL 943 GFCIs, as well as other industry stakeholders, are engaged in ongoing discussions concerning GFCI protection and appliance compatibility. A timeframe for compatibility within these product standards has not been established. Code Making Panel 2 has purview of the branch circuit requirements in 210.8(D) and Code Making Panel 17 has purview over the requirements in 422.5. Existing sub-division (B) is changed to (C) for editorial purposes.
Vote: 11-1

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
422.11	TG1 FR Based On Global PI4050	5	Recommendation: FRXXX Statement: The language at 422.11(A) is revised to "branch-circuit overcurrent protective device" to correlate with the defined term in Article 100. Vote:

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
Global	<mark>3085</mark>		Recommendation: Reviewed
			Statement: None
			Mike Weaver- Chair Report
			TG1 reviewed Article 422 and took action as necessary. See FR XXXX which includes revising Informational Note No.1 at 422.5(B) to comply with the NEC Style Manual
			Vote:

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
Global	<mark>3086</mark>		Recommendation: Reviewed Statement: None
			Mike Weaver- Chair Report CMP17 considered the input and considers the existing requirements in 110.20 as adequate. Including redundant requirements in 422.3 would not add to or change the existing requirements in 110.20.

Article/Section	Public	PI Report	TG Recommendation & Statement
	Input #	Page #	
Global	<mark>3099</mark>		Recommendation: Reviewed
			Statement: None
			Mike Weaver- Chair Report

TG1 reviewed the definitions associated with Article 422 and determined no action was necessary.
Vote:

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
Global	<mark>4050</mark>	Ŭ	Recommendation: Reviewed
			Statement: None
			Mike Weaver- Chair Report
			TG1 reviewed the definitions associated with
			Article 422 and took action as necessary. See
			FRXXXX, FRXXXX and FRXXXX.
			Vote:

Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
Global	<mark>4287</mark>	6	Recommendation: Reviewed
			Statement: None
			Mike Weaver- Chair Report
			TG1 reviewed Article 422 and determined no
			action was necessary.
			Vote:

2026 NEC[®] Public Input Task Group Report

CMP #	17			
TG#	2			
TG Chair	Ryan Jackson			
TG Members	Kenneth Shell, Timothy O'Brien, Kam Fai Sui, Paul Abernathy, Kenneth Castronovo, Chester Sandberg, David Gray, Micheal Weaver, Vincent Della Croce, Robert Dellavalle, Armando Lozano, Stephen Kuscsik, Larry Reichle, Chuck Mello			
Article/Section	Public	PI	TG Recommendation & Statement	
-	Input	Report		
	#	Page #		
424.3	3734	131	Create FR TG2-1	
			The section and associated table were renumbered to	
			424.8, in accordance with section 2.2.1 of the 2023	
			NEC Style Manual.	
424.4(B)	3207	132	Resolve.	
			The sizing of the overcurrent protective device is	
			already addressed in other sections and would be	
			redundant. Section 4.1.1 of the 2023 NEC Style Manual	
			prohibits such redundancy.	
			· · · · · · · · · · · · · · · · · · ·	
424.6	3733	133	Create FR TG2-2	
			The listing requirements of this article were relocated	
			to 424.2 to comply with section 2.2.1 of the 2023 NEC	
			Style Manual.	
424.12(C)	1910	134	Resolve	
			The CMP shares the concerns that equipment should	
			be properly rated for the environment.	
			A blanket prohibition on equipment in or near bathtubs or showers is overly broad. Some types of	
			heating equipment are listed for use in bathrooms,	
			including near the shower or bathtub. Section	
			424.12(B) requires equipment to be listed for a wet or	
			damp location if installed in one.	

4 24.19(A)(2)	2 697	1 35	Create FR TG2-3
			Editorial revisions were made to comply with section 4.1.4 of the 2023 <i>NEC Style Manual</i> .
424.19(B)(1)	2528	136	Create FR TG2-4
			Editorial revisions were made to comply with section 3.2.5.3 of the 2023 <i>NEC Style Manual</i> requirements for <i>consistent application of terms</i> as it relates to "lockable open".
424.22(A)	2698	137	Create FR TG2-5
			Editorial revisions were made to comply with section 4.1.4 of the 2023 <i>NEC Style Manual.</i>
424.44(E)	99	138	Create FR TG2-6
			Editorial revisions were made to use the acronym "GFCI" in accordance with section 2.1.2.9 of the 2023 NEC Style Manual.
424.45(E)	100	139	Create FR TG2-7
			Editorial revisions were made to use the acronym "GFCI" in accordance with section 2.1.2.9 of the 2023 NEC Style Manual.
424.47	235	140	Create FR TG2-8
			The term "panelboard" was used incorrectly in previous versions of this section. The panelboard is the busbar assembly, aka the "guts." The intent of this requirement is for the label to be applied to the panelboard's enclosure, not the panelboard itself. Editorial revisions were made to add clarity. A portion of the existing text was rewritten as an exception, as the previous language provided an alternative to the general requirement. Additional reference to 110.21

			was added to ensure that the label is appropriate for the intended environment.
424.65	3209	142	Create FR TG2-9 The duct heater may or may not have supplemental overcurrent protection, so 424.19(A) or (B) could apply.
424.80	2699	143	Create FR TG2-10
			Editorial revisions were made to comply with section 4.1.4 of the 2023 <i>NEC Style Manual</i> .
424.99(B)(5)			Create FR TG2-11
			Editorial revisions were made to properly use the acronym "GFCI" in accordance with 2.1.2.9 of the 2023 <i>NEC Style Manual</i> . The phrase "for personnel" was removed, as it is included in the definition of GFCI in Article 100.
425.3	3738	144	Create FR TG2-12
	996	145	The section and associated table were renumbered to 425.8, in accordance with section 2.2.1 of the 2023 <i>NEC Style Manual</i> . Specific Parts of Article 430 were added to comply with section 4.1.4 of the 2023 <i>NEC Style Manual</i> .
425.6	3739	146	Create FR TG2-13
			The listing requirements of this article were relocated to 425.2 to comply with section 2.2.1 of the 2023 <i>NEC Style Manual</i> .
425.19	2529	151	Create FR TG2-14
	2530 2531 2700 2532	152 148 149 150	Editorial revisions were made to comply with sections 3.2.5.3 and 4.1.4 of the 2023 <i>NEC Style Manual.</i>
425.22(A)	2701	152	Create FR TG2-15

			Editorial revisions were made to comply with section
			4.1.4 of the 2023 NEC Style Manual.
426.2	2744	200	
426.3	3741 987	286 287	Create FR TG2-16
	567	207	This section was deleted because reference to Article
			422 is not needed as it applies regardless. The existing
			language also violated section 4.1.4 of the 2023 NEC
			Style Manual.
426.50(A)			Create FR TG2-17
			Editorial revisions were made to comply with section
			3.2.5.3 of the 2023 NEC Style Manual.
426.51	2533	288	Create FR TG2-18
			Editorial revisions were made to comply with section
			3.2.5.3 of the NEC Style Manual.
Article 100	3479	42	
Alticle 100	3475	72	Create Cl TG2-1
			The CMP has reviewed public inputs 3479 and 4168
			regarding conductive heated pavement systems and
			has decided to provide this committee input in order to
			solicit public review and comments.
			CMD17 colicite comments according if a constant
			CMP17 solicits comments regarding if pavement heating systems warrant specific requirements and/or
			separate a Part in Art 426, and do the specific
			requirements originally proposed in public inputs 3479
			and 4168 sufficiently address the safety concerns.
			Currently, CMP 17 has initial concerns such as, but not
			necessarily limited to:
			1. The last of a number listing standard and the
			1. The lack of a product listing standard or outline of investigation clarifying appropriate product
			performance and safety requirements.
			2. GFCI and/or GFPE protection or other shock
			protection measures
			3. Grounding & bonding

			 4. Capacitive coupling 5. Scope of use 6. Accessible and acceptable contact voltages on or near the surface of the heated pavement, after damage or possible deterioration of the heated pavement such as wear, cracks, potholes, or penetrations into the heated pavement surface, such as signage, guard rails, benches, etc. 7. The use of a grounded or an ungrounded system 8. Limits on applied system voltage. After public comments are received, as well as progress of development of product safety standards, additional
			of development of product safety standards, additional concerns may be presented for consideration. <u>Conductive Pavement Heating System</u> . A system in which heat is generated by passing current between electrodes embedded within the pavement material and through the pavement material. (426) (CMP-17) Informational Note: The pavement material may be primarily of concrete, asphalt, or the like, and is typically constructed as bridge structures, walks, steps, roads, or parking areas.
Article 426 (New) Part VII	4168	153	Create CI TG2-2 *Note to NFPA Staff: See separate document for CI text. The CMP has reviewed public inputs 3479 and 4168 regarding conductive heated pavement systems and has decided to provide this committee input in order to solicit public review and comments. CMP17 solicits comments regarding if pavement heating systems warrant specific requirements and/or separate a Part in Art 426, and do the specific requirements originally proposed in public inputs 3479 and 4168 sufficiently address the safety concerns. Currently, CMP 17 has initial concerns such as, but not necessarily limited to:

427.1	2204	290	 The lack of a product listing standard or outline of investigation clarifying appropriate product performance and safety requirements. GFCI and/or GFPE protection or other shock protection measures Grounding & bonding Capacitive coupling Scope of use Accessible and acceptable contact voltages on or near the surface of the heated pavement, after damage or possible deterioration of the heated pavement such as wear, cracks, potholes, or penetrations into the heated pavement surface, such as signage, guard rails, benches, etc. The use of a grounded or an ungrounded system Limits on applied system voltage. After public comments are received, as well as progress of development of product safety standards, additional concerns may be presented for consideration.
427.1	3743 988	290 291 292	Create FR TG2-19 The title and scope of the article were revised to reflect installations of heat trace beyond those used for just pipelines and vessels. For example, installations of heat trace for doors of commercial freezers and similar applications. Create FR TG2-20 This section was deleted because reference to Article
427.55(A)	2534	293	422 is not needed as it applies regardless. The existing language also violated section 4.1.4 of the 2023 NEC Style Manual.

	Editorial revisions were made to comply with section 3.2.5 of the 2023 <i>NEC Style Manual</i> .
427.56(A)	Create FR TG2-22
	Editorial revisions were made to comply with section 3.2.5.3 of the 2023 <i>NEC Style Manual</i> .
427.56(D)	Create FR TG2-23
	Editorial revisions were made to comply with Section 3.2.5.3 of the <i>NEC Style Manual</i> .
424.22(C)	Create FR TG2-24
	Informational Note No.1 has been deleted as it was redundant to Note 2 and not needed.
424.41(C)	Create FR TG2-25
	The informational note was deleted because a reference to 424.41(F) within 424.41(C) is not needed.
425.22(C)	Create FR TG2-26
	The permissive language of Informational Note 1 was supposed to be in the requirement of 425.22(C) and is now relocated to the correct location. This is consistent with the language of 424.22(C). The remainder of Informational Note No 1 was deleted as it was redundant to Informational Note No 2.
424.3	Create FR TG2-27
	The requirements for reconditioned equipment were added here, in accordance with 2.2.1 of the 2023 <i>NEC</i> <i>Style Manual</i> . It is unlikely that equipment covered by 424.3(B) would be able to be acceptably reconditioned and installed. Additionally, CMP 17 is not aware of any options that

Γ	oviet to do y for listing or field overheating of
	exist today for listing or field evaluation of reconditioned equipment of this type.
426.3	Create FR TG2-28
	The requirements for reconditioned equipment were added here, in accordance with 2.2.1 of the 2023 <i>NEC</i> <i>Style Manual.</i> It is unlikely that equipment covered by Article 426 would be able to be acceptably reconditioned and installed. Additionally, CMP 17 is not aware of any options that exist today for listing or field evaluation of reconditioned equipment of this type.
427.3	Create FR TG2-29
	The requirements for reconditioned equipment were added here, in accordance with 2.2.1 of the 2023 <i>NEC</i> <i>Style Manual.</i> It is unlikely that equipment covered by Article 427 would be able to be acceptably reconditioned and installed. Additionally, CMP 17 is not aware of any options that exist today for listing or field evaluation of reconditioned equipment of this type.
100	Note to NFPA Staff: I Have this in a separate document for global 3099. Not sure if we do it there or do it here, so I've done both.
	Create FR TG2-30
	The term "heating system" is only used in Articles 426, 427, and 100, all of which are under the purview of CMP 17.A first revision has been made to the definition to delete the reference to Article 426, in accordance with section 2.1.2.6.2 of the 2023 <i>NEC Style Manual</i> .
	Heating System. A complete system consisting of components such as heating elements, fastening devices, nonheating circuit wiring, leads, temperature controllers, safety signs,

			junction boxes, raceways, and fittings. (CMP- 17)
GLOBAL REVIEW	3085 3086 3099 4050 4287	1 2 3 5 6	As requested by NFPA staff, a separate document has been created for these global PIs.
426.54			Create FR TG2-31
			The requirements of 426.54 were relocated to 426.2 to comply with section 2.2.1 of the 2023 <i>NEC Style Manual</i> . Additionally, the listing requirements for this article have been expanded to cover all equipment within the article's scope, including cord-and-plug-connected equipment, to ensure the installation of the products used are in compliance with applicable product safety standards.
424.102			Create FR TG2-32
			The requirements of 424.102 were relocated to 426.2 to comply with section 2.2.1 of the 2023 <i>NEC Style Manual</i> .

Global PI 3085 CMP 17 TG 2

11/29/2023

Task Group 2 of Code-Making Panel 17 has reviewed the Informational Notes in Articles 424, 425, 426, and 427. The Task Group has found that they comply with section 2.1.10.3 of the 2023 *NEC Style Manual*, and no further action is necessary.

Global PI 3086 CMP 17 TG 2 11/29/2023

Task Group 2 of Code-Making Panel 17 has reviewed Articles 424, 425, 426, and 427 for compliance with the parallel numbering requirements of section 2.2.1 of the 2023 *NEC Style Manual*. First revisions were made as a result of Public Inputs to the applicable sections, and compliance with the Style Manual has been verified.

Global PI 3099 CMP 17 TG 2 11/29/2023

Task Group 2 of Code-Making Panel 17 has reviewed the definitions in Article 100 and found that only one definition (heating system) was specific to Article 424, 425, 426, or 427. The term "heating system" is only used in Articles 426, 427, and 100, all of which are under the purview of CMP 17.A first revision has been made to the definition to delete the reference to Article 426, in accordance with section 2.1.2.6.2 of the 2023 *NEC Style Manual*.

Create FR TG2-30

Heating System.

A complete system consisting of components such as heating elements, fastening devices, nonheating circuit wiring, leads, temperature controllers, safety signs, junction boxes, raceways, and fittings. (CMP-17)

Global PI 4050 CMP 17 TG 2 11/29/2023

Task Group 2 of Code-Making Panel 17 has reviewed Articles 424, 425, 426, and 427 for consistent and appropriate use of terms relating to overcurrent protection, overcurrent protective devices and similar terms.

No action has been taken as the task group has found that the existing text appears to comply with the 2023 *NEC Style Manual* and uses the defined terms in Article 100.

The task group requests that future updates to the *NEC Style Manual* provide better guidance on these terms, as the glossary contains multiple variations of these terms (*overcurrent device* and *overcurrent protective device* are included, for example, but *overcurrent protection device* is not) without indicating any context in which they are to be used.

Global PI 4287 CMP 17 TG 2 11/29/2023

Task Group 2 of Code-Making Panel 17 has reviewed Articles 424, 425, 426, and 427 for usability and clarity as it relates to ac and dc systems and circuits. The task group finds that these articles are clear in this regard, despite some equipment only applying to ac systems. For example, provisions for transformers, skin-effect, and induction are obviously only applicable to ac, but the task group believes that adding a reference to indicate "ac only" is not necessary. Is Article 450 going to remind the code user that transformers are ac equipment in every section of Article 450? This would seem to fly in the face of the "untrained persons" intent in 90.2(A). While Public Input 4287 makes good sense in several instances of the *Code*, it does not seem to make sense in Articles 424, 425, 426, or 427.

Code-Making Panel 17 Task Group 2 Committee Inputs to Article 100 and Article 426

CI TG2-1

Article 100

Conductive Pavement Heating System. A system in which heat is generated by passing current between electrodes embedded within the pavement material and through the pavement material. (426) (CMP-17)

Informational Note: The pavement material may be primarily of concrete, asphalt, or the like, and is typically constructed as bridge structures, walks, steps, roads, or parking areas.

CI TG2-2

Article 426
Part I. General
426.1 Scope.
This article covers fixed outdoor electric deicing and snow-melting equipment and the installation of these systems.
(A) Embedded.
Embedded in driveways, walks, steps, roads, and other areas.
(B) Exposed.
Exposed on drainage systems, bridge structures, roofs, roads, and other structures.
Informational Note: See ANSI/IEEE 515.1-2012, *Standard for the Testing, Design, Installation and Maintenance of Electrical Resistance Trace Heating for Commercial Applications*, for further information. See IEEE 844/CSA 293 series of standards for fixed outdoor electric deicing and snow-melting equipment.
(C) Combination. Combinations of embedded and exposed equipment in driveways, walks, steps, roads, bridge structures, and similar locations.

426.2 Listing. A conductive pavement heating system shall be listed and installed in accordance with the installation instructions and conductive pavement mixture specifications.

Part VI Conductive Pavement Heating Systems

426.60 General. Except as modified in this Part, conductive pavement heating systems shall comply with Parts I, II and VII of Article 426 and the following additional requirements.

426.62 Engineered Design.

The engineering design shall comply with all the following.

(A) Site Specific Design. Conductive pavement heating systems shall be designed and specified for specific installation site applications within the limits of the listing and manufacturer's installation instructions.

(B) Professional Engineer Required. The engineer shall be a licensed professional electrical engineer retained by the system owner or installer.

(C) Documentation. Documentation of the engineered design of the conductive pavement heating system shall be stamped and provided to the Authority Having Jurisdiction. The installation instructions, mixture specifications, and required conductivity test reports shall be provided to the Authority Having Jurisdiction.

(D) Additional Design Information. Additional stamped independent engineering reports detailing compliance of the design with applicable electrical standards and industry practice shall be provided upon request of the Authority Having Jurisdiction.

(E) Conformance Documentation. Conformance documentation shall include details of conformance of the design with the applicable parts of Article 426, or other articles of this Code.

426.64 Installation Engineering Supervision. Conductive pavement heating systems shall be installed under engineering supervision and in accordance with the manufacturer's instructions. All documentation shall be provided to the Authority Having Jurisdiction.

426.66 Conductive Pavement Heating System

(A) Cover. Embedded electrodes shall be installed in accordance with the product listing and one of the following:

(1) On a substantial concrete, masonry, or asphalt base at least 100 mm (4 in.) thick and having at least 50 mm (2 in.) of conductive pavement applied under the electrodes and over the top of the electrodes,

(2) The electrodes shall be permitted to be installed over other identified structural bases and embedded within 150 mm (6 in.) of conductive pavement with not less than 50 mm (2 in.) under the electrodes and over the top of the electrodes,

(3) Equipment that has been listed for other forms of installation shall be installed only in the manner for which it has been identified.

(B) Secured. Electrodes and supply conductors shall be secured in place by frames or spreaders or other approved means while the conductive pavement is installed.

(C) Expansion and Contraction. Electrodes and supply conductors shall not be installed where they bridge expansion joints unless provision is made for expansion, contraction, or other movement.

(D) Overtemperature. The conductive pavement system shall be monitored for surface temperatures and have overtemperature protection installed set not greater than 15° C (60° F). An overtemperature condition shall cause the power to the electrodes to be deenergized.
 (E) Flexural Capability. Where installed on flexible structures, the electrodes and associated equipment shall have a flexural capability that is compatible with the movement of the structure.

426.68- Installation of Nonheating Leads.

(A) Nonheating Leads. Power supply nonheating leads (cold leads) for connection to the electrodes shall be identified for the temperature encountered. Not less than 150 mm (6 in.) of nonheating leads shall be provided within junction boxes.

(B) Protection. Nonheating leads shall be enclosed in a rigid nonmetallic conduit or other approved means.

426.70 Electrical Connection.

(A) Electrode Connections. Electrical connections, other than factory connections of electrodes to nonheating leads, shall be made with insulated connectors identified for the use.
 (B) Circuit Connections. Splices and terminations at the end of the nonheating leads, other than the electrode end, shall be installed in a box or fitting in accordance with 110.14 and 300.15.

426.72 Corrosion Protection. Ferrous and nonferrous metal raceways, boxes, fittings, supports, and support hardware shall be permitted to be installed in pavement or in direct contact with the earth, or in areas subject to severe corrosive influences, if made of material suitable for the condition, or if provided with corrosion protection identified as suitable for the condition.

426.76 Conductive Pavement Materials. The conductive pavement materials shall be mixed in accordance with the specifications from the installation instructions. The maximum and minimum limits for resistance or conductivity shall be in accordance with the listing and be provided in the installation instructions.

426.78 Conductivity Testing. The conductive pavement material mixture shall be tested for resistance or conductivity and the test report shall be provided to the AHJ. Final approval for the installation shall not be granted until all material test reports have been provided and reviewed.

426.80 Equipment Mounting. Structures or equipment mounted onto the conductive pavement surface shall be electrically bonded together and connected to the equipment grounding system.

426.82 Grounding and Bonding.

An 8 AWG bare copper ground ring shall be installed and connected to the equipment grounding conductors. The ground ring and associated connections shall comply with all the following: (1) The conductors follow the contour of the perimeter surface.

(2) Only listed splicing devices suitable for direct burial or concrete encasement, or exothermic welding are used.

(3) The conductor(s) is 150 mm to 300 mm (6 in. to 12 in.) outside the perimeter of the conductive pavement heating system.

(4) The conductor(s) is under the perimeter surface 100 mm to 150 mm (4 in. to 6 in.) below finished grade.

2026 NEC® Public Input Task Group Report

CMP #	17 3 Stephen Kuscsik		
TG#			
TG Chair			
TG Members			See excel sheet
Article/Section	Public Input #	PI Report Page #	TG Recommendation & Statement
All	3085	1	 Global Input – Corr Comm. Style Manual 2.1.10 for Informational Notes. Vote: 10Y, 0 N. FR CMP17-TG3-47 FR CMP17-TG3-48 Substantiation: Task Group 3 of Code-Making Panel 17 has reviewed the Informational Notes in Article 680 for compliance with section 2.1.10.3 of the 2023 <i>NEC</i> <i>Style Manual</i> and recommends revisions to 680.12 and 680.26(A) informational notes.
All	3086	2	 Global Input – Corr Comm. Style Manual 2.2 for Organization of sub sections/numbering. Vote 10 Y, 0 N. Response: Task Group 3 of Code-Making Panel 17 has reviewed Article 680 for compliance with the parallel numbering requirements of section 2.2.1 of the 2023 <i>NEC Style Manual</i>. First revisions were made as a result of Public Inputs to the applicable sections, and compliance with the Style Manual has been verified. Also see PI 2807 for action.

			Task Group Notes: 680.3 Reconditioned equipment
			is not being added at this time, as 110.20 already permits reconditioned equipment to be installed unless prohibited elsewhere, and we see no need
			to prohibit installation of reconditioned equipment in Art 680 at this time.
All	3099	3	Global Input
			Vote 10 Y, 0 N Response:
			Task Group 3 of Code-Making Panel 17 has discussed the Public Input and has decided not to make First Revisions at this time. This can be revisited at the Second Draft should CMP 15 act favorably on PI 3099.
All	4050	5	Global Input Overcurrent protection Terms.
			Vote: 10 Y, 0 N Response:
			Task Group 3 of Code-Making Panel 17 has reviewed Article 680 for consistent and appropriate use of terms relating to overcurrent protection, overcurrent protective devices, and similar terms.
			No action has been taken as the task group has found that the existing text appears to comply with the 2023 <i>NEC Style Manual</i> and uses the defined terms in Article 100.
			The task group requests that future updates to the <i>NEC Style Manual</i> provide better guidance on these terms, as the glossary contains multiple variations of these terms (<i>overcurrent device</i> and <i>overcurrent protective device</i> are included, for example, but <i>overcurrent protection device</i> is not) without indicating any context in which they are to be used.

All	4287	6	Global Input Which circuits do requirements apply to? Vote: 10 Y, No 0. Response: Task Group 3 of Code-Making Panel 17 has reviewed Article 680 for usability and clarity as it relates to ac and dc systems and circuits. The task group finds that Article 680 is clear regarding the use of ac and dc systems and circuits, as well as wye-or delta-connected systems, and single-phase or polyphase systems. There are multiple instances of Article 680 referring to transformers and power supplies. These have not been revised as recommended by the Public Input, because CMP 17 feels that the issue is already clear to those qualified to read the requirements.
680.26	1624	8	 Global Input, TIA 23-9. See PDF. Vote: 11 Y, 0 N. Resolve: CMP17 reviewed TIA 23-9 and action was taken on Pls related to 680.26 which took into consideration the TIA. No further action is needed for PI 1624. See Action Taken regarding revisions made, and panel statement for proposed changes that were not made, for other related to Definitions and Section 680.26 Pls, including PI 211, 212, and 213.

Definition	1800,	15	Equipotential Plane
	3033		
			Per Jeff S NPFA staff 11-9-23, these two PIs have
			been reassigned from CMP 17 to CMP 7. No need
			for any action by CMP 17.
			RESOLVE
			Substantiation: The definition of Equipotential
			Plane is under purview of CMP7, not CMP17. CMP
			17 is not at liberty to make a FR for this.
			VOTE: 9 Yes, 0 No.
Definition	3033,	16	Equipotential Plane
	1800		Combine definitions.
			See PI 1800 for Action Taken.
Definition	2350. See	17	Fixed (as applied to equipment). Proposal to
	4229.		change purview from 680 CMP17 to CMP1
			See 4229
Definition	4220	18	FR TG3-1
Definition	4229 <i>,</i> 2350	18	FK 103-1
	2330		Equipment that is fastened or otherwise secured at
			a specific location. (680) (CMP-17)
			Substantiation – The term Fixed is used in more
			Articles beyond Art 680, but still relates to CMP17
			for many of its uses, therefore will remain under
			purview of CMP17, and not change to CMP 1.
			14 Yes. 0 NO.
Definition	901	19	Low-Voltage Contact Limit. Remove reference to
			680 but keep purview with CMP17.
			FR TG3-2
			14 Yes. 0 NO.
			Substantiation:

			The term Low-Voltage Contact Limit is used in Articles beyond Art 680 but still relates to CMP17 for many of its uses. The reference to Art 680 is being removed, and will remain under purview of CMP17.
Definition	1678, 1712, 234, 2510, 3695	20	 Pool, Permanently Installed Swimming, Wading FR TG3-3 See code text below. Substantiation: These changes are intended to clarify the pool types intended to be covered by this definition. Yes: 14 No: 0
Definition	1712 See 1678	22	Pool, Permanently Installed Swimming, Wading, I See 1678
Definition	234 See 1678	23	Pool, Permanently Installed Swimming, Wading, I See 1678
Definition	2510 See 1678	31	Pool, Permanently Installed Swimming, Wading, I See 1678
Definition	3695 See 1678	32	Pool, Permanently Installed Swimming, Wading, I See 1678
Definition	2205	33	Pool, Storable; used for Swimming, Wading, or I FR TG3-4 Yes: 14 No: 0 Substantiation: The definition is being revised for clarity, without changing the meaning. New informational note was added to indicate that a pool with permanent deck is to be treated as a permanently installed pool.
Definition	3700	34	Pool, Storable; used for Swimming, Wading, or I RESOLVE 12 Yes 0 No.

			Substantiation: The proposed revisions do not add clarity to what is considered a Storable Pool vs Permanent Pool, and may be considered requirements rather than terms. 2.2.1.5 of the NEC Style Manual requires that definitions shall not contain requirements or recommendations.
Definition	211, 2862, 295	35	Definition: Pool
			FR CMP17 TG3-5
			Vote for FR: 12 YES, 0 NO, for the latest FR and the statement.
			Substantiation:
			To aid the user and provide further clarification, additional specific installation types are referenced in the definition, and excluded from the definition, as well as an Informational Note, regarding what is considered a Pool and what is not considered a Pool.
			Permanent and Semi-Permanent are removed from the definition as how long the pool is intended to remain is not relevant to the term Pool.
			Additionally, "man-made bodies of water" is revised to "artificially-made bodies of water" since this is a defined term.
Definition	2862	37	Pool
	See 211		FR See PI 211
Definition	295	38	Pool
	See 211		FR See PI 21
Definition	3994	39	Portable (as applied to equipment)
			RESOLVE 12 Y, 0 No.

			Substantiation: The terms Portable and Portable Equipment are used in many locations throughout the code. This instance as applied only to Art 680 serves the needs for Pool and Spa applications. We do not see a benefit of removing this Definition.
Definition	2351, 4228	40	Stationary (as applied to equipment) Proposal to change purview from 680 CMP17 to CMP1 FR CMP17 TG3-6 12 Y, 0 N.
			Substantiation: The term "Stationary (as applied to equipment)" is used in Art 680, and is also used in other Articles to make it applicable in a larger scope, the reference only to Art 680 is being removed. Since it is used extensively in Art 680, CMP17 reference is being retained.
Definition	4228, 2351	41	Stationary (as applied to equipment) See PI 2351
Definition (NEW)	3681	43	 Pool, Semi-Permanent; used for Swimming, Wading, or Immersion RESOLVE Substantiation: The submitter's objectives have been addressed by the revisions of the definitions of permanently installed pools and storable pools. The type of pool suggested in the public input is now considered to be a storable pool unless a permanent deck is installed around all or part of the pool. Therefore, the term "Semi-Permanently Installed Pools" is not being added to the title of Part II.
New Article after 680	3620, 3774	294	Relocate Art 680 to a stand-alone Chapter XX for Bodies of Water

			See notes in PI 3774.
			Resolve. Vote: 11 Y, 0 N.
			Substantiation:
			Code-Making Panel 17 does not support the creation of a new NEC Chapter at this time. The NEC is likely to receive wholesale changes to the 2029 edition, including reorganization. Additionally, it is important to retain the knowledge and long-standing history of requirements in Art 680, which current CMP 17 members have.
680.2	2807, 2808	295	680.2 Listing Requirements
			FR CMP17 TG3-7 12 Y 0 N.
			Substantiation: To comply with the NEC style manual section 2.2.1, the requirement for Listing is being moved from 680.6 to 680.2.
680.6	2808, 2807	297	680.6 Listing Requirements
			Corr committee input. Relocate to 680.2
			See PI 2807 for action.
680.5(B)	4500	296	GFCI requirements for 100 a circuits, 3 ph.
			FR CMP 17 TG3-12 8 Yes, 0 No.
			Substantiation:
			680.5(B) currently stipulates a 60-ampere threshold for equipment requiring ground-fault circuit interrupter (GFCI) protection. Commercially
			available three-phase GFCI devices now offer ratings up to 100 amperes. This revision reflects
			the availability of higher-rated GFCI devices and

			· · · · · · · · · · · · · · · · · · ·
			harmonizes the code with existing provisions, such as Section 210.8(B). Additionally, 680.5(B was separated into a list (1) and (2) for improved usability.
680.8	1944,	298	680.8
000.0	2267, 1326	230	Cord and plug redundant language.
	1520		FR CMP17-TG3-13
			11 Y, O N
			Substantiation:
			Existing section 680.7(B) has existing grounding and bonding requirements for cord and plug connections. Redundant language in existing section 680.8(B) is deleted. Title for (A) was clarified to better reflect the requirements in this item. Section 680.8 first level subdivision (C) was clarified, and the title revised, and renumbered as (B).
			The words "maintenance or repair" were changed to "servicing" for clarification, as "servicing " is a defined term and often encompasses maintenance and repair activities.
680.8(B)	2267	299	Equipment Grounding Conductor
			See PI 1944 for Action Taken.
680.8	1326	300	Fixed or stationary
			Repair – servicing.
			See PI 1944 for Action Taken.
680.9(A)	1151	301	Power cables overhead and nearby pool area.
			RESOLVE 11Y 0 N.
			Substantiation: The submitted input would expand the clearances of this table to 10' beyond any

			observation stand, diving board, or similar
			structure. Insufficient technical substantiation was
			provided to support this proposed change.
680.10	646	304	Pool water heaters.
000.10	040	504	r oor water neaters.
			RECOVE
			RESOLVE
			10 Y, 1 No.
			Substantiation:
			For 2023 NEC, Section 680.10 title was revised, and
			heat pumps and chiller equipment were added to
			the article to address new technology that is being
			added to pool installations. Section 680.10 was
			also revised into subparts (A) and (B) for clarity.
			This new technology is still in its early stages of
			implementation, and addressing this in this section
			provides guidance.
			provides guidance.
680.10(A)	4464	305	Pool water heaters
			FR CMP17-TG3-14
			10 Y, 0 N.
			Substantiation:
			Substantiation.
			680.10(A) is being revised into a list item format to
			facilitate understanding for Code users, and in
			accordance with NFPA Style Manual section
			3.5.1.2. Additionally, "ampere" was added for
			clarity.
			ciul cigi
C00 10(D)	4465	200	De el vieter hastere
680.10(B)	4465	306	Pool water heaters
			FR CMP17-TG3-15
			8 Y O N
			Substantiation:
			680.10(B) is being revised into a list item format to
			facilitate understanding for Code users, and in
			accordance with NFPA Style Manual section
			3.5.1.2. Additionally, "ampere" was added for

			clarity.
680.12(B)	1459 <i>,</i> 4467	307	ReceptaclesFR CMP17-TG3-16Vote 13 Y, 0 NSubstantiation: Commercially available three-phase GFCI devices now offer ratings up to 100 amperes, and single phase GFCI devices offer ratings up to 60 amperes.
680.12(B)	4467, 1459	308	Receptacles Breaks into two sections to be clearer. See PI 1459 for Action taken.
680.14(A)	2265	309	Wiring methods – add new option. FR CMP17-TG3-17 Vote: 12 Y, 0 N. Substantiation: Liquidtight flexible metal conduit (LFMC) is suitable for use in corrosive environments per UL 360. In addition, 680.21(A)(1) permits LFMC for flexible connections to pool motors.
680.14(B)	645	310	Other Equipment – corrosion - suitable/identified FR CMP17-TG3-18 Vote 12 Y 0 N. Substantiation:

			The word "suitable" is replaced with defined term "identified" for clarity, and editorial change to add "permitted" instead of "considered suitable for use".
680.20	3719	311	Adding "semi-permanently installed pools"
			RESOLVE
			Substantiation:
			The submitter's objectives have been addressed by the revisions of the definitions of Permanently Installed Pools and Storable Pools. The type of pool suggested in the public input is now considered to be a storable pool unless a permanent deck is installed around all or part of the pool. Therefore, "semi-permanently installed pools" has not been added to the text in 680.20.
680.21(D)	1325	312	Pool pump motor – servicing and reconditioning
			FR CMP17-TG3-19
			Vote: 11 Y, 0 N.
			Substantiation: The term "reconditioned" was added to the requirement, and the Title expanded, both for clarity. The word "where" was changed to "if" to comply with the NEC Style Manual. The language regarding "repair" was not changed to "servicing," because "servicing" is a broader term than "repairing."
680.22(A)(4)	1336	313	SPGFCI
			SEE PI 3814 for Action (Resolve)
680.22(A)(4)	2395	314	New exception for GFCI not required near shore power. Photo included? Coud not see.
			RESOLVE
			Substantiation: Existing requirements in

680.22(A)(4)	2439,	315	 680.22(A)(4) provide for protection against electric shock for receptacles that may be in the area of a pool, up to 20 ft away. Allowing an exemption for shore power or any other purpose, where the receptacles are not required to be protected by GFCI or SPGFCI, significantly increases the electric shock risk in the pool area. GFCI for circuits
	4511		See PI 4511 for Action.
680.22(A)(4)	4511, 2439	316	GFCI 3 phase 100A FR CMP 17 TG3-11 8 Yes, 0 No. Substantiation: 680.22(A)(4) currently stipulates a 60-ampere threshold for equipment requiring ground-fault circuit interrupter (GFCI) protection. Commercially available three-phase GFCI devices now offer ratings up to 100 amperes. This revision reflects the availability of higher-rated GFCI devices and harmonizes the code with existing provisions, such as Section 210.8(B). Additionally, 680.22(A)(4) was separated into a list (A) and (B) for improved usability.
680.22(A)(5)	2241	317	Measurements power supply cord Remove doorways, windows, etc FR CMP17-TG3-20 Vote 10 Y 0 N Substantiation: "Power-" is added to "supply cord", and "of an appliance" is deleted, to correlate with the existing defined term "power-supply cord" in Article 100. The existing requirements regarding doorways and window openings are unique to pool/spa applications, and are not being deleted. The

			proposed revision might, for example, encourage receptacles just inside of a door or window to be used as the required receptacle in 680.22(A) list item 1.
680.22(B)(1)	2394	318	Outdoor clearances – add festoon lighting
			Vote 10 Y, 0 N FR CMP17-TG3-21
			Substantiation: Festoon lighting is installed above pools very frequently. This term is added to the title, and the text revision makes it clear that festoon lighting is also subject to this distance requirement, and it enhances electrical safety from shock hazards in the swimming pool area. The installation height is clarified to indicate that all parts must be above the minimum height.
			Additionally, "New" and "Installation" were removed from the title of 680.22(B)(1) to align the requirements with the remainder of this Section.
			680.22(B)(4) is also revised to add festoon lighting to the requirement, to correlate with adding it to 680.22(B)(1).
680.22(B)(2)	1648	319	Indoor clearances – GFCI term
			FR CMP17-TG3-22 Vote 10 Y, 0 N
			Substantiation: Section 2.1.2.9 of the NEC Style Manual permits the use of acronyms. The acronym, GFCI, is currently used in Article 100 and Section 680.5.
			Editorial revision was made for clarification to provide reference to 680.22(B)(1) for outdoor area clearances.
680.22(B)(3)	1649	320	Existing installations – GFCI term

			FR CMP17-TG3-23 Vote 11- Y, 0 N Substantiation: Section 2.1.2.9 of the NEC Style Manual permits the use of acronyms. The acronym, GFCI, is currently used in Article 100 and Section 680.5.
680.22(B)(8)	4472	321	Measurements – power supply cord – imaginary. Also removes doors/windows. RESOLVE Vote 11 Y 0 N Substantiation: In the context of 680.22(B)(8), the term "imaginary cord" is used as a reference to determine required distances, so changing it to power supply cord is not being made. The existing requirements regarding doorways and window openings are unique to pool/spa applications, and are not being deleted.
680.22(D)	1441	322	Other Outlets. Informational note. RESOLVE Vote 11 Y, 0 N Substantiation: This informational note is not all-inclusive regarding outlet examples. Outlets are defined in Art 100 and include sources of power, including for hardwired utilization equipment.
680.22(E)	3210	323	Other Equipment. Change to Utilization. RESOLVE Vote: 10 Y 0 N Substantiation:

			The term "equipment" is defined in Art 100, and would include utilization equipment, appliances, and other equipment. Revising the term to "Utilization equipment and Appliances" instead of "Equipment" narrows the scope of equipment that is subject to these requirements, and reduces the level of safety.
680.23(A)(4)	1453, 2334	324	Underwater Luminaires – max voltage. RESOLVE Vote 10 Y, 0 N Substantiation: Existing 680.23(A) already provides for installation of pool lights at or below the low voltage contact limit, and also for GFCI protection for luminaries above this voltage level. Insufficient substantiation has been provided to show that shock related incidents are occurring with properly installed underwater luminaires.
680.23(A)(4)	2334, 1453	325	Underwater Luminaires – max voltage. See PI 1453 for Action taken.
680.23(A)(4)	573	326	Underwater Luminaires – max voltage. Editorial only. FR CMP17-TG3-24 Substantiation: This is an editorial revision made to provide consistency with other requirements in the Code.
680.23(B)(2)	1647	327	Nonmetallic conduit. GFCI term. FR CMP17-TG3-25 Vote 11 Y, 0 N

			Substantiation:
			Section 2.1.2.9 of the NEC Style Manual permits
			the use of acronyms. The acronym, GFCI, is
			currently used in Article 100 and Section 680.5.
680.23(B)(6)	2451	328	Servicing. Luminaire in spa for service. Move to
			Spa section.
			RESOLVE
			11 Y. O N
			11 I. O N
			Substantiation:
			CMP 17 reaffirms that spas can be constructed as
			•
			part of a permanently installed pool, or stand-
			alone. The existing requirement in Section
			680.23(B)(6) addresses both types of
			constructions, due to Section 680.43(B)(2) referring
			back to Section 680.23. Therefore, moving the
			requirements from Section 680.23(B)(6) is not
			necessary.
			,
680.23(F)(2)	2269	329	Equipment Grounding Conductor
			RESOLVE:
			Substantiation
			Adding the word "conductor" to the title of
			680.23(F)(2) would not provide significant
			clarification and may cause confusion.
680.24(B)	1651	330	GFCI term.
000.24(D)	1031	330	or criterin.
			FR CMP17-TG3-26
			Vote 11 Y, 0 N
			Substantiation
			Section 2.1.2.9 of the NEC Style Manual permits
			the use of acronyms. The acronym, GFCI, is
			currently used in Article 100 and Section 680.5.
680.24(D)	1652,	331	GFCI term.
	3211,		
	3212,		FR CMP17-TG3-27
	2082		Vote 11 Y, 0 N
	2002		

			Substantiation Title of 680.24 and text of 680.24(D) was revised. Section 2.1.2.9 of the NEC Style Manual permits the use of acronyms. The acronym, GFCI, is currently used in Article 100 and Section 680.5
			The term 'panelboard' and 'enclosed panelboard' are defined terms. Adding the word 'enclosed panelboard' makes the text technically correct.
			Relocating 680.24(F) to 680.24(D)(2) to group these similar requirements together. Both 680.24(D) and (F) have requirements relating to grounding terminals, therefore this relocation will add clarity for Code users.
			Section 2.1.2.9 of the NEC Style Manual permits the use of acronyms. The acronym, GFCI, is currently used in Article 100 and Section 680.5
680.24(D)	3211, 3212, 2082, 1652	332	Grounding terminals. See PI 1652 for Action Taken (FR).
680.24(E)	1654	333	GFCI term.
			FR CMP17-TG3-28
			Substantiation
			Vote 10 Y, 0 N
			Section 2.1.2.9 of the NEC Style Manual permits the use of acronyms. The acronym, GFCI, is
			currently used in Article 100 and Section 680.5
			Also added "enclosure" after GFCI for clarity, as this section relates to strain reliefs for enclosures.
680.24(F)	2082.	334	Grounding – "enclosed" panelboard.
	3211, 3212		See PI 1652 for Action Taken (FR).

680.24(F)	3212 3211,	335	Relocate to other section.
	2082		See PI 1652 for Action Taken (FR).
680.26(A)	212, 3253	336	Informational Notes for Performance of Equipotential Bonding
			FR CMP17-TG3-49
			Informational Note 2 was deleted as it did not add
			clarity to the requirements. Corrosive environments are already addressed in 680.14, and performance requirements are already addressed in 680.26(A). Therefore, this language is not
			needed.
680.26(A)	3253, 212	338	Informational Notes for Performance of Equipotential Bonding
			See PI 212 for Action Taken (FR).
680.26(B)(2)	1738, 213	343	Equipotential bonding of perimeter surfaces.
			See PI 213 for Action Taken (FR)
680.26(B)(2)	1916	354	Equipotential bonding of perimeter surfaces.
			FR CMP17-TG3-50
			Substantiation: The requirements for listing in 680.26(B)(2)(a) were
			clarified and the effective date was extended to allow time for the preparation of safety standards
			that could be used for the different options in this requirement and for products listed to these
			requirements to become available.
680.26(B)(2)	213, 1738	366	Equipotential bonding of perimeter surfaces.
			FR CMP7-TG3-50
			Substantiation:

			Multiple editorial changes were made to 680.26(B)(2) for clarification and readability; and redundant language, including 680.26(B)(2)(d), was eliminated. Changing the height parameter for the perimeter surface from 600 mm (2 ft) below maximum water level to 900 mm (3 ft) below maximum water level more accurately addresses the reach range for a person using the pool.
680.26(B)(2)	770	383	Equipotential bonding of perimeter surfaces. FR CMP7-TG3-52
			Substantiation: 680.26(B)(5) "Metal Fittings" was expanded to include structures in order to address items such as bulkheads. Moveable bulkheads are common especially in large commercial and institutional pools. This clarifies that conductive bulkheads must be bonded. Exception 4 was added to provide relief for conductive components attached to nonconductive bulkheads. These are often constructed of nonconductive materials, with limited metal fittings and attachments such as handles or starting blocks. When isolated from the pool structure and other conductive parts, these present minimal increased risk of electric shock, and are not required to be bonded.
680.26(B)	1737, 2083	391	Equipotential bonding of perimeter surfaces. FR CMP17-TG3-53
			Substantiation: The section 680.26(B)(1) was restructured as a list and clarifies that structural steel reinforcement
			may be used as a bonding conductor. The term "panelboard" was changed to "enclosed panelboard" to add clarity.
680.26(B)	2083, 1737	393	Enclosed panelboards See PI 1737 for Action Taken (FR).

680.26(B)	2018	392	Copper-clad steel as conductor option RESOLVE Vote 8 Y, 0 N. Substantiation: CMP 17 reaffirms that Sections 110.5 Conductors, 250.102(A) Grounded Conductor, Bonding Conductors, and Jumpers Material, and 310.3(B) Conductor Material do not recognize copper-clad steel as a conductor. Additionally, copper-clad steel conductor is not a defined term in Article 100 Definitions.
680.26(B)(1)	1125	339	Bonding of conductive pool shells RESOLVE Substantiation: The proposed language does not add clarification. Structural reinforcing steel is the more general term which includes, but is not limited to, steel rebar, and which makes it clear as to the nature of the material. Rebar, on the other hand, may include some reinforcing materials which are not steel and which are non-conductive and unsuitable for the bonding application (e.g., fiberglass rebar). The structural design of the pool shell is not within the scope of the NEC.
680.26(B)(1)	2019	340	Allowing copper-clad steel as a grid option RESOLVE Vote 5 Y, 2 N. Substantiation: CMP 17 reaffirms that Sections 110.5 Conductors, 250.102(A) Grounded Conductor, Bonding Conductors, and Jumpers Material, and 310.3(B) Conductor Material do not recognize copper-clad steel as a conductor. Additionally, copper-clad steel conductor is not a defined term in Article 100

			Definitions.
New Section after 680.26(B)(2)	1214	341	New Section after 680.26(B)(2) RESOLVE Substantiation: The proposed PI contains no enforceable code language. Section 680.26 presently requires equipotential bonding for area in proximity to a pool. Insufficient technical substantiation has been presented to support the proposed change.
New Section after 680.26(B)(2)	3460	342	New Section after 680.26(B)(2) RESOLVE Substantiation: Multiple varieties of corrosion-resistant structural reinforcing steel and rebar (e.g., stainless steel, galvanized) exist. Structural rebar has been an accepted method of perimeter bonding including not encased in concrete for many years with acceptable performance. Insufficient technical substantiation has been presented to support the proposed change.
680.26(B)(2)	2020	360	RESOLVE Vote 7 Y, 0 N. Substantiation: CMP 17 reaffirms that Sections 110.5 Conductors, 250.102(A) Grounded Conductor, Bonding Conductors, and Jumpers Material, and 310.3(B) Conductor Material do not recognize copper-clad steel as a conductor. Additionally, copper-clad steel conductor is not a defined term in Article 100 Definitions.
680.26(B)(2)	278	373	Bonding of perimeter surfaces RESOLVE

			Substantiation:
			The FR of 680.26(B)(2) satisfies the objectives of
			the submitter.
680.26(B)(2)	279	377	Bonding of perimeter surfaces
			RESOLVE
			Substantiation:
			The FR of 680.26(B)(2) satisfies the objectives of
			the submitter.
680.26(B)(7)	1215	389	New section – Metal Fence Bonding
			RESOLVE
			Substantiation:
			Section 680.26 presently requires equipotential
			bonding for area in proximity to a pool. Insufficient
			technical substantiation has been presented to
			support the proposed change.
680.26(B)(7)	3214	390	Add "bonded metal part".
			RESOLVE
			Substantiation:
			Insufficient technical substantiation has been
			presented to support the proposed change. The
			proposal is impractical and would require bonding
			of all metal parts that are within 5 feet of each
			other (rather than within 5 feet of the pool),
			regardless of their function, creating in some
			foreseeable cases a "daisy chain" of now-required-
			to-be-bonded metal parts that could reach far from
			the pool and even off the property.
680.28	2468,	394	New section 680.29 (after 680.28) for Portable
000.20	2408, 2467	554	Signs. Related also to PI 2467 for 680.57(C)(2).
	2407		
			FR CMP17-TG3-29

			Substantiation: Currently, 680.57(C)(2) in Part V Fountains contains a pool specific requirement, regarding Portable Signs. This is being appropriately relocated to new 680.29 in Part II of Art. 680, and the requirement in 680.57(C)(2) is being modified to relate only to Fountains.
680.28	2489	395	New section 680.29 (after 680.28) for Electric Water Heaters. GFCI protection. FR CMP17-TG3-30 Vote 6 yes, 3 No Substantiation: Permanent swimming pools can and are heated using an electric water heaters. This revision provides for GFCI or SPGFCI protection similar to that which applies to gas-fired water heaters, as the hazards are similar.
680.28	2453	396	Gas-Fired Water Heaters Revise to remove spas, as these are covered elsewhere. RESOLVE Substantiation: Spas can be constructed as part of a permanently installed pool or stand-alone. This requirement is specific to a spa constructed as part of a permanently installed pool and is retained for clarity.
680.32	2440, 2441, 4518	397	GFCi and SPGFCI receptable ratings, remove 125/250 v limitation. See PI 4518 for Action Taken (FR).
680.32	2441, 2440, 4518	398	GFCI and SPGFCI – revise section to break into two parts, for clarity. See PI 4518 for Action Taken (FR).

680.32	2518	399	GFCI and SPGFCI 150V to ground
			Vote 8 Y, 0 N RESOLVE Substantiation: FR being made to this and other sections of Art 680 clarify the range of voltages associated with the receptacles requiring protection.
680.32	3814, 3815, 1336	400	 GFCI and SPFGCI – remove SPGFCI as this section is for 150v to ground and SPGFCI is for greater than 150V to gnd. Vote: 7 Yes, 0 No. RESOLVE Substantiation: The existing code language is not in conflict with the definition of a SPGFCI, and the existing requirement is technically correct. Single- and three-phase receptacles rated 250-volts installed on 240-volt corner grounded delta systems or involving the high leg of a 120/240-volt 4-wire delta connected system have a voltage to ground greater than 150-volts and require SPGFCI (rather than GFCI) protection. These systems are discussed in the existing Informational Note to 680.5(B). Additional FR to this and other sections of Art 680 are being made to clarify that the range of voltages associated with SPGFCI includes 480V.
680.32	4518, 2441, 2440	401	GFCI and SPGFCI – expand to 100A 3 Ph, correlate with 210.8(B). FR CMP 17 TG3-10 8 Yes, 0 No. Substantiation: 680.32 currently stipulates a 60-ampere threshold
			for equipment requiring ground-fault circuit

			interrupter (GFCI) protection. Commercially available three-phase GFCI devices now offer ratings up to 100 amperes. This revision reflects the availability of higher-rated GFCI devices and harmonizes the code with existing provisions, such as Section 210.8(B). Additionally, 680.32 was separated into a list (A) and (B) for improved usability.
680.40	1286	402	General – editorial change from Corr Comm from last cycle. FR CMP17-TG3-31 Vote 13 Y, 0 N. Substantiation: The text is revised to comply with the NEC style manual Section 4.1.3.
680.439(A)(2)	2442, 4520	403	GFCI and SPGFCI – remove 125/250v limitation. See PI 4520 for Action Taken (FR).
680.43(A)(2)	3815	404	GFCI and SPGFCI – remove SPGFCI. See PI 3814 for Action (Resolve)
680.43(A)(2)	4520, 2442	405	 GFCI and SPGFCI – expand to 100A. FR CMP 17 TG3-9 9 Yes, 0 No. Substantiation: 680.43(A)(2) currently stipulates a 60-ampere threshold for equipment requiring ground-fault circuit interrupter (GFCI) protection. Commercially available three-phase GFCI devices now offer ratings up to 100 amperes. This revision reflects the availability of higher-rated GFCI and SPGFCI devices up to 480V that can be applied to all receptacles within 3.0 m of inside walls of an indoor spa or hot tub, and harmonizes the code

			with existing provisions, such as Section 210.8(B). Additionally, 680.43(A)(2) was separated into a list (A) and (B) for improved usability.
680.43(A)(3)	4476	406	GFCI Protection for Spas.
			FR CMP17-TG3-32
			Vote: 13 Y, 0 N.
			Substantiation: The word "Protection" was
			removed from title of 680.43(A)(3) to better align the title with the requirements in the text.
680.43(F)	2270	407	Grounding – revise title to better match text
			FR CMP17-TG3-33
			Vote 14 Y, 0 N
			Substantiation:
			The Title of 680.43(F) was revised to add "Equipment" to be more descriptive and remain
			concise.
680.45(A)	1328	408	Cord and Plug Connection – change "repair" to
			"servicing". I believe we accepted this in other PIs in other sections.
			FR CMP17-TG3-34
			Vote: 14Y, 0 No.
			Substantiation:
			The text language regarding "to facilitateservicing" was removed. Deleting this
			text improves usability and does not change the
			requirement.
680.45(C)	1659	409	Heaters – proposed revisions for hard Wired and GFCI and cord connected.
			FR CMP17-TG3-38
			Vote 11 Y, 0 N.

			Substantiation This section is restructured for clarity, usability and compliance with the 2023 NEC Style Manual, section 2.1.8.1 while making no technical changes to the requirements.
680.50	294, 293	412	General – add splash pads. RESOLVE: Vote: 14 Y, 0 N Substantiation: The term "splash pads" was not added to the text in 680.50, nor added to the Title of Part V, as the definition of Fountain already includes Splash Pads, and the definition of Splash Pad indicates that a Splash pad is a fountain.
680.50(A)	2927	413	Additional Requirements – editorial revisions for style manual. FR CMP17-TG3-35 Vote: 14 Y, 0 N Substantiation: Editorial revisions are made to comply with the NEC style manual.
680.54(A)	2084, 2272	414	Grounding – add "Enclosed" to panelboards. FR CMP17-TG3-36 Substantiation: The Title of 680.54(A) was revised to add "Equipment" to be more descriptive and remain concise. In 680.54(A)(3), the term 'panelboard' and 'enclosed panelboard' are defined terms. Adding the word 'enclosed panelboard' makes the text technically correct.

680.54(A)	2272, 2084	415	Grounding – modify title to better align with text. See PI 2084 for Action taken.
680.55	2273	416	Grounding – same change as 680.54(A) see Pl above. FR CMP17-TG3-37 Vote: 14 Y, 0 N. Substantiation: The Title of 680.55 was revised to remove "Method" and add "Equipment" to be more descriptive and remain concise. Item (A) was editorially revised to improve usability.
680.56(D)	1327	417	Terminations – change "repair" to "servicing" FR CMP17-TG3-39 Vote 11 Y, 0 N. Substantiation: Editorial revisions were made to clarify that this section applies to any flexible cord-connected equipment, not just those that are cord-and-plug- connected. The terms "maintenance" and "repair" were changed to "servicing" to better incorporate defined terms.
680.57(C)(2)	2467 <i>,</i> 2468	418	 Portable – revise to remove pool. Aligns with PI 2468. See PI 2468 for Action Taken TG Notes: This PI proposes to remove the reference to a pool. Part V Fountains, per it's scope at 680.50, applies to all permanently installed fountains only. See companion PI 2468 that proposes to relocate the pool specific requirement to 680.29.

680.58	2443, 4527	419 GFCI and SPGFCI – remove 125/250 v rating.		
			See PI 4527 for Action taken. FR.	
680.58	4527 <i>,</i> 2443	420	GFCI and SPGFCI – expand to 100A 3 PH	
			FR CMP 17 TG3-8	
			9 Yes, 0 No.	
			Substantiation: 680.58 currently stipulates a 60-ampere threshold	
			for equipment requiring ground-fault circuit interrupter (GFCI) protection. Commercially	
			available three-phase GFCI devices now offer	
			ratings up to 100 amperes. This revision reflects the availability of higher-rated GFCI and SPGFCI	
			devices up to 480V that can be applied to all receptacles within 6.0 m of fountain edge, and	
			harmonizes the code with existing provisions, such as Section 210.8(B). Additionally, 680.58 was	
			separated into a list (A) and (B) for improved	
			usability.	
680.60	2928	421	General – editorial revision for style manual. CC input.	
			FR CMP17-TG3-40	
			Vote 11 Y, 0 N	
			Substantiation:	
			The text was revised to conform to the 2023 NEC Style Manual section 4.1.4.	
680.62(A)(1)	1656	422	Listed Units – revised GFCi term to align with style manual.	
			FR CMP17-TG3-41	
			Vote 12 Y, 0 N	
			Substantiation: Section 2.1.2.9 of the 2023 NEC Style Manual permits the use of acronyms. The	

			acronym, GFCI, is currently used in Article 100 and Section 680.5. GFCI is also a defined term.
680.62(A)(2)	1657	423	Other Units – revise GFCI term. See PI 1656 also.
			FR CMP17-TG3-42 Vote: 12 Y, 0 N
			Substantiation: Section 2.1.2.9 of the 2023 NEC Style Manual
			permits the use of acronyms. The acronym, GFCI, is currently used in Article 100 and Section 680.5. GFCI is also a defined term.
680.62(D)	2274	424	Grounding – change title to better match text.
			FR CMP17-TG3-43 Vote 11 Y, 0 N.
			Substantiation:
			The Title of 680.62(D) was revised to add "Equipment" to be more descriptive and remain
			concise.
680.71	2392 <i>,</i> 2393	425	Protection – change title to better match text.
			FR CMP17-TG3-44
			Vote 10 Y, 0 N.
			Substantiation: Section 680.71 was split into two separate
			sections, with 680.71 covering the requirement for
			an individual branch circuit and a new section
			680.75 covering GFCI protection. New Section 680.75 was split into two subsections for clarity
			and ease of reading. These editorial revisions are
			non-technical in nature and are intended to satisfy section 3.5.1.2 of the 2023 NEC Style Manual.
680.71	2393,	426	Protection – revise to make two subsections.
	2392		
			See PI 2392 for Action Taken.
680.74(B)	2085	427	Bonding Conductor – add "enclosed"

			FR CMP17-TG3-45 Vote: 10 Y, 0 N. Substantiation: The term 'panelboard' and 'enclosed panelboard' are defined terms. Adding the word 'enclosed panelboard' makes the text technically correct.
680.83	2086	428	Equipment Bonding – add "enclosed"
			FR CMP17-TG3-46 Vote 10 Y, 0 N Substantiation:
			The term 'panelboard' and 'enclosed panelboard' are defined terms. Adding the word 'enclosed panelboard' makes the text technically correct.
New Art after	3774,	429	Relocate Art 682 to new stand-alone chapter XX for
682	3620		Bodies of Water
			See PI. 3620 for comments/action.
682.33(C)(1)	2415	430	Bonded Parts – connections shall be listed
			NO ACTION TAKEN BY CMP17.
			This should be sent to CMP 7 who now owns Art 682. This IS assigned to CMP 7. CMP 17 does not need to act.
680 Part II	3710	442	Part II Title – add Semi Permanent Pools
			Also see related PIs: 3681, 3695, 3700, 3719
			RESOLVE
			Vote: 10 Y, 0 N Substantiation:
			The submitter's objectives have been addressed by the revisions of the definitions of permanently installed pools and storable pools. The type of pool suggested in the public input is now considered to

			be a storable pool unless a permanent deck is installed around all or part of the pool.
680 Part V	293, 294	443	Part V Title – revise to add Splash Pads See 294 for Action Taken

PI Categorization	Number of PIs	Number Completed	Number Still to Do
Globals	6	6	0
Definitions	19	18	1
680.26	18	0	18
680 other	40	23	17
TOTAL	83	41	42

680.26 Equipotential Bonding. (A) Performance.

The equipotential bonding required by 680.26(B) and (C) to reduce voltage gradients in the pool area shall be installed for pools with or without associated electrical equipment related to the pool.

Informational Note No. 1: See ANSI C2, National Electrical Safety Code 2023 Edition, Rule 097D2, for measures that address voltage gradients originating on the utility side of the service point. Some causes of voltage gradients originate outside the premises wiring system and are not within the scope of the NEC. Measures identified in Rule 097D2 of ANSI C2, National Electrical Safety Code, can also serve to address voltage gradients originating on the utility side of the service point.

Informational Note No. 2: By its nature, equipotential bonding of swimming pools and perimeter surfaces involves contact between various metallic materials and the earth. This can, in some cases, expose various specific metals to a corrosive environment, depending on factors such as the type and chemical content of the soil and the specific metal. Corrosive environments are also addressed in 680.14.

(B) Bonded Parts.

The parts specified in 680.26(B)(1) through 680.26(B)(7) shall be bonded together using one or more of the following:

(1) solid copper conductors, insulated, covered, or bare, not smaller than 8 <u>AWG</u>, which shall not be required to be extended or attached to remote panelboard enclosures, service equipment, or electrodes. The conductor is permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and 680.26(B)(2)(b) that are not contiguous.

(2) rigid metal conduit of brass or other identified corrosion-resistant metal.(3) structural reinforcing steel.

(4) steel structural welded wire reinforcement (welded wire mesh, welded wire fabric).

The parts specified in 680.26(B)(1) through (B)(7) shall be bonded together using solid copper conductors, insulated, covered, or bare, not smaller than 8 AWG or with rigid metal conduit of brass or other identified corrosion-resistant metal. Connections to bonded parts shall be made in accordance with 250.8. An 8 AWG or larger solid copper bonding conductor provided to reduce voltage gradients in the pool

area shall not be required to be extended or attached to remote panelboards, service equipment, or electrodes.

(1) Conductive Pool Shells.

Bonding to conductive pool shells shall be provided as specified in 680.26(B)(1)(a) or (B)(1)(b). Cast-in-place concrete, pneumatically applied or sprayed concrete, and concrete block with painted or plastered coatings shall all be considered conductive materials due to water permeability and porosity. Reconstructed pool shells shall also meet the requirements of this section. Vinyl liners and fiberglass composite shells shall be considered to be nonconductive materials and not subject to these requirements.

- (a) Structural Reinforcing Steel. Unencapsulated structural reinforcing steel shall be bonded together by steel tie wires or the equivalent. Where structural reinforcing steel is encapsulated in a nonconductive compound, a copper conductor grid shall be installed in accordance with 680.26(B)(1)(b).
- (b) *Copper Conductor Grid.* A copper conductor grid shall be provided and shall comply with the following:
 - Be constructed of minimum 8 AWG bare solid copper conductors bonded to each other at all points of crossing in accordance with 250.8 or other approved means
 - (2) Conform to the contour of the pool
 - (3) Be arranged in a 300 mm (12 in.) by 300 mm (12 in.) network of conductors in a uniformly spaced perpendicular grid pattern with a tolerance of 100 mm (4 in.)
 - (4) Be secured within or under the pool no more than 150 mm (6 in.) from the outer contour of the pool shell

(2) Perimeter Surfaces.

Bonding to perimeter surfaces shall be provided as specified in 680.26(B)(2)(a), 680.26(B)(2)(b), and 680.26(B)(2)(c). The perimeter surface shall include unpaved surfaces, concrete, masonry pavers and other types of paving. The perimeter surface to be bonded shall be considered to extend for 900 mm (3 ft) horizontally beyond the inside walls of the pool while also at a height between 900 mm (3 ft) above and 600 mm

(2 ft) below the maximum water level. The perimeter surface shall include unpaved surfaces, concrete, and other types of paving. Perimeter surfaces separated from the pool by a permanent wall or building 1.5 m (5 ft) in height or more shall require equipotential bonding only on the pool side of the permanent wall or building. Bonding to perimeter surfaces shall be provided as specified in 680.26(B)(2)(a), (B)(2)(b), (B)(2)(c), and (B)(2)(d).

For conductive pool shells where bonding to perimeter surfaces is required, it shall be attached to the pool <u>structural</u> reinforcing steel or copper conductor grid at a minimum of four points uniformly spaced around the perimeter of the pool., or ifIf the bonded perimeter surface does not surround the entire pool, it shall be attached to the pool <u>structural</u> reinforcing steel or copper conductor grid at a minimum of four uniformly spaced points along the bonded perimeter surface.

For nonconductive pool shells, where bonding to the perimeter surfaces is required, bonding at four points shall not be required., and the perimeter bonding shall be attached to the 8 AWG copper equipotential bonding conductor and, if present, to any conductive support structure for the pool.

Informational Note: Because the perimeter surface can incorporate various types of materials at various locations and elevations above and below maximum water level, the perimeter surface required to be bonded might not surround the entire pool. The 8 AWG copper equipotential bonding conductor can encircle the entire pool to facilitate connection of bonded parts.

- (a) Conductive Paved Portions of Perimeter Surfaces.
 Conductive paved portions of perimeter surfaces, including masonry pavers, if used, shall be bonded with one or more of the following:
- (1) <u>uU</u>nencapsulated structural reinforcing steel in accordance with 680.26(B)(1)(a),
- (2) A copper conductor grid,
- (3) or with uUnencapsulated steel structural welded wire reinforcement (welded wire mesh, welded wire fabric), bonded together by steel tie wires or the equivalent, Steel welded wire reinforcement shall be and fully embedded within the pavement unless the pavement will not allow for embedding.

- If the <u>structural</u> reinforcing steel is absent, or is encapsulated in a nonconductive compound, or embedding is not possible, unencapsulated welded wire steel reinforcement or a copper conductor grid shall be provided and shall be secured directly under the paving, and not more than 150 mm (6 in.) below finished grade.
- <u>Where Unencapsulated steel welded wire reinforcement that is</u> not fully embedded in concrete, <u>and copper conductor grid</u> <u>and unencapsulated steel structural welded wire used for</u> <u>equipotential bonding, regardless of location, where used</u> for equipotential bonding, shall be listed for corrosion resistance and mechanical performance. This listing requirement shall become effective January 1, 2025. The copper <u>conductor grid</u> or unencapsulated steel <u>structural</u> welded wire reinforcement shall also meet the following:
 - Copper <u>conductor</u> grid is constructed of 8 AWG solid bare copper and arranged in accordance with 680.26(B)(1)(b)(3).
 - (2) <u>Structural Ss</u>teel welded wire reinforcement is minimum ASTM 6 × 6-W2.0 × W2.0 or minimum No. 3 rebar constructed in a 300 mm (12 in.) grid.
 - (3) Copper <u>conductor</u> grid and steel <u>structural</u> welded wire reinforcement <u>shall</u> follow the contour of the perimeter surface extending not less than 900 mm (3 ft) horizontally beyond the inside walls of the pool.
 - (4) Only listed splicing devices or exothermic welding are used.
 - Informational Note No. 1: Performance of the equipotential bonding system at the perimeter surface is improved as the distance between the bonding means and finished grade is minimized, either by embedding within, or by direct contact with the underside of, the finished pavement.
 - Informational Note No. 2: See ASTM A615/A615M, Standard Specification for Deformed and Plain Carbon-Steel Bars for

Concrete Reinforcement; A1064/A1064M, Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete; A1022/A1022M, Standard Specification for Deformed and Plain Stainless Steel Wire and Welded Wire for Concrete Reinforcement; A1060A/A1060M, Standard Specification for Zinc-Coated (Galvanized) Steel Welded Wire Reinforcement, Plain and Deformed, for Concrete; and ACI Standard ACI 318, Building Code Requirements for Structural Concrete, for examples of standards currently used in the listing of reinforcing steel bars and steel welded wire reinforcement.

- (b) Unpaved Portions of Perimeter Surfaces. Unpaved portions of perimeter surfaces shall be bonded with any of the following methods:
 - Copper conductor(s) shall meet the following:
 - At least one minimum 8 AWG bare solid copper conductor, including the 8 AWG copper equipotential bonding conductor if available.
 - b. The conductors follow the contour of the perimeter surface.
 - c. Only listed splicing devices or exothermic welding are used.
 - d. The conductor(s) is 450 mm to 600 mm (18 in. to 24 in.) from the inside walls of the pool.
 - e. The conductor(s) is under the unpaved portion of the

perimeter surface 100 mm to 150 mm (4 in. to 6 in.) below finished grade.

- f. Be installed only in perimeter surfaces not intended to have direct access to swimmers in the pool.
- (2) Copper <u>conductor</u> grid or unencapsulated steel <u>structural</u> welded wire reinforcement used for equipotential bonding of unpaved portions of perimeter surfaces shall meet the following:
 - a. Be installed in accordance with 680.26(B)(2)(a).
 - Be located within unpaved surface(s) between 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- (c) Nonconductive Perimeter Surfaces. Equipotential bonding shall not be required for nonconductive portions of perimeter surfaces that are separated from earth or raised on nonconducting supports., and it Equipotential bonding shall not be required for any perimeter surface that is electrically separated from the pool structure and raised on nonconductive supports above an equipotentially bonded surface.

Informational Note: Nonconductive materials include, but are not limited to, wood, plastic, wood-plastic composites, fiberglass, and fiberglass composites.

- (d) Interconnection of Bonded Portions of Perimeter Surfaces. All surfaces where equipotential bonding is required shall be interconnected using listed splicing devices or exothermic welding. Where copper wire is used for this purpose, it shall be solid copper, not smaller than 8 AWG. The conductor shall be permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and (B)(2)(b) that are not contiguous.
- (3) Metallic Components.

All metallic parts of the pool structure, including reinforcing metal not addressed in 680.26(B)(1)(a), shall be bonded. Where reinforcing steel is encapsulated with a nonconductive compound, the reinforcing steel shall not be required to be bonded.

(4) Underwater Lighting.

All metal forming shells and mounting brackets of no-niche luminaires shall be bonded.

Exception: Listed low-voltage lighting systems with nonmetallic forming shells shall not require bonding.

(5) Metal Fittings.

All metal fittings within or attached to the pool structure shall be bonded.

Exception: The following shall not be required to be bonded:

- (1) Isolated parts that are not over 100 mm (4 in.) in any dimension and do not penetrate into the pool structure more than 25 mm (1 in.)
- (2) Metallic pool cover anchors intended for insertion in a concrete or masonry deck surface, 25 mm (1 in.) or less in any dimension and 51 mm (2 in.) or less in length
- (3) Metallic pool cover anchors intended for insertion in a wood or composite deck surface, 51 mm (2 in.) or less in any flange dimension and 51 mm (2 in.) or less in length

(6) Electrical Equipment.

Metal parts of the following electrical equipment shall be bonded:

- (1) Electrically powered pool cover(s)
- (2) Pool water circulation, treatment, heating, cooling, or dehumidification equipment
- (3) Unless separated from the pool by a permanent barrier that prevents contact by a person, any other electrical equipment within 1.5 m (5 ft) measured horizontally from the inside wall of the pool, or 3.7 m (12 ft) measured vertically above the maximum water level of the pool, or as measured vertically above any observation stands, towers, or platforms, or any diving structures

Exception: Metal parts of listed equipment incorporating an approved system of double insulation shall not be bonded.

- (a) *Double-Insulated Water Pump Motors.* Where a doubleinsulated water pump motor is installed under the provisions of this rule, a solid 8 AWG copper conductor of sufficient length to make a bonding connection to a replacement motor shall be extended from the swimming pool equipotential bonding means to an accessible point in the vicinity of the pool pump motor. Where there is no connection between the swimming pool equipotential bonding means and the equipment grounding system for the premises, this bonding conductor shall be connected to the equipment grounding conductor of the motor circuit.
- (b) *Pool Water Heaters.* For pool water heaters rated at more than 50 amperes and having specific instructions regarding bonding and grounding, only those parts designated to be bonded shall be bonded and only those parts designated to be grounded shall be grounded.

(7) Fixed Metal Parts.

All fixed metal parts, including, but not limited to, metal-sheathed cables and raceways, metal piping, metal awnings, metal fences, and metal door and window frames, shall be bonded where located no greater than either of the following:

- (1) 1.5 m (5 ft) horizontally from the inside walls of the pool
- (2) 3.7 m (12 ft) vertically above the maximum water level of the pool, observation stands, towers, or platforms, or any diving structures

Exception: Those separated from the pool by a permanent barrier that prevents contact by a person shall not be required to be bonded. **(C) Pool Water.**

Where none of the bonded parts as specified in 680.26(B)(1) through (B)(7) are in direct connection with the pool water, the pool water shall be in direct contact with an approved corrosion-resistant conductive surface that exposes not less than 5800 mm² (9 in.²) of surface area to the pool water at all times. The conductive surface shall be located where it is not exposed to physical damage or dislodgement during usual pool activities, and it shall be bonded in accordance with 680.26(B).

680.26 Equipotential Bonding. (A) Performance.

The equipotential bonding required by 680.26(B) and (C) to reduce voltage gradients in the pool area shall be installed for pools with or without associated electrical equipment related to the pool.

Informational Note No. 1: Some causes of voltage gradients originate outside the premises wiring system and are not within the scope of the *NEC*. Measures identified in Rule 097D2 of ANSI C2, *National Electrical Safety Code*, can also serve to address voltage gradients originating on the utility side of the service point. Informational Note No. 2: By its nature, equipotential bonding of swimming pools and perimeter surfaces involves contact between various metallic materials and the earth. This can, in some cases, expose various specific metals to a corrosive environment, depending on factors such as the type and chemical content of the soil and the specific metal. Corrosive environments are also addressed in 680.14.

(B) Bonded Parts.

The parts specified in 680.26(B)(1) through (B)(7) shall be bonded together using solid copper conductors, insulated, covered, or bare, not smaller than 8 AWG or with rigid metal conduit of brass or other identified corrosion-resistant metal. Connections to bonded parts shall be made in accordance with 250.8. An 8 AWG or larger solid copper bonding conductor provided to reduce voltage gradients in the pool area shall not be required to be extended or attached to remote panelboards, service equipment, or electrodes.

(1) Conductive Pool Shells.

Bonding to conductive pool shells shall be provided as specified in 680.26(B)(1)(a) or (B)(1)(b). Cast-inplace concrete, pneumatically applied or sprayed concrete, and concrete block with painted or plastered coatings shall all be considered conductive materials due to water permeability and porosity. Reconstructed pool shells shall also meet the requirements of this section. Vinyl liners and fiberglass composite shells shall be considered to be nonconductive materials and not subject to these requirements.

- (a) Structural Reinforcing Steel. Unencapsulated structural reinforcing steel shall be bonded together by steel tie wires or the equivalent. Where structural reinforcing steel is encapsulated in a nonconductive compound, a copper conductor grid shall be installed in accordance with 680.26(B)(1)(b).
- (b) *Copper Conductor Grid.* A copper conductor grid shall be provided and shall comply with the following:
 - Be constructed of minimum 8 AWG bare solid copper conductors bonded to each other at all points of crossing in accordance with 250.8 or other approved means
 - (2) Conform to the contour of the pool
 - (3) Be arranged in a 300 mm (12 in.) by 300 mm (12 in.) network of conductors in a uniformly spaced perpendicular grid pattern with a tolerance of 100 mm (4 in.)
 - (4) Be secured within or under the pool no more than 150 mm (6 in.) from the outer contour of the pool shell

(2) Perimeter Surfaces.

The perimeter surface to be bonded shall be considered to extend for 900 mm (3 ft) horizontally beyond the inside walls of the pool while also at a height between 900 mm (3 ft) above and 600 mm (2 ft) below the maximum water level. The perimeter surface shall include unpaved surfaces, concrete, and other types of paving. Perimeter surfaces separated from the pool by a permanent wall or building 1.5 m (5 ft) in height or more shall require equipotential bonding only on the pool side of the permanent wall or building. Bonding to perimeter surfaces shall be provided as specified in 680.26(B)(2)(a), (B)(2)(b), (B)(2)(c), and (B)(2)(d). For conductive pool shells where bonding to perimeter surfaces is required, it shall be attached to the pool reinforcing steel or copper conductor grid at a minimum of four points uniformly spaced around the perimeter of the pool, or if the bonded perimeter surface does not surround the entire pool, it shall be attached to the pool reinforcing steel or copper conductor grid at a minimum of four uniformly spaced points along the bonded perimeter surface. For nonconductive pool shells, where bonding to the perimeter surfaces is required, bonding at four points shall not be required, and the perimeter bonding shall be attached to the 8 AWG copper equipotential bonding conductor and, if present, to any conductive support structure for the pool.

Informational Note: Because the perimeter surface can incorporate various types of materials at various locations and elevations above and below maximum water level, the perimeter surface required to be bonded might not surround the entire pool. The 8 AWG copper equipotential bonding conductor can encircle the entire pool to facilitate connection of bonded parts.

- (a) Conductive Paved Portions of Perimeter Surfaces. Conductive paved portions of perimeter surfaces, including masonry pavers, if used, shall be bonded with unencapsulated structural reinforcing steel in accordance with 680.26(B)(1)(a), or with unencapsulated steel structural welded wire reinforcement (welded wire mesh, welded wire fabric), bonded together by steel tie wires or the equivalent. Steel welded wire reinforcement shall be fully embedded within the pavement unless the pavement will not allow for embedding. If the reinforcing steel is absent, or is encapsulated in a nonconductive compound, or embedding is not possible, unencapsulated welded wire steel reinforcement or a copper conductor grid shall be provided and shall be secured directly under the paving, and not more than 150 mm (6 in.) below finished grade.
- Unencapsulated steel welded wire reinforcement that is not fully embedded in concrete, and copper grid regardless of location, where used for equipotential bonding, shall be listed for corrosion resistance and mechanical performance. This listing requirement shall become effective January 1, 20252029. The copper grid or unencapsulated steel welded wire reinforcement shall also meet the following:
 - Copper grid is constructed of 8 AWG solid bare copper and arranged in accordance with 680.26(B)(1)(b)(3).
 - (2) Steel welded wire reinforcement is minimum ASTM 6×6 -W2.0 \times W2.0 or minimum No. 3 rebar constructed in a 300 mm (12 in.) grid.
 - (3) Copper grid and steel welded wire reinforcement follow the contour of the perimeter surface extending not less than 900 mm (3 ft) horizontally beyond the inside walls of the pool.
 - (4) Only listed splicing devices or exothermic welding are used.
 - Informational Note No. 1: Performance of the equipotential bonding system at the perimeter surface is improved as the distance between the bonding means and finished grade is minimized, either by embedding within, or by direct contact with the underside of, the finished pavement.
 - Informational Note No. 2: See ASTM A615/A615M, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement; A1064/A1064M, Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete; A1022/A1022M, Standard Specification for Deformed and Plain Stainless Steel Wire and Welded Wire for Concrete Reinforcement; A1060A/A1060M, Standard Specification for Zinc-Coated (Galvanized) Steel Welded Wire Reinforcement, Plain and Deformed, for Concrete; and ACI Standard ACI 318, Building Code Requirements for Structural Concrete, for examples of standards currently used in the listing of reinforcing steel bars and steel welded wire reinforcement.
- (b) Unpaved Portions of Perimeter Surfaces. Unpaved portions of perimeter surfaces shall be bonded with any of the following methods:
 - (1) Copper conductor(s) shall meet the following:
 - a. At least one minimum 8 AWG bare solid copper conductor, including the 8 AWG copper equipotential bonding conductor if available.
 - b. The conductors follow the contour of the perimeter surface.
 - c. Only listed splicing devices or exothermic welding are used.

- d. The conductor(s) is 450 mm to 600 mm (18 in. to 24 in.) from the inside walls of the pool.
- e. The conductor(s) is under the unpaved portion of the perimeter surface 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- f. Be installed only in perimeter surfaces not intended to have direct access to swimmers in the pool.
- (2) Copper grid or unencapsulated steel welded wire reinforcement used for equipotential bonding of unpaved portions of perimeter surfaces shall meet the following:
 - a. Be installed in accordance with 680.26(B)(2)(a).
 - Be located within unpaved surface(s) between 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- (c) Nonconductive Perimeter Surfaces. Equipotential bonding shall not be required for nonconductive portions of perimeter surfaces that are separated from earth or raised on nonconducting supports, and it shall not be required for any perimeter surface that is electrically separated from the pool structure and raised on nonconductive supports above an equipotentially bonded surface.

Informational Note: Nonconductive materials include, but are not limited to, wood, plastic, wood-plastic composites, fiberglass, and fiberglass composites.

(d) Interconnection of Bonded Portions of Perimeter Surfaces. All surfaces where equipotential bonding is required shall be interconnected using listed splicing devices or exothermic welding. Where copper wire is used for this purpose, it shall be solid copper, not smaller than 8 AWG. The conductor shall be permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and (B)(2)(b) that are not contiguous.

(3) Metallic Components.

All metallic parts of the pool structure, including reinforcing metal not addressed in 680.26(B)(1)(a), shall be bonded. Where reinforcing steel is encapsulated with a nonconductive compound, the reinforcing steel shall not be required to be bonded.

(4) Underwater Lighting.

All metal forming shells and mounting brackets of no-niche luminaires shall be bonded.

Exception: Listed low-voltage lighting systems with nonmetallic forming shells shall not require bonding. **(5) Metal Fittings.**

All metal fittings within or attached to the pool structure shall be bonded.

Exception: The following shall not be required to be bonded:

- (1) Isolated parts that are not over 100 mm (4 in.) in any dimension and do not penetrate into the pool structure more than 25 mm (1 in.)
- (2) Metallic pool cover anchors intended for insertion in a concrete or masonry deck surface, 25 mm (1 in.) or less in any dimension and 51 mm (2 in.) or less in length
- (3) Metallic pool cover anchors intended for insertion in a wood or composite deck surface, 51 mm (2 in.) or less in any flange dimension and 51 mm (2 in.) or less in length

(6) Electrical Equipment.

Metal parts of the following electrical equipment shall be bonded:

(1) Electrically powered pool cover(s)

- (2) Pool water circulation, treatment, heating, cooling, or dehumidification equipment
- (3) Unless separated from the pool by a permanent barrier that prevents contact by a person, any other electrical equipment within 1.5 m (5 ft) measured horizontally from the inside wall of the pool, or 3.7 m (12 ft) measured vertically above the maximum water level of the pool, or as measured vertically above any observation stands, towers, or platforms, or any diving structures

Exception: Metal parts of listed equipment incorporating an approved system of double insulation shall not be bonded.

- (a) Double-Insulated Water Pump Motors. Where a double-insulated water pump motor is installed under the provisions of this rule, a solid 8 AWG copper conductor of sufficient length to make a bonding connection to a replacement motor shall be extended from the swimming pool equipotential bonding means to an accessible point in the vicinity of the pool pump motor. Where there is no connection between the swimming pool equipotential bonding means and the equipment grounding system for the premises, this bonding conductor shall be connected to the equipment grounding conductor of the motor circuit.
- (b) Pool Water Heaters. For pool water heaters rated at more than 50 amperes and having specific instructions regarding bonding and grounding, only those parts designated to be bonded shall be bonded and only those parts designated to be grounded shall be grounded.

(7) Fixed Metal Parts.

All fixed metal parts, including, but not limited to, metal-sheathed cables and raceways, metal piping, metal awnings, metal fences, and metal door and window frames, shall be bonded where located no greater than either of the following:

- (1) 1.5 m (5 ft) horizontally from the inside walls of the pool
- (2) 3.7 m (12 ft) vertically above the maximum water level of the pool, observation stands, towers, or platforms, or any diving structures

Exception: Those separated from the pool by a permanent barrier that prevents contact by a person shall not be required to be bonded.

(C) Pool Water.

Where none of the bonded parts as specified in 680.26(B)(1) through (B)(7) are in direct connection with the pool water, the pool water shall be in direct contact with an approved corrosion-resistant conductive surface that exposes not less than 5800 mm^2 (9 in.²) of surface area to the pool water at all times. The conductive surface shall be located where it is not exposed to physical damage or dislodgement during usual pool activities, and it shall be bonded in accordance with 680.26(B).

680.26 Equipotential Bonding. (A) Performance.

The equipotential bonding required by 680.26(B) and (C) to reduce voltage gradients in the pool area shall be installed for pools with or without associated electrical equipment related to the pool.

Informational Note No. 1: Some causes of voltage gradients originate outside the premises wiring system and are not within the scope of the *NEC*. Measures identified in Rule 097D2 of ANSI C2, *National Electrical Safety Code*, can also serve to address voltage gradients originating on the utility side of the service point. Informational Note No. 2: By its nature, equipotential bonding of swimming pools and perimeter surfaces involves contact between various metallic materials and the earth. This can, in some cases, expose various specific metals to a corrosive environment, depending on factors such as the type and chemical content of the soil and the specific metal. Corrosive environments are also addressed in 680.14.

(B) Bonded Parts.

The parts specified in 680.26(B)(1) through (B)(7) shall be bonded together using solid copper conductors, insulated, covered, or bare, not smaller than 8 AWG or with rigid metal conduit of brass or other identified corrosion-resistant metal. Connections to bonded parts shall be made in accordance with 250.8. An 8 AWG or larger solid copper bonding conductor provided to reduce voltage gradients in the pool area shall not be required to be extended or attached to remote panelboards, service equipment, or electrodes.

(1) Conductive Pool Shells.

Bonding to conductive pool shells shall be provided as specified in 680.26(B)(1)(a) or (B)(1)(b). Cast-inplace concrete, pneumatically applied or sprayed concrete, and concrete block with painted or plastered coatings shall all be considered conductive materials due to water permeability and porosity. Reconstructed pool shells shall also meet the requirements of this section. Vinyl liners and fiberglass composite shells shall be considered to be nonconductive materials and not subject to these requirements.

- (a) Structural Reinforcing Steel. Unencapsulated structural reinforcing steel shall be bonded together by steel tie wires or the equivalent. Where structural reinforcing steel is encapsulated in a nonconductive compound, a copper conductor grid shall be installed in accordance with 680.26(B)(1)(b).
- (b) *Copper Conductor Grid.* A copper conductor grid shall be provided and shall comply with the following:
 - Be constructed of minimum 8 AWG bare solid copper conductors bonded to each other at all points of crossing in accordance with 250.8 or other approved means
 - (2) Conform to the contour of the pool
 - (3) Be arranged in a 300 mm (12 in.) by 300 mm (12 in.) network of conductors in a uniformly spaced perpendicular grid pattern with a tolerance of 100 mm (4 in.)
 - (4) Be secured within or under the pool no more than 150 mm (6 in.) from the outer contour of the pool shell

(2) Perimeter Surfaces.

The perimeter surface to be bonded shall be considered to extend for 900 mm (3 ft) horizontally beyond the inside walls of the pool while also at a height between 900 mm (3 ft) above and 6900 mm (23 ft) below the maximum water level. The perimeter surface shall include unpaved surfaces, concrete, and other types of paving. Perimeter surfaces separated from the pool by a permanent wall or building 1.5 m (5 ft) in height or more shall require equipotential bonding only on the pool side of the permanent wall or building. Bonding to perimeter surfaces shall be provided as specified in 680.26(B)(2)(a), (B)(2)(b), (B)(2)(c), and (B)(2)(d). For conductive pool shells where bonding to perimeter surfaces is required, it shall be attached to the pool reinforcing steel or copper conductor grid at a minimum of four points uniformly spaced around the perimeter of the pool, or if the bonded perimeter surface does not surround the entire pool, it shall be attached to the pool reinforcing steel or copper conductor grid at a minimum of four uniformly spaced points along the bonded perimeter surface. For nonconductive pool shells, where bonding to the perimeter surfaces is required, bonding at four points shall not be required, and the perimeter bonding shall be attached to the 8 AWG copper equipotential bonding conductor and, if present, to any conductive support structure for the pool.

Informational Note: Because the perimeter surface can incorporate various types of materials at various locations and elevations above and below maximum water level, the perimeter surface required to be bonded might not surround the entire pool. The 8 AWG copper equipotential bonding conductor can encircle the entire pool to facilitate connection of bonded parts.

- (a) Conductive Paved Portions of Perimeter Surfaces. Conductive paved portions of perimeter surfaces, including masonry pavers, if used, shall be bonded with unencapsulated structural reinforcing steel in accordance with 680.26(B)(1)(a), or with unencapsulated steel structural welded wire reinforcement (welded wire mesh, welded wire fabric), bonded together by steel tie wires or the equivalent. Steel welded wire reinforcement shall be fully embedded within the pavement unless the pavement will not allow for embedding. If the reinforcing steel is absent, or is encapsulated in a nonconductive compound, or embedding is not possible, unencapsulated welded wire steel reinforcement or a copper conductor grid shall be provided and shall be secured directly under the paving, and not more than 150 mm (6 in.) below finished grade.
- Unencapsulated steel welded wire reinforcement that is not fully embedded in concrete, and copper grid regardless of location, where used for equipotential bonding, shall be listed for corrosion resistance and mechanical performance. This listing requirement shall become effective January 1, 2025. The copper grid or unencapsulated steel welded wire reinforcement shall also meet the following:
 - Copper grid is constructed of 8 AWG solid bare copper and arranged in accordance with 680.26(B)(1)(b)(3).
 - (2) Steel welded wire reinforcement is minimum ASTM 6×6 -W2.0 \times W2.0 or minimum No. 3 rebar constructed in a 300 mm (12 in.) grid.
 - (3) Copper grid and steel welded wire reinforcement follow the contour of the perimeter surface extending not less than 900 mm (3 ft) horizontally beyond the inside walls of the pool.
 - (4) Only listed splicing devices or exothermic welding are used.
 - Informational Note No. 1: Performance of the equipotential bonding system at the perimeter surface is improved as the distance between the bonding means and finished grade is minimized, either by embedding within, or by direct contact with the underside of, the finished pavement.
 - Informational Note No. 2: See ASTM A615/A615M, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement; A1064/A1064M, Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete; A1022/A1022M, Standard Specification for Deformed and Plain Stainless Steel Wire and Welded Wire for Concrete Reinforcement; A1060A/A1060M, Standard Specification for Zinc-Coated (Galvanized) Steel Welded Wire Reinforcement, Plain and Deformed, for Concrete; and ACI Standard ACI 318, Building Code Requirements for Structural Concrete, for examples of standards currently used in the listing of reinforcing steel bars and steel welded wire reinforcement.
- (b) *Unpaved Portions of Perimeter Surfaces.* Unpaved portions of perimeter surfaces shall be bonded with any of the following methods:
 - (1) Copper conductor(s) shall meet the following:
 - a. At least one minimum 8 AWG bare solid copper conductor, including the 8 AWG copper equipotential bonding conductor if available.
 - b. The conductors follow the contour of the perimeter surface.
 - c. Only listed splicing devices or exothermic welding are used.

- d. The conductor(s) is 450 mm to 600 mm (18 in. to 24 in.) from the inside walls of the pool.
- e. The conductor(s) is under the unpaved portion of the perimeter surface 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- f. Be installed only in perimeter surfaces not intended to have direct access to swimmers in the pool.
- (2) Copper grid or unencapsulated steel welded wire reinforcement used for equipotential bonding of unpaved portions of perimeter surfaces shall meet the following:
 - a. Be installed in accordance with 680.26(B)(2)(a).
 - Be located within unpaved surface(s) between 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- (c) Nonconductive Perimeter Surfaces. Equipotential bonding shall not be required for nonconductive portions of perimeter surfaces that are separated from earth or raised on nonconducting supports, and it shall not be required for any perimeter surface that is electrically separated from the pool structure and raised on nonconductive supports above an equipotentially bonded surface.

Informational Note: Nonconductive materials include, but are not limited to, wood, plastic, wood-plastic composites, fiberglass, and fiberglass composites.

(d) Interconnection of Bonded Portions of Perimeter Surfaces. All surfaces where equipotential bonding is required shall be interconnected using listed splicing devices or exothermic welding. Where copper wire is used for this purpose, it shall be solid copper, not smaller than 8 AWG. The conductor shall be permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and (B)(2)(b) that are not contiguous.

(3) Metallic Components.

All metallic parts of the pool structure, including reinforcing metal not addressed in 680.26(B)(1)(a), shall be bonded. Where reinforcing steel is encapsulated with a nonconductive compound, the reinforcing steel shall not be required to be bonded.

(4) Underwater Lighting.

All metal forming shells and mounting brackets of no-niche luminaires shall be bonded.

Exception: Listed low-voltage lighting systems with nonmetallic forming shells shall not require bonding. **(5) Metal Fittings.**

All metal fittings within or attached to the pool structure shall be bonded.

Exception: The following shall not be required to be bonded:

- (1) Isolated parts that are not over 100 mm (4 in.) in any dimension and do not penetrate into the pool structure more than 25 mm (1 in.)
- (2) Metallic pool cover anchors intended for insertion in a concrete or masonry deck surface, 25 mm (1 in.) or less in any dimension and 51 mm (2 in.) or less in length
- (3) Metallic pool cover anchors intended for insertion in a wood or composite deck surface, 51 mm (2 in.) or less in any flange dimension and 51 mm (2 in.) or less in length

(6) Electrical Equipment.

Metal parts of the following electrical equipment shall be bonded:

(1) Electrically powered pool cover(s)

- (2) Pool water circulation, treatment, heating, cooling, or dehumidification equipment
- (3) Unless separated from the pool by a permanent barrier that prevents contact by a person, any other electrical equipment within 1.5 m (5 ft) measured horizontally from the inside wall of the pool, or 3.7 m (12 ft) measured vertically above the maximum water level of the pool, or as measured vertically above any observation stands, towers, or platforms, or any diving structures

Exception: Metal parts of listed equipment incorporating an approved system of double insulation shall not be bonded.

- (a) Double-Insulated Water Pump Motors. Where a double-insulated water pump motor is installed under the provisions of this rule, a solid 8 AWG copper conductor of sufficient length to make a bonding connection to a replacement motor shall be extended from the swimming pool equipotential bonding means to an accessible point in the vicinity of the pool pump motor. Where there is no connection between the swimming pool equipotential bonding means and the equipment grounding system for the premises, this bonding conductor shall be connected to the equipment grounding conductor of the motor circuit.
- (b) Pool Water Heaters. For pool water heaters rated at more than 50 amperes and having specific instructions regarding bonding and grounding, only those parts designated to be bonded shall be bonded and only those parts designated to be grounded shall be grounded.

(7) Fixed Metal Parts.

All fixed metal parts, including, but not limited to, metal-sheathed cables and raceways, metal piping, metal awnings, metal fences, and metal door and window frames, shall be bonded where located no greater than either of the following:

- (1) 1.5 m (5 ft) horizontally from the inside walls of the pool
- (2) 3.7 m (12 ft) vertically above the maximum water level of the pool, observation stands, towers, or platforms, or any diving structures

Exception: Those separated from the pool by a permanent barrier that prevents contact by a person shall not be required to be bonded.

(C) Pool Water.

Where none of the bonded parts as specified in 680.26(B)(1) through (B)(7) are in direct connection with the pool water, the pool water shall be in direct contact with an approved corrosion-resistant conductive surface that exposes not less than 5800 mm^2 (9 in.²) of surface area to the pool water at all times. The conductive surface shall be located where it is not exposed to physical damage or dislodgement during usual pool activities, and it shall be bonded in accordance with 680.26(B).

680.26 Equipotential Bonding. (A) Performance.

The equipotential bonding required by 680.26(B) and (C) to reduce voltage gradients in the pool area shall be installed for pools with or without associated electrical equipment related to the pool.

Informational Note No. 1: Some causes of voltage gradients originate outside the premises wiring system and are not within the scope of the *NEC*. Measures identified in Rule 097D2 of ANSI C2, *National Electrical Safety Code*, can also serve to address voltage gradients originating on the utility side of the service point. Informational Note No. 2: By its nature, equipotential bonding of swimming pools and perimeter surfaces involves contact between various metallic materials and the earth. This can, in some cases, expose various specific metals to a corrosive environment, depending on factors such as the type and chemical content of the soil and the specific metal. Corrosive environments are also addressed in 680.14.

(B) Bonded Parts.

The parts specified in 680.26(B)(1) through (B)(7) shall be bonded together using solid copper conductors, insulated, covered, or bare, not smaller than 8 AWG or with rigid metal conduit of brass or other identified corrosion-resistant metal. Connections to bonded parts shall be made in accordance with 250.8. An 8 AWG or larger solid copper bonding conductor provided to reduce voltage gradients in the pool area shall not be required to be extended or attached to remote panelboards, service equipment, or electrodes.

(1) Conductive Pool Shells.

Bonding to conductive pool shells shall be provided as specified in 680.26(B)(1)(a) or (B)(1)(b). Cast-inplace concrete, pneumatically applied or sprayed concrete, and concrete block with painted or plastered coatings shall all be considered conductive materials due to water permeability and porosity. Reconstructed pool shells shall also meet the requirements of this section. Vinyl liners and fiberglass composite shells shall be considered to be nonconductive materials and not subject to these requirements.

- (a) Structural Reinforcing Steel. Unencapsulated structural reinforcing steel shall be bonded together by steel tie wires or the equivalent. Where structural reinforcing steel is encapsulated in a nonconductive compound, a copper conductor grid shall be installed in accordance with 680.26(B)(1)(b).
- (b) *Copper Conductor Grid.* A copper conductor grid shall be provided and shall comply with the following:
 - (1) Be constructed of minimum 8 AWG bare solid copper conductors bonded to each other at all points of crossing in accordance with 250.8 or other approved means
 - (2) Conform to the contour of the pool
 - (3) Be arranged in a 300 mm (12 in.) by 300 mm (12 in.) network of conductors in a uniformly spaced perpendicular grid pattern with a tolerance of 100 mm (4 in.)
 - (4) Be secured within or under the pool no more than 150 mm (6 in.) from the outer contour of the pool shell

(2) Perimeter Surfaces.

The perimeter surface to be bonded shall be considered to extend for 900 mm (3 ft) horizontally beyond the inside walls of the pool while also at a height between 900 mm (3 ft) above and 600 mm (2 ft) below the maximum water level. The perimeter surface shall include unpaved surfaces, concrete, and other types of paving. Perimeter surfaces separated from the pool by a permanent wall or building 1.5 m (5 ft) in height or more shall require equipotential bonding only on the pool side of the permanent wall or building. Bonding to perimeter surfaces shall be provided as specified in 680.26(B)(2)(a), (B)(2)(b), (B)(2)(c), and (B)(2)(d). For conductive pool shells where bonding to perimeter surfaces is required, it shall be attached to the pool reinforcing steel or copper conductor grid at a minimum of four points uniformly spaced around the perimeter of the pool, or if the bonded perimeter surface does not surround the entire pool, it shall be attached to the pool reinforcing steel or copper conductor grid at a minimum of four uniformly spaced points along the bonded perimeter surface. For nonconductive pool shells, where bonding to the perimeter surfaces is required, bonding at four points shall not be required, and the perimeter bonding shall be attached to the 8 AWG copper equipotential bonding conductor and, if present, to any conductive support structure for the pool.

Informational Note: Because the perimeter surface can incorporate various types of materials at various locations and elevations above and below maximum water level, the perimeter surface required to be bonded might not surround the entire pool. The 8 AWG copper equipotential bonding conductor can encircle the entire pool to facilitate connection of bonded parts.

- (a) Conductive Paved Portions of Perimeter Surfaces. Conductive paved portions of perimeter surfaces, including masonry pavers, if used, shall be bonded with unencapsulated structural reinforcing steel in accordance with 680.26(B)(1)(a), or with unencapsulated steel structural welded wire reinforcement (welded wire mesh, welded wire fabric), bonded together by steel tie wires or the equivalent. Steel welded wire reinforcement shall be fully embedded within the pavement unless the pavement will not allow for embedding. If the reinforcing steel is absent, or is encapsulated in a nonconductive compound, or embedding is not possible, unencapsulated welded wire steel reinforcement or a copper conductor grid shall be provided and shall be secured directly under the paving, and not more than 150 mm (6 in.) below finished grade.
- Unencapsulated steel welded wire reinforcement that is not fully embedded in concrete, and copper grid regardless of location, where used for equipotential bonding, shall be listed for corrosion resistance and mechanical performance. This listing requirement shall become effective January 1, 2025. The copper grid or unencapsulated steel welded wire reinforcement shall also meet the following:
 - Copper grid is constructed of 8 AWG solid bare copper and arranged in accordance with 680.26(B)(1)(b)(3).
 - (2) Steel welded wire reinforcement is minimum ASTM 6×6 -W2.0 \times W2.0 or minimum No. 3 rebar constructed in a 300 mm (12 in.) grid.
 - (3) Copper grid and steel welded wire reinforcement follow the contour of the perimeter surface extending not less than 900 mm (3 ft) horizontally beyond the inside walls of the pool.
 - (4) Only listed splicing devices or exothermic welding are used.
 - Informational Note No. 1: Performance of the equipotential bonding system at the perimeter surface is improved as the distance between the bonding means and finished grade is minimized, either by embedding within, or by direct contact with the underside of, the finished pavement.
 - Informational Note No. 2: See ASTM A615/A615M, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement; A1064/A1064M, Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete; A1022/A1022M, Standard Specification for Deformed and Plain Stainless Steel Wire and Welded Wire for Concrete Reinforcement; A1060A/A1060M, Standard Specification for Zinc-Coated (Galvanized) Steel Welded Wire Reinforcement, Plain and Deformed, for Concrete; and ACI Standard ACI 318, Building Code Requirements for Structural Concrete, for examples of standards currently used in the listing of reinforcing steel bars and steel welded wire reinforcement.
- (b) Unpaved Portions of Perimeter Surfaces. Unpaved portions of perimeter surfaces shall be bonded with any of the following methods:
 - (1) Copper conductor(s) shall meet the following:
 - a. At least one minimum 8 AWG bare solid copper conductor, including the 8 AWG copper equipotential bonding conductor if available.
 - b. The conductors follow the contour of the perimeter surface.
 - c. Only listed splicing devices or exothermic welding are used.

- dc. The conductor(s) is 450 mm to 600 mm (18 in. to 24 in.) from the inside walls of the pool.
- de. The conductor(s) is under the unpaved portion of the perimeter surface 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- ef. Be installed only in perimeter surfaces not intended to have direct access to swimmers in the pool.
- (2) Copper grid or unencapsulated steel welded wire reinforcement used for equipotential bonding of unpaved portions of perimeter surfaces shall meet the following:
 - a. Be installed in accordance with 680.26(B)(2)(a).
 - Be located within unpaved surface(s) between 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- (c) Nonconductive Perimeter Surfaces. Equipotential bonding shall not be required for nonconductive portions of perimeter surfaces that are separated from earth or raised on nonconducting supports, and it shall not be required for any perimeter surface that is electrically separated from the pool structure and raised on nonconductive supports above an equipotentially bonded surface.

Informational Note: Nonconductive materials include, but are not limited to, wood, plastic, wood-plastic composites, fiberglass, and fiberglass composites.

(d) Interconnection of Bonded Portions of Perimeter Surfaces. All surfaces where equipotential bonding is required shall be interconnected using listed splicing devices or exothermic welding. Where copper wire is used for this purpose, it shall be solid copper, not smaller than 8 AWG. The conductor shall be permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and (B)(2)(b) that are not contiguous.

(3) Metallic Components.

All metallic parts of the pool structure, including reinforcing metal not addressed in 680.26(B)(1)(a), shall be bonded. Where reinforcing steel is encapsulated with a nonconductive compound, the reinforcing steel shall not be required to be bonded.

(4) Underwater Lighting.

All metal forming shells and mounting brackets of no-niche luminaires shall be bonded.

Exception: Listed low-voltage lighting systems with nonmetallic forming shells shall not require bonding. **(5) Metal Fittings.**

All metal fittings within or attached to the pool structure shall be bonded.

Exception: The following shall not be required to be bonded:

- (1) Isolated parts that are not over 100 mm (4 in.) in any dimension and do not penetrate into the pool structure more than 25 mm (1 in.)
- (2) Metallic pool cover anchors intended for insertion in a concrete or masonry deck surface, 25 mm (1 in.) or less in any dimension and 51 mm (2 in.) or less in length
- (3) Metallic pool cover anchors intended for insertion in a wood or composite deck surface, 51 mm (2 in.) or less in any flange dimension and 51 mm (2 in.) or less in length

(6) Electrical Equipment.

Metal parts of the following electrical equipment shall be bonded:

(1) Electrically powered pool cover(s)

- (2) Pool water circulation, treatment, heating, cooling, or dehumidification equipment
- (3) Unless separated from the pool by a permanent barrier that prevents contact by a person, any other electrical equipment within 1.5 m (5 ft) measured horizontally from the inside wall of the pool, or 3.7 m (12 ft) measured vertically above the maximum water level of the pool, or as measured vertically above any observation stands, towers, or platforms, or any diving structures

Exception: Metal parts of listed equipment incorporating an approved system of double insulation shall not be bonded.

- (a) Double-Insulated Water Pump Motors. Where a double-insulated water pump motor is installed under the provisions of this rule, a solid 8 AWG copper conductor of sufficient length to make a bonding connection to a replacement motor shall be extended from the swimming pool equipotential bonding means to an accessible point in the vicinity of the pool pump motor. Where there is no connection between the swimming pool equipotential bonding means and the equipment grounding system for the premises, this bonding conductor shall be connected to the equipment grounding conductor of the motor circuit.
- (b) Pool Water Heaters. For pool water heaters rated at more than 50 amperes and having specific instructions regarding bonding and grounding, only those parts designated to be bonded shall be bonded and only those parts designated to be grounded shall be grounded.

(7) Fixed Metal Parts.

All fixed metal parts, including, but not limited to, metal-sheathed cables and raceways, metal piping, metal awnings, metal fences, and metal door and window frames, shall be bonded where located no greater than either of the following:

- (1) 1.5 m (5 ft) horizontally from the inside walls of the pool
- (2) 3.7 m (12 ft) vertically above the maximum water level of the pool, observation stands, towers, or platforms, or any diving structures

Exception: Those separated from the pool by a permanent barrier that prevents contact by a person shall not be required to be bonded.

(C) Pool Water.

Where none of the bonded parts as specified in 680.26(B)(1) through (B)(7) are in direct connection with the pool water, the pool water shall be in direct contact with an approved corrosion-resistant conductive surface that exposes not less than 5800 mm^2 (9 in.²) of surface area to the pool water at all times. The conductive surface shall be located where it is not exposed to physical damage or dislodgement during usual pool activities, and it shall be bonded in accordance with 680.26(B).

680.26 Equipotential Bonding. (A) Performance.

The equipotential bonding required by 680.26(B) and (C) to reduce voltage gradients in the pool area shall be installed for pools with or without associated electrical equipment related to the pool.

Informational Note No. 1: Some causes of voltage gradients originate outside the premises wiring system and are not within the scope of the *NEC*. Measures identified in Rule 097D2 of ANSI C2, *National Electrical Safety Code*, can also serve to address voltage gradients originating on the utility side of the service point. Informational Note No. 2: By its nature, equipotential bonding of swimming pools and perimeter surfaces involves contact between various metallic materials and the earth. This can, in some cases, expose various specific metals to a corrosive environment, depending on factors such as the type and chemical content of the soil and the specific metal. Corrosive environments are also addressed in 680.14.

(B) Bonded Parts.

The parts specified in 680.26(B)(1) through (B)(7) shall be bonded together using solid copper conductors, insulated, covered, or bare, not smaller than 8 AWG or with rigid metal conduit of brass or other identified corrosion-resistant metal. Connections to bonded parts shall be made in accordance with 250.8. An 8 AWG or larger solid copper bonding conductor provided to reduce voltage gradients in the pool area shall not be required to be extended or attached to remote panelboards, service equipment, or electrodes.

(1) Conductive Pool Shells.

Bonding to conductive pool shells shall be provided as specified in 680.26(B)(1)(a) or (B)(1)(b). Cast-inplace concrete, pneumatically applied or sprayed concrete, and concrete block with painted or plastered coatings shall all be considered conductive materials due to water permeability and porosity. Reconstructed pool shells shall also meet the requirements of this section. Vinyl liners and fiberglass composite shells shall be considered to be nonconductive materials and not subject to these requirements.

- (a) Structural Reinforcing Steel. Unencapsulated structural reinforcing steel shall be bonded together by steel tie wires or the equivalent. Where structural reinforcing steel is encapsulated in a nonconductive compound, a copper conductor grid shall be installed in accordance with 680.26(B)(1)(b).
- (b) *Copper Conductor Grid.* A copper conductor grid shall be provided and shall comply with the following:
 - (1) Be constructed of minimum 8 AWG bare solid copper conductors bonded to each other at all points of crossing in accordance with 250.8 or other approved means
 - (2) Conform to the contour of the pool
 - (3) Be arranged in a 300 mm (12 in.) by 300 mm (12 in.) network of conductors in a uniformly spaced perpendicular grid pattern with a tolerance of 100 mm (4 in.)
 - (4) Be secured within or under the pool no more than 150 mm (6 in.) from the outer contour of the pool shell

(2) Perimeter Surfaces.

The perimeter surface to be bonded shall be considered to extend for 900 mm (3 ft) horizontally beyond the inside walls of the pool while also at a height between 900 mm (3 ft) above and 600 mm (2 ft) below the maximum water level. The perimeter surface shall include unpaved surfaces, concrete, and other types of paving. Perimeter surfaces separated from the pool by a permanent wall or building 1.5 m (5 ft) in height or more shall require equipotential bonding only on the pool side of the permanent wall or building. Bonding to perimeter surfaces shall be provided as specified in 680.26(B)(2)(a), (B)(2)(b), (B)(2)(c), and (B)(2)(d). For conductive pool shells where bonding to perimeter surfaces is required, it shall be attached to the pool reinforcing steel or copper conductor grid at a minimum of four points uniformly spaced around the perimeter of the pool, or if the bonded perimeter surface does not surround the entire pool, it shall be attached to the pool reinforcing steel or copper conductor grid at a minimum of four uniformly spaced points along the bonded perimeter surface. For nonconductive pool shells, where bonding to the perimeter surfaces is required, bonding at four points shall not be required, and the perimeter bonding shall be attached to the 8 AWG copper equipotential bonding conductor and, if present, to any conductive support structure for the pool.

Informational Note: Because the perimeter surface can incorporate various types of materials at various locations and elevations above and below maximum water level, the perimeter surface required to be bonded might not surround the entire pool. The 8 AWG copper equipotential bonding conductor can encircle the entire pool to facilitate connection of bonded parts.

- (a) Conductive Paved Portions of Perimeter Surfaces. Conductive paved portions of perimeter surfaces, including masonry pavers, if used, shall be bonded with unencapsulated structural reinforcing steel in accordance with 680.26(B)(1)(a), or with unencapsulated steel structural welded wire reinforcement (welded wire mesh, welded wire fabric), bonded together by steel tie wires or the equivalent. Steel welded wire reinforcement shall be fully embedded within the pavement unless the pavement will not allow for embedding. If the reinforcing steel is absent, or is encapsulated in a nonconductive compound, or embedding is not possible, unencapsulated welded wire steel reinforcement or a copper conductor grid shall be provided and shall be secured directly under the paving, and not more than 150 mm (6 in.) below finished grade.
- Unencapsulated steel welded wire reinforcement that is not fully embedded in concrete, and copper grid regardless of location, where used for equipotential bonding, shall be listed for corrosion resistance and mechanical performance. This listing requirement shall become effective January 1, 2025. The copper grid or unencapsulated steel welded wire reinforcement shall also meet the following:
 - Copper grid is constructed of 8 AWG solid bare copper and arranged in accordance with 680.26(B)(1)(b)(3).
 - (2) Steel welded wire reinforcement is minimum ASTM 6×6 -W2.0 \times W2.0 or minimum No. 3 rebar constructed in a 300 mm (12 in.) grid.
 - (3) Copper grid and steel welded wire reinforcement follow the contour of the perimeter surface extending not less than 900 mm (3 ft) horizontally beyond the inside walls of the pool.
 - (4) Only listed splicing devices or exothermic welding are used.
 - Informational Note No. 1: Performance of the equipotential bonding system at the perimeter surface is improved as the distance between the bonding means and finished grade is minimized, either by embedding within, or by direct contact with the underside of, the finished pavement.
 - Informational Note No. 2: See ASTM A615/A615M, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement; A1064/A1064M, Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete; A1022/A1022M, Standard Specification for Deformed and Plain Stainless Steel Wire and Welded Wire for Concrete Reinforcement; A1060A/A1060M, Standard Specification for Zinc-Coated (Galvanized) Steel Welded Wire Reinforcement, Plain and Deformed, for Concrete; and ACI Standard ACI 318, Building Code Requirements for Structural Concrete, for examples of standards currently used in the listing of reinforcing steel bars and steel welded wire reinforcement.
- (b) *Unpaved Portions of Perimeter Surfaces.* Unpaved portions of perimeter surfaces shall be bonded with any of the following methods:
 - (1) Copper conductor(s) shall meet the following:
 - a. At least one minimum 8 AWG bare solid copper conductor, including the 8 AWG copper equipotential bonding conductor if available.
 - b. The conductors follow the contour of the perimeter surface.
 - c. Only listed splicing devices or exothermic welding are used.

- d. The conductor(s) is 450 mm to 600 mm (18 in. to 24 in.) from the inside walls of the pool.
- e. The conductor(s) is under the unpaved portion of the perimeter surface 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- f. Be installed only in perimeter surfaces not intended to have direct access to swimmers in the pool.
- (2) Copper grid or unencapsulated steel welded wire reinforcement used for equipotential bonding of unpaved portions of perimeter surfaces shall meet the following:
 - a. Be installed in accordance with 680.26(B)(2)(a).
 - Be located within unpaved surface(s) between 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- (c) Nonconductive Perimeter Surfaces. Equipotential bonding shall not be required for nonconductive portions of perimeter surfaces that are separated from earth or raised on nonconducting supports, and it shall not be required for any perimeter surface that is electrically separated from the pool structure and raised on nonconductive supports above an equipotentially bonded surface.

Informational Note: Nonconductive materials include, but are not limited to, wood, plastic, wood-plastic composites, fiberglass, and fiberglass composites.

(d) Interconnection of Bonded Portions of Perimeter Surfaces. All surfaces where equipotential bonding is required shall be interconnected using listed splicing devices or exothermic welding. Where copper wire is used for this purpose, it shall be solid copper, not smaller than 8 AWG. The conductor shall be permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and (B)(2)(b) that are not contiguous.

(3) Metallic Components.

All metallic parts of the pool structure, including reinforcing metal not addressed in 680.26(B)(1)(a), shall be bonded. Where reinforcing steel is encapsulated with a nonconductive compound, the reinforcing steel shall not be required to be bonded.

(4) Underwater Lighting.

All metal forming shells and mounting brackets of no-niche luminaires shall be bonded.

Exception: Listed low-voltage lighting systems with nonmetallic forming shells shall not require bonding. **(5) Metal Fittings.**

All metal fittings within or attached to the pool structure shall be bonded.

Exception: The following shall not be required to be bonded:

- (1) Isolated parts that are not over 100 mm (4 in.) in any dimension and do not penetrate into the pool structure more than 25 mm (1 in.)
- (2) Metallic pool cover anchors intended for insertion in a concrete or masonry deck surface, 25 mm (1 in.) or less in any dimension and 51 mm (2 in.) or less in length
- (3) Metallic pool cover anchors intended for insertion in a wood or composite deck surface, 51 mm (2 in.) or less in any flange dimension and 51 mm (2 in.) or less in length

(6) Electrical Equipment.

Metal parts of the following electrical equipment shall be bonded:

(1) Electrically powered pool cover(s)

- (2) Pool water circulation, treatment, heating, cooling, or dehumidification equipment
- (3) Unless separated from the pool by a permanent barrier that prevents contact by a person, any other electrical equipment within 1.5 m (5 ft) measured horizontally from the inside wall of the pool, or 3.7 m (12 ft) measured vertically above the maximum water level of the pool, or as measured vertically above any observation stands, towers, or platforms, or any diving structures

Exception: Metal parts of listed equipment incorporating an approved system of double insulation shall not be bonded.

- (a) Double-Insulated Water Pump Motors. Where a double-insulated water pump motor is installed under the provisions of this rule, a solid 8 AWG copper conductor of sufficient length to make a bonding connection to a replacement motor shall be extended from the swimming pool equipotential bonding means to an accessible point in the vicinity of the pool pump motor. Where there is no connection between the swimming pool equipotential bonding means and the equipment grounding system for the premises, this bonding conductor shall be connected to the equipment grounding conductor of the motor circuit.
- (b) Pool Water Heaters. For pool water heaters rated at more than 50 amperes and having specific instructions regarding bonding and grounding, only those parts designated to be bonded shall be bonded and only those parts designated to be grounded shall be grounded.

(7) Fixed Metal Parts.

All fixed metal parts, including, but not limited to, metal-sheathed cables and raceways, metal piping, metal awnings, metal fences, and metal door and window frames, shall be bonded where located no greater than either of the following:

- (1) 1.5 m (5 ft) horizontally from the inside walls of the pool
- (2) 3.7 m (12 ft) vertically above the maximum water level of the pool, observation stands, towers, or platforms, or any diving structures

Exception: Those separated from the pool by a permanent barrier that prevents contact by a person shall not be required to be bonded.

(C) Pool Water.

Where none of the bonded parts as specified in 680.26(B)(1) through (B)(7) are in direct connection with the pool water, the pool water shall be in direct contact with an approved corrosion-resistant conductive surface that exposes not less than 5800 mm^2 (9 in.²) of surface area to the pool water at all times. The conductive surface shall be located where it is not exposed to physical damage or dislodgement during usual pool activities, and it shall be bonded in accordance with 680.26(B).

680.26 Equipotential Bonding. (A) Performance.

The equipotential bonding required by 680.26(B) and (C) to reduce voltage gradients in the pool area shall be installed for pools with or without associated electrical equipment related to the pool.

Informational Note No. 1: Some causes of voltage gradients originate outside the premises wiring system and are not within the scope of the *NEC*. Measures identified in Rule 097D2 of ANSI C2, *National Electrical Safety Code*, can also serve to address voltage gradients originating on the utility side of the service point. Informational Note No. 2: By its nature, equipotential bonding of swimming pools and perimeter surfaces involves contact between various metallic materials and the earth. This can, in some cases, expose various specific metals to a corrosive environment, depending on factors such as the type and chemical content of the soil and the specific metal. Corrosive environments are also addressed in 680.14.

(B) Bonded Parts.

The parts specified in 680.26(B)(1) through (B)(7) shall be bonded together using solid copper conductors, insulated, covered, or bare, not smaller than 8 AWG or with rigid metal conduit of brass or other identified corrosion-resistant metal. Connections to bonded parts shall be made in accordance with 250.8. An 8 AWG or larger solid copper bonding conductor provided to reduce voltage gradients in the pool area shall not be required to be extended or attached to remote panelboards, service equipment, or electrodes.

(1) Conductive Pool Shells.

Bonding to conductive pool shells shall be provided as specified in 680.26(B)(1)(a) or (B)(1)(b). Cast-inplace concrete, pneumatically applied or sprayed concrete, and concrete block with painted or plastered coatings shall all be considered conductive materials due to water permeability and porosity. Reconstructed pool shells shall also meet the requirements of this section. Vinyl liners and fiberglass composite shells shall be considered to be nonconductive materials and not subject to these requirements.

- (a) Structural Reinforcing Steel. Unencapsulated structural reinforcing steel shall be bonded together by steel tie wires or the equivalent. Where structural reinforcing steel is encapsulated in a nonconductive compound, a copper conductor grid shall be installed in accordance with 680.26(B)(1)(b).
- (b) *Copper Conductor Grid.* A copper conductor grid shall be provided and shall comply with the following:
 - (1) Be constructed of minimum 8 AWG bare solid copper conductors bonded to each other at all points of crossing in accordance with 250.8 or other approved means
 - (2) Conform to the contour of the pool
 - (3) Be arranged in a 300 mm (12 in.) by 300 mm (12 in.) network of conductors in a uniformly spaced perpendicular grid pattern with a tolerance of 100 mm (4 in.)
 - (4) Be secured within or under the pool no more than 150 mm (6 in.) from the outer contour of the pool shell

(2) Perimeter Surfaces.

The perimeter surface to be bonded shall be considered to extend for 900 mm (3 ft) horizontally beyond the inside walls of the pool while also at a height between 900 mm (3 ft) above and 600 mm (2 ft) below the maximum water level. The perimeter surface shall include unpaved surfaces, concrete, and other types of paving. Perimeter surfaces separated from the pool by a permanent wall or building 1.5 m (5 ft) in height or more shall require equipotential bonding only on the pool side of the permanent wall or building. Bonding to perimeter surfaces shall be provided as specified in 680.26(B)(2)(a), (B)(2)(b), (B)(2)(c), and (B)(2)(d). For conductive pool shells where bonding to perimeter surfaces is required, it shall be attached to the pool reinforcing steel or copper conductor grid at a minimum of four points uniformly spaced around the perimeter of the pool, or if the bonded perimeter surface does not surround the entire pool, it shall be attached to the pool reinforcing steel or copper conductor grid at a minimum of four uniformly spaced points along the bonded perimeter surface. For nonconductive pool shells, where bonding to the perimeter surfaces is required, bonding at four points shall not be required, and the perimeter bonding shall be attached to the 8 AWG copper equipotential bonding conductor and, if present, to any conductive support structure for the pool.

Informational Note: Because the perimeter surface can incorporate various types of materials at various locations and elevations above and below maximum water level, the perimeter surface required to be bonded might not surround the entire pool. The 8 AWG copper equipotential bonding conductor can encircle the entire pool to facilitate connection of bonded parts.

- (a) Conductive Paved Portions of Perimeter Surfaces. Conductive paved portions of perimeter surfaces, including masonry pavers, if used, shall be bonded with unencapsulated structural reinforcing steel in accordance with 680.26(B)(1)(a), or with unencapsulated steel structural welded wire reinforcement (welded wire mesh, welded wire fabric), bonded together by steel tie wires or the equivalent. Steel welded wire reinforcement shall be fully embedded within the pavement unless the pavement will not allow for embedding. If the reinforcing steel is absent, or is encapsulated in a nonconductive compound, or embedding is not possible, unencapsulated welded wire steel reinforcement or a copper conductor grid shall be provided and shall be secured directly under the paving, and not more than 150 mm (6 in.) below finished grade.
- Unencapsulated steel welded wire reinforcement that is not fully embedded in concrete, and copper grid regardless of location, where used for equipotential bonding, shall be listed for corrosion resistance and mechanical performance. This listing requirement shall become effective January 1, 2025. The copper grid or unencapsulated steel welded wire reinforcement shall also meet the following:
 - Copper grid is constructed of 8 AWG solid bare copper and arranged in accordance with 680.26(B)(1)(b)(3).
 - (2) Steel welded wire reinforcement is minimum ASTM 6×6 -W2.0 \times W2.0 or minimum No. 3 rebar constructed in a 300 mm (12 in.) grid.
 - (3) Copper grid and steel welded wire reinforcement follow the contour of the perimeter surface extending not less than 900 mm (3 ft) horizontally beyond the inside walls of the pool.
 - (4) Only listed splicing devices or exothermic welding are used.
 - Informational Note No. 1: Performance of the equipotential bonding system at the perimeter surface is improved as the distance between the bonding means and finished grade is minimized, either by embedding within, or by direct contact with the underside of, the finished pavement.
 - Informational Note No. 2: See ASTM A615/A615M, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement; A1064/A1064M, Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete; A1022/A1022M, Standard Specification for Deformed and Plain Stainless Steel Wire and Welded Wire for Concrete Reinforcement; A1060A/A1060M, Standard Specification for Zinc-Coated (Galvanized) Steel Welded Wire Reinforcement, Plain and Deformed, for Concrete; and ACI Standard ACI 318, Building Code Requirements for Structural Concrete, for examples of standards currently used in the listing of reinforcing steel bars and steel welded wire reinforcement.
- (b) *Unpaved Portions of Perimeter Surfaces.* Unpaved portions of perimeter surfaces shall be bonded with any of the following methods:
 - (1) Copper conductor(s) shall meet the following:
 - a. At least one minimum 8 AWG bare solid copper conductor, including the 8 AWG copper equipotential bonding conductor if available.
 - b. The conductors follow the contour of the perimeter surface.
 - c. Only listed splicing devices or exothermic welding are used.

- d. The conductor(s) is 450 mm to 600 mm (18 in. to 24 in.) from the inside walls of the pool.
- e. The conductor(s) is under the unpaved portion of the perimeter surface 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- f. Be installed only in perimeter surfaces not intended to have direct access to swimmers in the pool.
- (2) Copper grid or unencapsulated steel welded wire reinforcement used for equipotential bonding of unpaved portions of perimeter surfaces shall meet the following:
 - a. Be installed in accordance with 680.26(B)(2)(a).
 - Be located within unpaved surface(s) between 100 mm to 150 mm (4 in. to 6 in.) below finished grade.
- (c) Nonconductive Perimeter Surfaces. Equipotential bonding shall not be required for nonconductive portions of perimeter surfaces that are separated from earth or raised on nonconducting supports, and it shall not be required for any perimeter surface that is electrically separated from the pool structure and raised on nonconductive supports above an equipotentially bonded surface.

Informational Note: Nonconductive materials include, but are not limited to, wood, plastic, wood-plastic composites, fiberglass, and fiberglass composites.

(d) Interconnection of Bonded Portions of Perimeter Surfaces. All surfaces where equipotential bonding is required shall be interconnected using listed splicing devices or exothermic welding. Where copper wire is used for this purpose, it shall be solid copper, not smaller than 8 AWG. The conductor shall be permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and (B)(2)(b) that are not contiguous.

(3) Metallic Components.

All metallic parts of the pool structure, including reinforcing metal not addressed in 680.26(B)(1)(a), shall be bonded. Where reinforcing steel is encapsulated with a nonconductive compound, the reinforcing steel shall not be required to be bonded.

(4) Underwater Lighting.

All metal forming shells and mounting brackets of no-niche luminaires shall be bonded.

Exception: Listed low-voltage lighting systems with nonmetallic forming shells shall not require bonding. **(5) Metal Fittings and Metal Structures.**

All metal fittings <u>and metal structures</u> within or attached to the pool <u>structure-or perimeter surface</u> <u>indicated in 680.26(B)(2)</u> shall be bonded.

Exception: The following shall not be required to be bonded:

- (1) Isolated parts that are not over 100 mm (4 in.) in any dimension and do not penetrate into the pool structure more than 25 mm (1 in.)
- (2) Metallic pool cover anchors intended for insertion in a concrete or masonry deck surface, 25 mm (1 in.) or less in any dimension and 51 mm (2 in.) or less in length
- (3) Metallic pool cover anchors intended for insertion in a wood or composite deck surface, 51 mm (2 in.) or less in any flange dimension and 51 mm (2 in.) or less in length

(4) Metal fittings and metal parts fixed to bulkheads constructed of nonconductive material within the pool, with no conductive connection to the pool or perimeter surface indicated in 680.26(B)(2) by the bulkhead and/or metal parts fixed to the bulkhead.

(6) Electrical Equipment.

Metal parts of the following electrical equipment shall be bonded:

- (1) Electrically powered pool cover(s)
- (2) Pool water circulation, treatment, heating, cooling, or dehumidification equipment
- (3) Unless separated from the pool by a permanent barrier that prevents contact by a person, any other electrical equipment within 1.5 m (5 ft) measured horizontally from the inside wall of the pool, or 3.7 m (12 ft) measured vertically above the maximum water level of the pool, or as measured vertically above any observation stands, towers, or platforms, or any diving structures

Exception: Metal parts of listed equipment incorporating an approved system of double insulation shall not be bonded.

- (a) Double-Insulated Water Pump Motors. Where a double-insulated water pump motor is installed under the provisions of this rule, a solid 8 AWG copper conductor of sufficient length to make a bonding connection to a replacement motor shall be extended from the swimming pool equipotential bonding means to an accessible point in the vicinity of the pool pump motor. Where there is no connection between the swimming pool equipotential bonding means and the equipment grounding system for the premises, this bonding conductor shall be connected to the equipment grounding conductor of the motor circuit.
- (b) Pool Water Heaters. For pool water heaters rated at more than 50 amperes and having specific instructions regarding bonding and grounding, only those parts designated to be bonded shall be bonded and only those parts designated to be grounded shall be grounded.

(7) Fixed Metal Parts.

All fixed metal parts, including, but not limited to, metal-sheathed cables and raceways, metal piping, metal awnings, metal fences, and metal door and window frames, shall be bonded where located no greater than either of the following:

- (1) 1.5 m (5 ft) horizontally from the inside walls of the pool
- (2) 3.7 m (12 ft) vertically above the maximum water level of the pool, observation stands, towers, or platforms, or any diving structures

Exception: Those separated from the pool by a permanent barrier that prevents contact by a person shall not be required to be bonded.

(C) Pool Water.

Where none of the bonded parts as specified in 680.26(B)(1) through (B)(7) are in direct connection with the pool water, the pool water shall be in direct contact with an approved corrosion-resistant conductive surface that exposes not less than 5800 mm^2 (9 in.²) of surface area to the pool water at all times. The conductive surface shall be located where it is not exposed to physical damage or dislodgement during usual pool activities, and it shall be bonded in accordance with 680.26(B).

Pl's 4486, 4500, 4511, 4518, 4520, 4527

NEC 2026 First Revision Meeting

Expertise Applied | Answers Delivered

PI 4486 and 4500

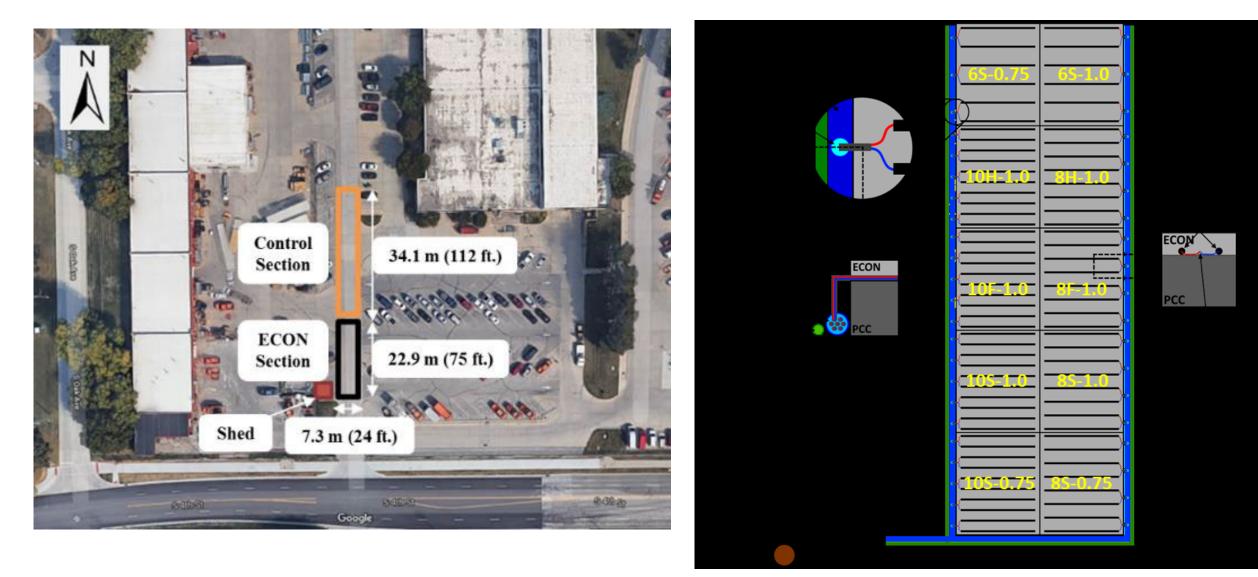
- Extend Class A GFCI protection on 3-phase equipment from 60 A up to 100 A
 - PI 4486 Section 422.5(A) Appliances
 - PI 4500 Section 680.5(B) Pools, Fountains, Spas
- Intent is to bring into alignment with other sections
 - 210.8(B) Other than Dwelling Units since NEC 2017
 - 210.8(D) Specific Appliances FR 2026
- Growing number of 3-phase devices rated 70, 80, 90 A

PI 4511, 4518, 4520, 4527

- Extend GFCI and SPGFCI protection on 3-phase equipment from 60 A up to 100 A
 - PI 4511 Section 680.22(A)(4) Receptacles near permanent pool 480V
 - PI 4518 Section 680.32 Electrical equipment used near storable pools
 - PI 4520 Section 680.43(A)(2) Receptacles near indoor spa
 - PI 4527 Section 680.58 Receptacles near fountains
- Intent is to bring into alignment with other sections
 - 210.8(B) Other than Dwelling Units since NEC 2017
 - 210.8(D) Specific Appliances FR 2026
- Consideration for voltage ratings
 - Above sections mention circuits rated 125 V through 250 V
 - The intent for adding SPGFCI was to apply to circuits above 250 V
 - Two options given in inputs
 - Remove SPGFCI text >> rolls back SPGFCI protection added in 2023
 - Remove 125 through 250 Vac text >> matches language already used 680.59, 680.32

Conductive Pavement Heating Systems

Presented by Chuck Mello cdcmello Consulting LLC


Background

- This technology has been researched since 2014 by a team at Iowa State University resulting in a published research report and doctorial dissertation.
- Full scale systems at the Des Moines airport and the State of Iowa DOT maintenance yard have been in place for ongoing research since 2016 and 2018 with multiple winters of operation.
- There has been previous research and pilot projects of similar technology for at least the last 20 years in Alaska and other locations.

Des Moines Airport

Iowa DOT Maintenance Yard

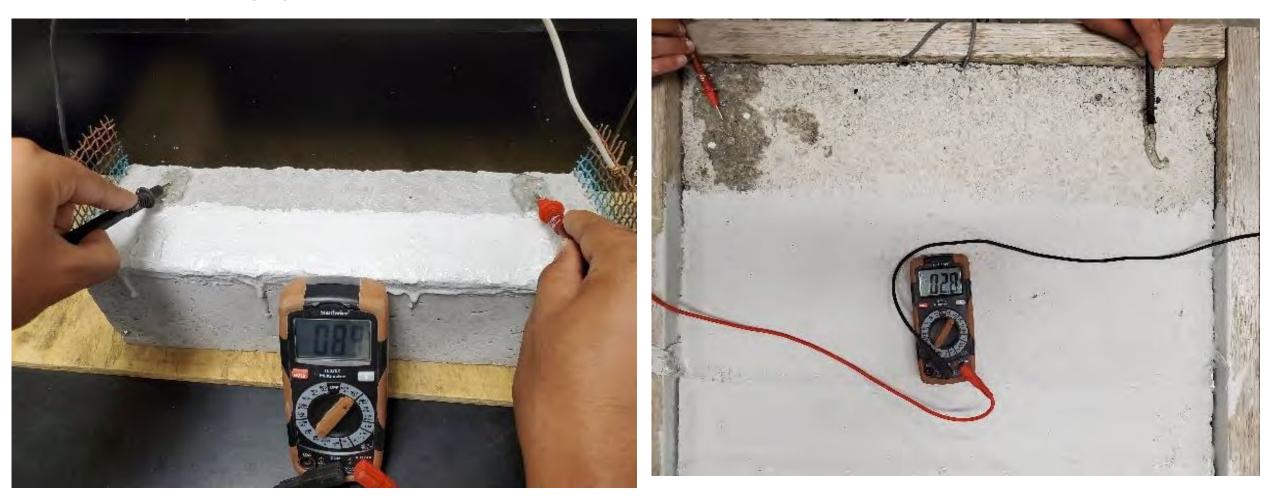
Safety Provisions

- The public input was to set the NEC requirements to install a listed and engineered conductive pavement heating system for snow melting and deicing.
- The system has to be listed
 - Controls and electrical components
 - Manufacturer's instructions for:
 - concrete mix
 - Testing
 - Reporting
- Each system has to be engineered by a professional engineer and have engineering oversight for the entire installation.

Listing Required

• UL would need to develop a new or revise an existing standard for listing

• Contract has been let and preliminary investigation has commenced


 The development of the listing requirements needs to happen in parallel with NEC development so both operate in concert with one another.

"Stray" Currents

- Cured ECON resistivity approx. 1000 Ohm-cm when wet
 - Wet (uncured fresh poured) test approx. 100 Ohm-cm for beam to confirm proper mix
- Standard cured concrete (PCC) resistivity 100,000 Ohm-cm
- Rock base under slab or roadway >100,000 Ohm-cm
- At the reduced driving voltage of 120 or even 208 volts the system does not have the same "stray" current as occurs from medium voltage utility systems with driving voltage 50 to 100 times this voltage.

Voltage on <u>bare</u> concrete with 120 volts applied to Beam and to 24 x 24 slab

Voltage Test Results

	Surface voltage Without paint	Surface voltage with one layer of finish coat	Percent change with one layer of finish coat	Surface voltage with two layers of finish coat	Percent change with two layers of finish coat
Beam	8.9	1.8	-80%	0.1	-99%
Slab	2.8	0.5	-82%	0.9	-88%

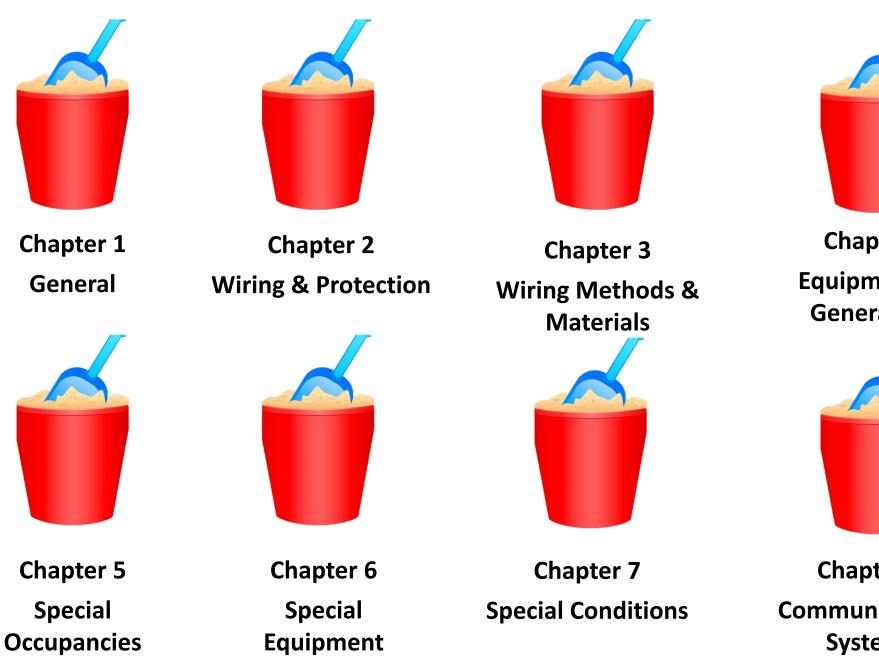
Low voltage contact limit for swimming pools and immersed person is 15 volts RMS

Articles 100 & 426 New Text

- Added new definition in Article 100 under the purview of CMP-17
- Added to the scope a new item (C) to allow systems where there is a combination of exposed and embedded elements
- Added the listing item in accordance with Style Manual organization
- Added a new Part VI specific to the installation of this new technology
- The NEC is to assure a safe installation with coordinated requirements
- This is not a product someone will buy at the local distributor, or big box store to install.

Article 426 New Part VI

- Brings in existing concepts from Article 426 for resistance heating that has not been previously required to be listed
- Each installation is unique requiring engineering design and oversight of the installation
- Required documentation for concrete mix testing to AHJ to confirm compliance with installation instructions that have the concrete specification range for resistance/conductivity
- Installation of non-heating leads from controller to the electrodes
- This is not a product someone will buy at the local distributor, or big box store to install.


Questions

• Thank you for your time and consideration

Founded to sell watches; evolved to sell everything	Founded to sell books; evolved to sell everything	NATIONAL FIRE PROTECTION ASSOCIATION The leading information and knowledge resource on fire, electrical and related hazards
1972	2017	CODES & STANDARDS ELECTRICAL SOLUTIONS NEWS & RESEARCH TRA
sears	amazon	CHANGE HAPPENS FAST. LET NFPA LINK™ KEEP YOU ON THE CUTTING EDGE.
2 of every 3 Americans shopped in last 3 months	2 of every 3 Americans shopped in last 3 months	
1987 Sales = 1% of GDP	2017 Sales = 1% of GDP	The Expert Source Just Got An Upgrade NFP. Learn more about NFPA LiNK ™, your custom, on-demand code knowledge tool brought to you by NFPA. As the resource
M Merriam	Source: Chicago Tribune	LEARN MORE >

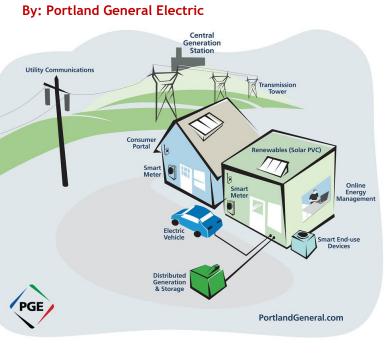
March 2020

Chapter 4 Equipment for General Use

Chapter 8 Communications Systems

1937-2023 (35 editions):

Introduction (Identified as Article 90 starting in the 1959 edition)	Chapter 1 – General	Chapter 2 – Wiring Design and Protection	Chapter 4 has grown from 10 articles in the 1937 edition to 22 articles in the 2023 edition
Chapter 5 has grown	Chapter 6 has grown	Chapter 7 has grown	Chapter 8 has grown
from 5 articles in the	from 7 articles in the	from 4 articles in the	from 2 articles in the
1937 edition to 27	1937 edition to 27	1937 edition to 15	1937 edition to 6
articles in the 2023	articles in the 2023	articles in the 2023	articles in the 2023
edition	edition	edition	edition


What Else is Coming Down the Pike?

By: MTA Construction and Development

By:National Renewable Labs

Where do we want to go?

- Remain relevant with the quickly evolving electrical industry
- Improve usability
 - Place content where it makes sense
 - Logical/parallel structure
 - Systems below 1000V
 - Limited Energy
 - Medium Voltage
 - Eliminate "Special Equipment" / "Special Conditions"
 - Leverage the past to make the future even better
- Create a structure that looks to the future

NATIONAL FIRE PROTECTION ASSOCIATION

The leading information and knowledge resource on fire, electrical and related hazards

National Electrical Code[®] Correlating Committee White Paper

Keeping the NEC[®] Relevant - Is Now the Time to Modernize?

The National Electrical Code[®] (NEC[®]) is the foundation of the electrical installation regulatory infrastructure for the United States, Mexico, and numerous other jurisdictions around the world. Growing demand for safe, reliable, resilient, and efficient use of electrical power to support society and the economy is aligning with technological advancement of power generation sources, electrical distribution, and new electrical power loads. It is critical the NEC be revised and implemented by the electrical community every three years to support the accelerating pace of change and technological advancement.

The structure of the NEC plays a critical role for personnel in learning, understanding, applying, and enforcing the requirements established within this regulatory code. While the current structure, first introduced in 1937, has provided tremendous success and stability and continues to be used by engineers, contractors, electricians and training programs, the ability to efficiently learn and quickly apply and inspect advancing technologies and uniquely configured electrical systems is a challenge for all electrical professionals. The existing NEC structure needs modernization to continue to support the advancing electrical infrastructure configurations and technological advancements. Therefore, it is imperative that the electrical industry actively pursue a revised NEC organizational structure to support ease of learning, understanding, and applying the NEC safety provisions in a rapidly advancing new energy landscape.

Keeping the NEC Relevant Now is the Time to Modernize Industry Trends

Medium Voltage

Limited Energy

Multi-Directional Power Flow

Digital Delivery of Content

Future Vision

Path Forward

Feedback

More difficult for AHJ's when inspecting

Less likely to have listed equipment since traditionally geared toward utility.

More likely to have requirements that are antiquated

Depth of knowledge of Technical Committees can be a challenge.

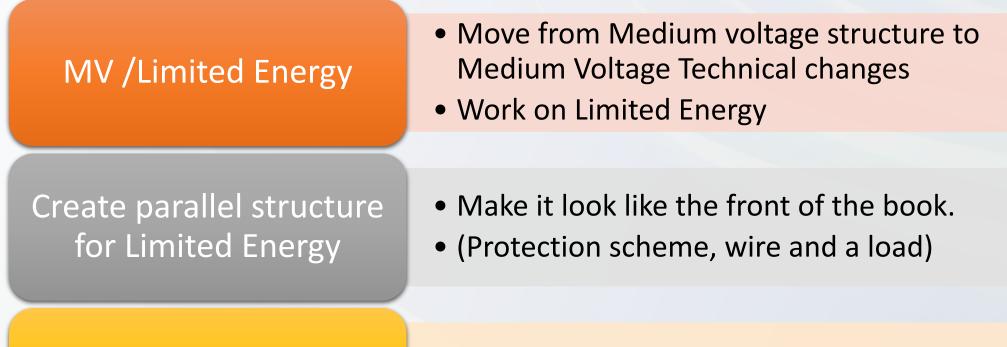
Wiring methods in Chapter 3 for >1000 volt systems are difficult to determine

With renewable energy and microgrids lines of distinction between NESC and NEC are blurred.

Medium Voltage

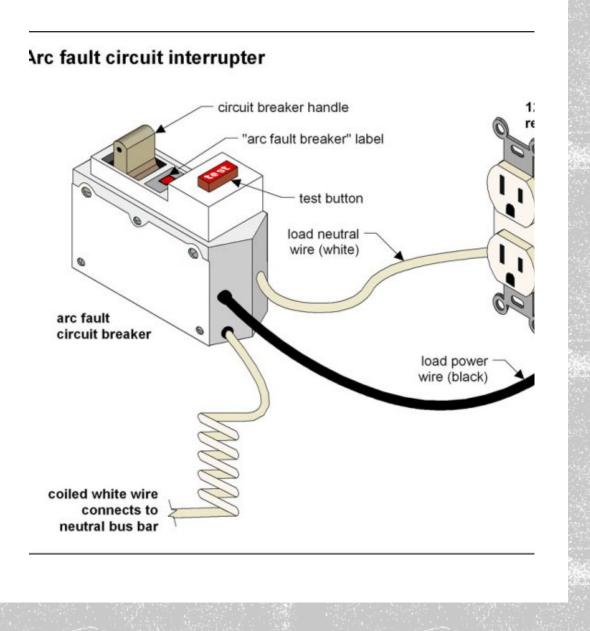
A Starting Point for Considering a New Approach

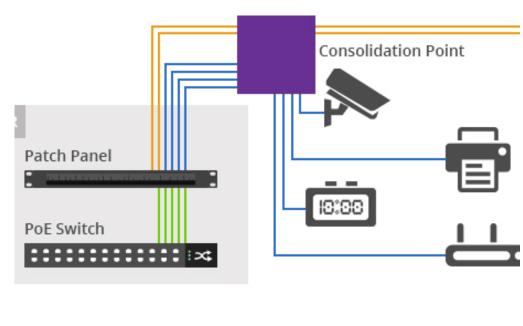
Limited Energy


Past

- Confusing
- No more Ma Bell
- Independence Chapter 8 vs Dependence Chapter 1-7
- Cat 5/6 Cable Article 725 and 805
- POE is Article 725 and 840
- How do we maintain relevance?

Future


- Improve usability.
- Improve Terminology
- Create structure that is technology agnostic.
- Eliminate redundancy.
- Parallel Structure
- Everything communicates


Short-Term Goals (2026)

Begin Implementation

• Move certain articles for long-term road map implementation

Patch Cords

Permanent Link Cable

Introduction

Definitions and General Requirements Chapter 1

> Wiring and Protection Chapter 2

Wiring Methods and Materials Chapter 3

Equipment for General Wiring Chapter 4

> **Special Occupancies** Chapter 5

Special Equipment Chapter 6

Special Conditions Chapter 7

Communication Systems Chapter 8

> **Tables** Chapter 9

Informative Annex A through Informative Annex K

Introduction Chapter 1 Chapter 2 (Light Blue) Applies Over 1000 VAC, 1500 VDC generally to electrical Chapter 3 installations **Energy Systems** Chapter 4 Wiring Methods and Materials Chapters 5 - 10 Equipment (Brown) Supplemental Chapter 11 - 14 or Amendatory

requirements

Applicable as referenced

Informative Only

Specific Locations and Occupancies Chapters 15 – 17

> **Energy Sources** Chapters 18

Life Safety and Emergency Systems Chapter 19

Tables

Chapter 20

Informative Annex A through Informative Annex K

PROPOSED 90.3 -2029 NEC

Definitions and General Requirements

Wiring and Protection for Systems 1000 VAC, 1500 VDC and Below

Wiring and Protection for Systems

Wiring and Protection for Limited

	Title	2023 Reference	2026 CMP	2029 CMP
90	Introduction	90	1	1
	Chapter 1 Definitions and General Requirements			
100	Definitions	100	1	1
110	Requirements for Electrical Installations	110	1	1
120	Load Calculations	220	2	2
130	Energy Management Systems	750	13	13
140	Temporary Installations	590	3	3
	Chapter 2 and Protection for Systems 1000 VAC, 1500 VDC and Below			
200	General Requirements	300	3	3
205	Conductors	310	6	6
206	Use and Identification of Grounded Conductors	200	5	5
210	Branch Circuits	210	2	2
215	Feeders	215	10	10
225	Outside Branch Circuits and Feeders	225	10	10
230	Services	230	10	10
240	Overcurrent Protection	240	10	10
242	Overvoltage Protection (Part I and II)	242	10	10
250	Grounding and Bonding	250	5	5

Chapter 3 Wiring and Protection for Systems Over 1000 VAC, 1500 VDC				
		205		
300	General Requirements	305	9	
305	Conductors and Cables	315	9	
306	Use and Identification of Grounded Conductors	205	5	
310	Branch Circuits	235	9	
315	Feeders	235	9	
325	Outside Branch Circuits and Feeders	235	9	
330	Services	235	9	
342	Overvoltage Protection	242 (Part III)	10	
350	Grounding and Bonding	250 (Part X)	5	

	Chapter 4 Wiring and Protection for Limited Energy Systems			
400	Wiring Requirements and Materials		3	3
405	Conductors and Cables (Including Listing and Flammability)	722	3	3
406	Use and Identification of Conductors		3	3
430	Interior Cabling Systems Part I- Class 1 Power-Limited Circuits Part II- Class 2 and Class 3 Part III- Class 4	724, 725, 726	3	3
435	Exterior Cabling Systems (Outside Plant) Part I- Communication Circuits Part II- Antenna Systems Part III- CATV Part IV- Networked-Powered Broadband Communication Systems Part V- Premises-Powered Broadband Communication Systems		16	16
440	Overcurrent Protection Part I- Class 1 Power-Limited Circuits Part II- Class 2 and Class 3 Part III- Class 4	724, 725, 726	3	3
442	Overvoltage Protection		3	3
450	Grounding and Bonding		16	5

Л

	Chapter 5			
	Enclosures and Wiring Support Structures			
500	Cabinets, Cutout Boxes, and Meter Socket Enclosures	312	8	8
502	Outlet, Device, Pull, and Junction Boxes; Conduit Bodies; Fittings; and Handhole Enclosures	314	8	8
504	Cable Trays	392	8	8
506	Auxiliary Gutters	366	8	8
508	Metal Wireways	376	8	8
510	Nonmetallic Wireways	378	8	8
512	Nonmetallic Extensions	382	6	8
	Chapter 6 Wire and Cable			
600	Armored Cable: Type AC	320	6	6
602	Flat Cable Assemblies: Type FC	322	6	6
604	Flat Conductor Cable: Type FCC	324	6	6
606	Integrated Gas Spacer Cable: Type IGS	326	6	6
608	Metal-Clad Cable: Type MC	330	6	6
610	Mineral-Insulated, Metal-Sheathed Cable: Type MI	332	6	6
612	Nonmetallic-Sheathed Cable: Types NM and NMC	334	6	6
614	Optical Fiber Cables	770	16	16
616	Instrumentation Tray Cable: Type ITC	335	6	6
618	Power and Control Tray Cable: Type TC	336	6	6
620	Type P Cable	337	6	6
622	Service-Entrance Cable: Types SE and USE	338	6	6
624	Underground Feeder and Branch-Circuit Cable: Type UF	340	6	6
626	Flexible Cords and Flexible Cables	400	6	6
628	Fixture Wires	402	6	6

5,6

7 0	700
7, 8	702
	704
	706
	708
	710
	712
	714
	716

Chapter 7			
Circular Raceways (Conduit and Tubing)			
Intermediate Metal Conduit: Type IMC	342	8	8
Rigid Metal Conduit: Type RMC	344	8	8
Flexible Metal Conduit: Type FMC	348	8	8
Liquidtight Flexible Metal Conduit: Type LFMC	350	8	8
Rigid Polyvinyl Chloride Conduit: Type PVC	352	8	8
High Density Polyethylene Conduit: Type HDPE Conduit	353	8	8
Nonmetallic Underground Conduit with Conductors: Type NUCC	354	8	8
Reinforced Thermosetting Resin Conduit: Type RTRC	355	8	8
Liquidtight Flexible Nonmetallic Conduit: Type LFNC	356	8	8
Electrical Metallic Tubing: Type EMT	358	8	8
Flexible Metallic Tubing: Type FMT	360	8	8
Electrical Nonmetallic Tubing: Type ENT	362	8	8
Raceways for Limited Energy Systems (Communication Raceways)	800, 805, 810, 820, 830, 840	16	16
Chapter 8			
Non-Circular Raceways			
Cellular Concrete Floor Raceways	372	8	8
Cellular Metal Floor Raceways	374	8	8
Strut-Type Channel Raceway	384	8	8
Surface Metal Raceways	386	8	8
Surface Nonmetallic Raceways	388	8	8
Underfloor Raceways	390	8	8
	Circular Raceways (Conduit and Tubing) Intermediate Metal Conduit: Type IMC Rigid Metal Conduit: Type RMC Flexible Metal Conduit: Type FMC Liquidtight Flexible Metal Conduit: Type LFMC Rigid Polyvinyl Chloride Conduit: Type PVC High Density Polyethylene Conduit: Type HDPE Conduit Nonmetallic Underground Conduit with Conductors: Type NUCC Reinforced Thermosetting Resin Conduit: Type RTRC Liquidtight Flexible Nonmetallic Conduit: Type LFNC Electrical Metallic Tubing: Type EMT Flexible Metallic Tubing: Type FMT Electrical Nonmetallic Tubing: Type ENT Raceways for Limited Energy Systems (Communication Raceways) Cellular Concrete Floor Raceways Cellular Metal Floor Raceways Strut-Type Channel Raceways Surface Metal Raceways	Circular Raceways (Conduit and Tubing)Intermediate Metal Conduit: Type IMC342Rigid Metal Conduit: Type RMC344Flexible Metal Conduit: Type FMC348Liquidtight Flexible Metal Conduit: Type LFMC350Rigid Polyvinyl Chloride Conduit: Type HDPE Conduit353Nonmetallic Underground Conduit: Type HDPE Conduit353Nonmetallic Underground Conduit: Type HDPE Conduit355Liquidtight Flexible Nonmetallic Conduit: Type RTRC356Electrical Metallic Tubing: Type EMT358Flexible Metallic Tubing: Type EMT360Electrical Nonmetallic Tubing: Type ENT362Raceways for Limited Energy Systems (Communication Raceways)800, 805, 810, 820, 830, 840Cellular Concrete Floor Raceways374Strut-Type Channel Raceway384Surface Metal Raceways386Surface Nonmetallic Raceways388	Circular Raceways (Conduit and Tubing)Intermediate Metal Conduit: Type IMC3428Rigid Metal Conduit: Type RMC3448Flexible Metal Conduit: Type FMC3488Liquidtight Flexible Metal Conduit: Type LFMC3508Rigid Polyvinyl Chloride Conduit: Type HDPE Conduit3538Nonmetallic Underground Conduit: Type RTRC3548Reinforced Thermosetting Resin Conduit: Type RTRC3568Electrical Metallic Tubing: Type EMT3588Flexible Metallic Tubing: Type EMT3608Electrical Nonmetallic Tubing: Type ENT3628Raceways for Limited Energy Systems (Communication Raceways) Non-Circular Raceways3728Cellular Concrete Floor Raceways3748Strut-Type Channel Raceway3848Surface Metal Raceways3868Surface Metal Raceways3888

	Chapter 9 Power and Lighting Systems			
900	Busways	368	8/9	8
902	Cablebus	370	8	8
904	Insulated Bus Pipe (IBP) and Tubular Covered Conductors (TCC) (New)	369	8	8
906	Flexible Bus System (New)	371	8	8
908	Multioutlet Assembly	380	8	8
910	Low-Voltage Suspended Ceiling Power Distribution Systems	393	18	18
912	Manufactured Wiring Systems	604	7	7
916	Office Furnishings	605	18	18
	Chapter 10 Open Wiring			
1000	Concealed Knob-and-Tube Wiring	394	6	6
1002	Messenger-Supported Wiring	396	6	6
1004	Open Wiring on Insulators	398	6	6
	Chapter 11 Devices			
1100	Switches	404	9/10	10
1102	Wiring Devices	406	18	18
1104	Switchboards, Switchgear and Panelboards	408	10	10
1106	Industrial Control Panels	409	11	11
1108	Transformers and Transformer Vaults	450	9	9
1110	Phase Converters	455	13	13
1112	Capacitors	460	9/11	11
1114	Resistors and Reactors	470	9/11	11

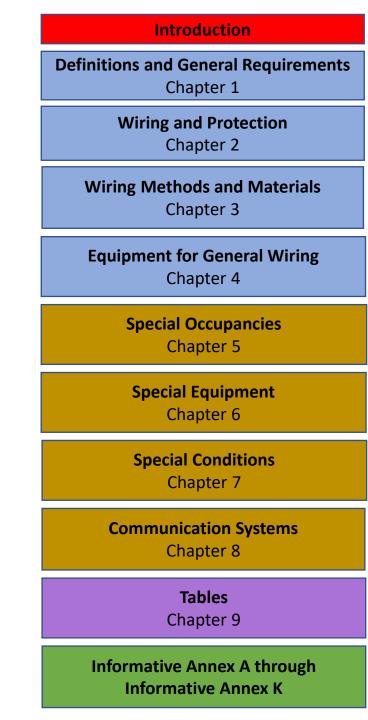
9, 10, 11

	Chapter 12 Utilization Equipment			
1200	Luminaires, Lampholders and Lamps	410	18	18
1202	Low-Voltage Lighting	411	18	18
1204	Electric Signs and Outline Lighting	600	18	18
1206	Motors, Motor Circuits, and Controller	430	11	11
1208	Cranes and Hoists	610	12	12
1210	Elevators, Dumbwaiters, Escalators, Moving Walks, Platform Lifts, and Stairway Chairlifts	620	12	12
1212	Electrically Driven or Controlled Irrigation Machines	675	7	7
1214	Appliances	422	17	17
1216	Fixed Electric Space Heating Equipment	424	17	17
1218	Fixed Resistance and Electrode Industrial Process Heating Equipment	425	17	17
1220	Fixed Outdoor Electric Deicing and Snow-Melting Equipment	426	17	17
1222	Fixed Electric Heating Equipment for Pipelines and Vessels	427	17	17
1224	Air-Conditioning and Refrigeration Equipment	440	11	11
1226	Induction and Dielectric Heating Equipment	665	12	12
1228	Electric Welders	630	12	12
1230	Pipe Organs	650	12	12
1232	Information Technology Equipment	645	12	12
1234	Sensitive Electronic Equipment	647	12	12
1236	X-Ray Equipment	660	12	12

1	3,
1	4

1300	Electric Vehicle Power Transfer System	625	12	12
1302	Electrified Truck Parking Spaces	626	12	12
1304	Audio Signal Processing, Amplification, and Reproduction Equipment	640	12	12
1306	Modular Data Centers	646	12	12
1308	Electrolytic Cells	668	12	12
1310	Electroplating	669	12	12
1312	Industrial Machinery	670	12	12
1314	1314 Integrated Electrical Systems		12	12
Equi	Chapter 14 Equipment Over 1000 VAC, 1500 VDC			
1400	General	495 (Part I & II)	9	9
1402	Switchgear and Industrial Control Assemblies	495 (Part III)	9	9
1404	Mobile and Portable Equipment	495 (Part IV)	9	9
1406	Boilers	495 (Part V)	9	9
1408	1408 Motors, Motor Circuits, and Controllers		11	9
1410	Capacitors	460 (Part III)	11	9
1412	Resistors and Reactors	470 (Part III)	11	9

1	Г
	.)


	Chapter 15 Hazardous Locations			
1500	Hazardous (Classified) Locations, Classes I, II, and III, Divisions 1 and 2	500	14	1
1501	Class I Locations	501	14	1
1502	Class II Locations	502	14	1
1503	Class III Locations	503	14	1
1504	Intrinsically Safe Systems	504	14	1
1505	Zone 20, 21, and 22 Locations for Combustible Dusts or Ignitible		14	1
1506			14	1
1511	1 Commercial Garages, Repair and Storage		14	1
1512	12 Cannabis Oil Equipment and Cannabis Oil Systems Using Flammable or Combustible Materials		14	1
1513	Aircraft Hangars	513	14	1
1514	1514Motor Fuel Dispensing Facilities1515Bulk Storage Plants		14	1
1515			14	1
1516	Spray Application, Dipping, Coating, and Printing Processes Using Flammable or Combustible Materials	516	14	1

1	6
	.0

	Chapter 16			
	Occupancies			
1600	Health Care Facilities	517	15	15
1602	Assembly Occupancies	518	15	15
1604	Theaters, Audience Areas of Motion Picture and Television Studios, Performance Areas, and Similar Locations	520	15	15
1606	Control Systems for Permanent Amusement Attractions	522	15	15
1608 Carnivals, Circuses, Fairs, and Similar Events		525	15	15
1610 Motion Picture and Television Studios and Similar Locations		530	15	15
1612	2 Motion Picture Projection Rooms		15	15
1614	Manufactured Buildings and Relocatable Structures	545	7	7
1616	Agricultural Buildings	547	7	7
1618 Mobile Homes, Manufactured Homes, and Mobile Home Parks		550	7	7
1620	Recreational Vehicles and Recreational Vehicle Parks	551	7	7
1622	Park Trailers	552	7	7

17,	
18,	
19,	

In	Chapter 17 stallations Associated with Bodies of Water				
1700	Swimming Pools, Fountains, and Similar Installations	680	17	17	
1702	Natural and Artificially Made Bodies of Water	682	7	7	
1704	Marinas, Boatyards, Floating Buildings, and Commercial and Noncommercial Docking Facilities	555	7	7	
Pov	Chapter 18 wer Production and Energy Storage Systems				
1800	Interconnected Systems	705	13	13	
1802	Generators	445	13	13	
1804	Stationary Standby Batteries	480	13	13	
1806	Solar Photovoltaic (PV) Systems	690	4	4	
1808	Large-Scale Photovoltaic (PV) Electric Supply Stations	691	4	4	
1810	1810 Fuel Cell Systems		4	4	
1812 Wind Electric Systems		694	4	4	
1814	Energy Storage Systems	706	13	13	
1816	Stand Alone Systems	710	4	4	
1818	Optional Standby Systems	702	13	13	
	Chapter 19 Life Safety and Emergency Systems				
1900	Emergency Systems	700	13	13	
1902	Legally Required Standby Systems	701	13	13	
1904	Fire Pumps	695	13	13	
1906	Fire Alarm Systems	760	3	3	
1908	Circuit Integrity Cables and Electrical Protective Systems (Fire- Resistive Cable Systems)	728	3	3	
1910	Critical Operations Power Systems (COPS)	708	13	13	

2026 NEC STRUCTURE

	2026 NEC		
	Chapter 1 Definitions and General Requirements		
100	Definitions	100	
110	110 Requirements for Electrical Installations		
120	Load Calculations	220	
130	Energy Management Systems	750	
140	Temporary Installations	590	

Takeaways

- Feedback to Jeff Sargent
- Proposed structure is fluid and will continue to evolve as we receive input
- Intent to print proposed structure in Annex for 2026 NEC edition.
- Structure is not intended to impact technical, only the organization and correlation of the technical content
- Intent is to move articles once

Public Comment No. 1657-NFPA 70-2024 [Global Input]

This Global Public Comment is for CMP-17 to review the use of the terms "overcurrent", "overcurrent protective devices" and "overcurrent protection".

Additional Proposed Changes

File Name

CMP-17_OCPD_TG-4_CMP-10.pdf All CMP Comments Files from CMP-10 TG-4.pdf Description CMP-17_OCPD_TG-4 CMP-10 All CMP Comments Files from CMP-10 TG-4 **Approved**

Statement of Problem and Substantiation for Public Comment

This Public Comment is submitted on behalf of a Task Group formed under the purview of Code Making Panel 10 consisting of Randy Dollar, Thomas Domitrovich, Jason Doty, Diane Lynch, Alan Manche, Nathan Philips, David Williams, and Danish Zia. This Public Comment, along with other Public Comments, was developed with the goal of improving usability and accuracy on requirements associated with overcurrent protective devices.

The Task Group reviewed all instances of the term "overcurrent", "overcurrent protective devices" and "overcurrent protection" and provided recommended changes to align proposed and current defined terms.

For consistency, the task group chose to use the full defined term "overcurrent protective device" in the title of all sections or subdivisions and the acronym "OCPD" or "OCPDs" when used in the body of each code section.

The term overcurrent protection applies to the application of an overcurrent protective device OCPD, to protect conductors and equipment.

Two documents are attached: One for your specific code panel and the other is a comprehensive document illustrating all of the code-wide comments made by this task group.

The current term "Overcurrent Protective Device, Branch-Circuit" is being deleted and the new defined term "Overcurrent Protective Device (OCPD)" will be used instead.

The following are the proposed terms being submitted to CMP-10.

PC 1639 Overcurrent Protection. Automatic interruption of an overcurrent

PC 1636 Overcurrent Protective Device (OCPD). A device capable of providing protection over the full range of overcurrent between its rated current and its interrupting rating. (CMP-10)

Informational Note 1: Prior editions of NFPA 70 included the defined term "branch circuit overcurrent protective device" for overcurrent protective devices suitable for providing protection for service, feeder and branch circuits. This term has been revised to a generalized term of "overcurrent protective device" (OCPD). The specific requirements using this term may include modifiers (such as branch OCPD, feeder OCPD, service OCPD) to specify location or application of the OCPD, or to specify variations (such as supplementary OCPD).

Informational Note 2: See 240.7 for a list of overcurrent protective devices suitable for providing protection for service, feeder, branch circuits and equipment.

Related Item

• Global PI 4050 • PC 1636 • PC 1639

Submitter Information Verification

Submitter Full Name: David WilliamsOrganization:Delta Charter TownshipStreet Address:

City:State:Zip:Submittal Date:Sun Aug 25 21:56:59 EDT 2024Committee:NEC-P17

Instrument of the second se		CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-17					
Article 422 422.5(C) Branch-Circuit overcurrent protective device Branch-Circuit OCPD 422.11. Title Overcurrent Protection Fine as is 422.11 protected against overcurrent shall be provided with overcurrent protection 422.11(A) Overcurrent Protection Shall be provided with overcurrent protection 422.11(A) Branch-Circuit overcurrent protective device Branch-Circuit OCPD 422.11(B) Overcurrent Protection OCPDs 422.11(C) Overcurrent Protection OCPDs 422.11(C) Overcurrent Protection Fine as is 422.11(E) Overcurrent Protection OCPD 422.11(E) Overcurrent Protective Devices OCPD 422.11(F) Overcurrent Protective Devices OCPD 422.11(F) Overcurrent Protective Devices OCPDs 422.11(F) Overcurrent Protective Devices OCPDs	СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language			
422.11. TitleOvercurrent ProtectionFine as is422.11protected against overcurrentshall be provided with overcurrent protection422.11(A)Overcurrent ProtectionFine as is422.11(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.11(B)Overcurrent ProtectionOCPDs422.11(C)Overcurrent ProtectionOCPDs422.11(C)Overcurrent ProtectionOCPDs422.11(C)Overcurrent ProtectionFine as is422.11(E)Overcurrent ProtectionFine as is422.11(E)(1)Overcurrent ProtectionFine as is422.11(E)(2)Overcurrent ProtectionFine as is422.11(E)(3)Overcurrent ProtectionOCPD422.11(E)(3)Overcurrent ProtectionOCPD422.11(F)(1)Supplementary Overcurrent Protective DevicesOCPD422.11(F)(1)Overcurrent Protective DevicesOCPD422.11(F)(1)Overcurrent Protective DevicesOCPD422.11(F)(1)Overcurrent Protective DevicesOCPD422.11(F)(1)Overcurrent Protective DevicesOCPD422.11(F)(1)Overcurrent Protective DevicesOCPD422.11(F)(1)Overcurrent Protective DevicesOCPD422.11(A)Branch-Circuit Overcurrent Protective DeviceOCPD422.11(A)Overcurrent Protective DevicesOCPD422.11(A)Branch-Circuit Overcurrent Protective DeviceOCPD422.11(A)Overcurrent Protective DevicesOCPD422.20(A)Overcurrent Protecti	17	Article 422					
422.11 protected against overcurrent shall be provided with overcurrent protection 422.11(A) Overcurrent Protection Fine as is 422.11(A) Branch-circuit overcurrent Protective device Branch-Circuit OCPD 422.11(B) Overcurrent Protection OCPDs 422.11(C) Overcurrent Protection OCPDs 422.11(D) Overcurrent Protection OCPDs 422.11(E) Overcurrent Protection OCPDs 422.11(E) Overcurrent Protection Fine as is 422.11(E)(1) Overcurrent Protection Fine as is 422.11(E)(2) Overcurrent Protection Fine as is 422.11(E)(3) Overcurrent Protection OCPD 422.11(E)(3) Overcurrent Protection OCPD 422.11(F)(1) Supplementary Overcurent Protective Devices OCPDs 422.11(F)(1) Overcurrent Protective Devices		422.5(C)	Branch-circuit overcurrent protective device	Branch-Circuit OCPD			
422.11(A)Overcurrent ProtectionFine as is422.11(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.11(B)Overcurrent ProtectionOCPDs422.11(C)Overcurrent ProtectionOCPDs422.11(C)Overcurrent ProtectionDCPDs422.11(E)Overcurrent ProtectionFine as is422.11(E)Overcurrent ProtectionFine as is422.11(E)Overcurrent ProtectionFine as is422.11(E)(1)Overcurrent ProtectionFine as is422.11(E)(2)Overcurrent ProtectionOCPD422.11(E)(3)Overcurrent ProtectionOCPD422.11(F)(3)Overcurrent Protective DevicesOCPD422.11(F)(1)Supplementary Overcurrent Protective DevicesOCPD422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.31(A)Branch-Circuit overcurrent protective deviceBranch-Circuit OVEPD422.60(A)Overcurrent Protective DevicesOCPD422.62(B)(1). (X2)Overcurrent Protective deviceOCPD422.62(B)(1). (X2)Overcurrent Protective DevicesSupplementary OCPDs422.19(A)Supplementary Overcurrent ProtectionFine as is422.19(A)Supplementary Overcurrent ProtectionFine as is422.19(A)Supplementary Overcurrent ProtectionFine as is422.19(A)Supplementary Overcurrent ProtectionFine as is424.19(422.11. Title	Overcurrent Protection	Fine as is			
422.11(A)Overcurrent ProtectionFine as is422.11(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.11(B)Overcurrent ProtectionOCPDs422.11(C)Overcurrent ProtectionOCPDs422.11(C)Overcurrent ProtectionDCPDs422.11(E)Overcurrent ProtectionFine as is422.11(E)Overcurrent ProtectionFine as is422.11(E)Overcurrent ProtectionFine as is422.11(E)(1)Overcurrent ProtectionFine as is422.11(E)(2)Overcurrent ProtectionOCPD422.11(E)(3)Overcurrent ProtectionOCPD422.11(F)(3)Overcurrent Protective DevicesOCPD422.11(F)(1)Supplementary Overcurrent Protective DevicesOCPD422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.31(A)Branch-Circuit overcurrent protective deviceBranch-Circuit OVEPD422.60(A)Overcurrent Protective DevicesOCPD422.62(B)(1). (X2)Overcurrent Protective deviceOCPD422.62(B)(1). (X2)Overcurrent Protective DevicesSupplementary OCPDs422.19(A)Supplementary Overcurrent ProtectionFine as is422.19(A)Supplementary Overcurrent ProtectionFine as is422.19(A)Supplementary Overcurrent ProtectionFine as is422.19(A)Supplementary Overcurrent ProtectionFine as is424.19(422.11	protected against overcurrent	shall be provided with overcurrent protection			
422.11(b)Overcurrent ProtectionOCPDs422.11(c)Overcurrent ProtectionOCPDs422.11(c)Overcurrent ProtectionOCPDs422.11(c)Overcurrent ProtectionFine as is422.11(c)Overcurrent ProtectionFine as is422.11(c)Overcurrent ProtectionFine as is422.11(c)Overcurrent ProtectionFine as is422.11(c)Overcurrent ProtectionOCPD422.11(c)Overcurrent ProtectionOCPD422.11(c)Overcurrent ProtectionOCPD422.11(c)Overcurrent Protective DevicesOCPD422.11(c)Overcurrent Protective DevicesOCPD422.11(c)Overcurrent Protective DevicesOCPDs422.11(c)Overcurrent Protective DevicesOCPDs422.11(c)Overcurrent Protective DevicesOCPDs422.11(c)Overcurrent Protective DevicesOCPDs422.11(c)Overcurrent Protective DevicesOCPDs422.11(c)Overcurrent Protective DevicesOCPDs422.11(c)Overcurrent Protective DevicesOCPDs422.60(A)Overcurrent Protective DevicesOCPD422.60(A)Overcurrent Protective DevicesOCPD422.60(A)Overcurrent Protective DevicesOCPD422.19(A)Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent Prot		422.11(A)	Overcurrent Protection				
422.11(C)Overcurrent ProtectionOCPDs422.11(C)Overcurrent protective devicesOCPDs422.11(E)Overcurrent ProtectionFine as is422.11(E)Overcurrent ProtectionFine as is422.11(E)(1)Overcurrent ProtectionFine as is422.11(E)(2)Overcurrent ProtectionFine as is422.11(E)(3)Overcurrent ProtectionOCPD422.11(F)(3)Overcurrent Protective DeviceOCPD422.11(F)(1)Supplementary Overcurrent Protective DevicesOCPD422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.60(A)Overcurrent ProtectionFine as is422.60(A)Overcurrent Protective DeviceOCPD422.60(A)Overcurrent Protective DeviceOCPD422.60(A)Overcurrent Protective DeviceOCPD422.60(A)Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.22(A)O		422.11(A)	Branch-circuit overcurrent protective device	Branch-Circuit OCPD			
422.11(D)Overcurrent protective devicesOCPDs422.11(E)Overcurrent ProtectionFine as is422.11(E)(2)Overcurrent ProtectionFine as is422.11(E)(2)Overcurrent ProtectionFine as is422.11(E)(3)Overcurrent ProtectionOCPD422.11(E)(3)Overcurrent ProtectionOCPD422.11(E)(3)Overcurrent Protective DevicesOCPD422.11(F)(1)Supplementary Overcurrent Protective DevicesOCPD422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.31(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.60(A)Overcurrent protective deviceBranch-Circuit OCPD422.61(B)(1). (X2)Overcurrent protective deviceOCPD422.62(B)(1). (X2)Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(B)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(B)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as		422.11(B)	Overcurrent Protection	OCPDs			
422.11(E)Overcurrent ProtectionFine as is422.11(E)(1)Overcurrent ProtectionFine as is422.11(E)(2)Overcurrent ProtectionFine as is422.11(E)(3)Overcurrent ProtectionOCPD422.11(E)(3)Overcurrent ProtectionOCPD422.11(E)(3)Overcurrent ProtectiveOCPD422.11(E)(3)Overcurrent Protective DevicesSupplementary OCPDs422.11(F)(1)Supplementary Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.60(A)Overcurrent ProtectionFine as is422.62(B)(1). (X2)Overcurrent protective deviceOCPD422.62(B)(1). (X2)Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(B)Supplementary Overcurrent ProtectionFine as is424.22(D)Overcurrent ProtectionFi		422.11(C)	Overcurrent Protection	OCPDs			
422.11(E)(1)Overcurrent ProtectionFine as is422.11(E)(2)Overcurrent ProtectionFine as is422.11(E)(3)Overcurrent ProtectionOCPD422.11(E)(3)Overcurrent Protective DevicesSupplementary OCPDs422.11(F)(1)Supplementary Overcurrent Protective DevicesOCPDs422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.13Overcurrent Protective DevicesOCPD422.60(A)Overcurrent protective deviceBranch-Circuit OCPD422.60(A)Overcurrent protective deviceOCPD422.60(B)(1). (X2)Overcurrent Protective deviceOCPD422.61(B)(1). (X2)Overcurrent Protective DevicesSupplementary OCPD424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(B)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(B)Supplementary Overcurrent ProtectionFine as is424.22(B)Supplementary Overcurrent ProtectionFine		422.11(D)	Overcurrent protective devices	OCPDs			
422.11(E)(2)Overcurrent ProtectionFine as is422.11(E)(3)Overcurrent ProtectionOCPD422.11(E)(3)Overcurrent DeviceOCPD422.11(F)(1)Supplementary Overcurrent DevicesSupplementary OCPDs422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.13Overcurrent Protective deviceBranch-Circuit OCPD422.50(A)Branch-Circuit overcurrent protective deviceBranch-Circuit OCPD422.56(B)(1). (X2)Overcurrent protective deviceOCPD422.62(B)(1). (X2)Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent Protective Device(s)Supplementary OCPDs424.19(A)Supplementary Overcurrent Protective Device(s)Supplementary OCPDs424.19(B)Supplementary Overcurrent Protective Device(s)Supplementary OCPDs424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent		422.11(E)	Overcurrent Protection	Fine as is			
422.11(E)(3)Overcurrent ProtectionOCPD422.11(E)(3)Overcurrent DeviceOCPD422.11(F)(1)Supplementary Overcurrent Protective DevicesSupplementary OCPDs422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.13Overcurrent Protective DevicesOCPDs422.31(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.60(A)Overcurrent ProtectionFine as is422.60(A)Overcurrent protective deviceOCPD422.62(B)(1). (X2)Overcurrent protective deviceOCPD424.19Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(B)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(B)Supplementary Overcurrent<		422.11(E)(1)	Overcurrent Protection	Fine as is			
422.11(E)(3)Overcurrent DeviceOCPD422.11(F)(1)Supplementary Overcurrent Protective DevicesSupplementary OCPDs422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.13Overcurrent Protective DevicesOCPD422.31(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.60(A)Overcurrent ProtectionFine as is422.60(A)Overcurrent Protective deviceOCPD422.61(B)(1). (X2)Overcurrent Protective deviceOCPD7Article 424Vercurrent ProtectionFine as is424.19Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(B)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent Protection		422.11(E)(2)	Overcurrent Protection	Fine as is			
A22.11(F)(1)Supplementary Overcurrent Protective DevicesSupplementary OCPDs422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent ProtectionFine as is422.13Overcurrent ProtectionFine as is422.31(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.60(A)Overcurrent ProtectionFine as is422.62(B)(1). (X2)Overcurrent protective deviceOCPD424.19Supplementary Overcurrent ProtectionFine as is424.19Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(B)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Supplementary Overcurrent"shall be permitted to have overcurrent protection424.22(B)Supplementary Overcurrent Protective DeviceSupple		422.11(E)(3)	Overcurrent Protection	OCPD			
422.11(F)(1)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.11(G)Overcurrent Protective DevicesOCPDs422.13Overcurrent ProtectionFine as is422.31(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.60(A)Overcurrent ProtectionFine as is422.62(B)(1). (X2)Overcurrent protective deviceOCPD7Article 424Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(B)Supplementary Overcurrent"shall be permitted to have overcurrent protection424.22(B)Supplementary Overcurrent Protective DeviceSupplementary OCPD424.22(C). TitleOvercurrent Protective DeviceSupplementary OCPD </td <td></td> <td>422.11(E)(3)</td> <td>Overcurrent Device</td> <td>OCPD</td>		422.11(E)(3)	Overcurrent Device	OCPD			
422.11(5)Overcurrent Protective DevicesOCPDs422.13Overcurrent ProtectionFine as is422.31(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.60(A)Overcurrent ProtectionFine as is422.62(B)(1). (X2)Overcurrent protective deviceOCPD7Article 424Image: Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(B)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)protected against overcurrent"shall be permitted to have overcurrent protection424.22(B)Supplementary Overcurrent Protective DeviceSupplementary OCPD424.22(C). TitleOvercurrent Protective DevicesFine as is		422.11(F)(1)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs			
422.13Overcurrent ProtectionFine as is422.31(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.60(A)Overcurrent ProtectionFine as is422.62(B)(1). (X2)Overcurrent protective deviceOCPD7Article 424424.19Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent Protective Device(s)Supplementary OCPDs424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(B)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)protected against overcurrent"shall be permitted to have overcurrent protection424.22(B)Supplementary Overcurrent Protective DeviceSupplementary OCPD424.22(C). TitleOvercurrent Protective DevicesFine as is		422.11(F)(1)	Overcurrent Protective Devices	OCPDs			
422.31(A)Branch-circuit overcurrent protective deviceBranch-Circuit OCPD422.60(A)Overcurrent ProtectionFine as is422.62(B)(1). (X2)Overcurrent protective deviceOCPD7Article 424Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.219(B)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(B)Supplementary Overcurrent"shall be permitted to have overcurrent protection424.22(C). TitleOvercurrent Protective DeviceSupplementary OCPD		422.11(G)	Overcurrent Protective Devices	OCPDs			
422.60(Å)Overcurrent ProtectionFine as is422.62(B)(1). (X2)Overcurrent protective deviceOCPD7Article 424424.19Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(Å)Supplementary Overcurrent ProtectionFine as is424.19(Å)Supplementary Overcurrent ProtectionFine as is424.22(Å)Overcurrent ProtectionFine as is424.22(Å)Overcurrent ProtectionFine as is424.22(Å)protected against overcurrent"shall be permitted to have overcurrent protection424.22(B)Supplementary Overcurrent Protective DeviceSupplementary OCPD424.22(C). TitleOvercurrent Protective DeviceSupplementary OCPD		422.13	Overcurrent Protection	Fine as is			
422.62(B)(1). (X2)Overcurrent protective deviceOCPD7Article 424424.19Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent Protective Device(s)Supplementary OCPDs424.19(B)Supplementary Overcurrent ProtectionFine as is424.22Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(B)Supplementary Overcurrent"shall be permitted to have overcurrent protection424.22(C). TitleOvercurrent Protective DeviceSupplementary OCPD		422.31(A)	Branch-circuit overcurrent protective device	Branch-Circuit OCPD			
17Article 424424.19Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent Protective Device(s)Supplementary OCPDs424.19(B)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)protected against overcurrent"shall be permitted to have overcurrent protection424.22(B)Supplementary Overcurrent Protective DeviceSupplementary OCPD424.22(C). TitleOvercurrent Protective DeviceSupplementary OCPD		422.60(A)	Overcurrent Protection	Fine as is			
424.19Supplementary Overcurrent Protective DevicesSupplementary OCPDs424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent Protective Device(s)Supplementary OCPDs424.19(B)Supplementary Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(B)Supplementary Overcurrent Protective DeviceSupplementary OCPD424.22(C). TitleOvercurrent Protective DevicesFine as is		422.62(B)(1). (X2)	Overcurrent protective device	OCPD			
424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent Protective Device(s)Supplementary OCPDs424.19(B)Supplementary Overcurrent ProtectionFine as is424.22Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Protected against overcurrent"shall be permitted to have overcurrent protection424.22(B)Supplementary Overcurrent Protective DeviceSupplementary OCPD424.22(C). TitleOvercurrent Protective DevicesFine as is	17	Article 424					
424.19(A)Supplementary Overcurrent ProtectionFine as is424.19(A)Supplementary Overcurrent Protective Device(s)Supplementary OCPDs424.19(B)Supplementary Overcurrent ProtectionFine as is424.22Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Protected against overcurrent"shall be permitted to have overcurrent protection424.22(B)Supplementary Overcurrent Protective DeviceSupplementary OCPD424.22(C). TitleOvercurrent Protective DevicesFine as is		424.19	Supplementary Overcurrent Protective Devices	Supplementary OCPDs			
424.19(A)Supplementary Overcurrent Protective Device(s)Supplementary OCPDs424.19(B)Supplementary Overcurrent ProtectionFine as is424.22Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Protected against overcurrent"shall be permitted to have overcurrent protection424.22(B)Supplementary Overcurrent Protective DeviceSupplementary OCPD424.22(C). TitleOvercurrent Protective DevicesFine as is		424.19(A)	Supplementary Overcurrent Protection	Fine as is			
424.19(B)Supplementary Overcurrent ProtectionFine as is424.22Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)Overcurrent ProtectionFine as is424.22(A)protected against overcurrent"shall be permitted to have overcurrent protection424.22(B)Supplementary Overcurrent Protective DeviceSupplementary OCPD424.22(C). TitleOvercurrent Protective DevicesFine as is		424.19(A)	Supplementary Overcurrent Protection	Fine as is			
424.22 Overcurrent Protection Fine as is 424.22(A) Overcurrent Protection Fine as is 424.22(A) Protected against overcurrent "shall be permitted to have overcurrent protection 424.22(B) Supplementary Overcurrent Protective Device Supplementary OCPD 424.22(C). Title Overcurrent Protective Devices Fine as is		424.19(A)	Supplementary Overcurrent Protective Device(s)	Supplementary OCPDs			
424.22(A) Overcurrent Protection Fine as is 424.22(A) protected against overcurrent "shall be permitted to have overcurrent protection 424.22(B) Supplementary Overcurrent Protective Device Supplementary OCPD 424.22(C). Title Overcurrent Protective Devices Fine as is		424.19(B)	Supplementary Overcurrent Protection	Fine as is			
424.22(A) protected against overcurrent "shall be permitted to have overcurrent protection 424.22(B) Supplementary Overcurrent Protective Device Supplementary OCPD 424.22(C). Title Overcurrent Protective Devices Fine as is		424.22	Overcurrent Protection	Fine as is			
424.22(B) Supplementary Overcurrent Protective Device Supplementary OCPD 424.22(C). Title Overcurrent Protective Devices Fine as is		424.22(A)	Overcurrent Protection				
424.22(C). Title Overcurrent Protective Devices Fine as is		424.22(A)	protected against overcurrent	"shall be permitted to have overcurrent protection			
		424.22(B)	Supplementary Overcurrent Protective Device	Supplementary OCPD			
424.22(C) Supplementary Overcurrent Protective Devices Supplementary OCPDs		424.22(C). Title	Overcurrent Protective Devices	Fine as is			
		424.22(C)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs			

	424.22(C)	Overcurrent Protection	Fine as is
	424.22(C)	Supplementary Overcurrent Protection	Fine as is
	424.22(D) (X2)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	424.22(E). (X3)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	424.72	Overcurrent Protection	Fine as is
	424.72(A)	Overcurrent protective device	OCPD
	424.72(B)	Overcurrent protective device	OCPD
	424.72(C). Title	Supplementary Overcurrent Protective Devices	Fine as is
	424.72(C)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	424.72(C)	Overcurrent Protection	Fine as is
	424.72(D). Title	Supplementary Overcurrent Protective Devices	Fine as is
	424.72(D).	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	424.72(D)	Overcurrent protective device	OCPD
	424.72(E)	Supplementary Overcurrent Protective Devices. (X3)	Supplementary OCPDs
	424.82	Overcurrent protective devices	OCPDs
17	Article 425		
	425.19	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.19(A). (X2)	Supplementary Overcurrent Protection	Fine as is
	425.19(A)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.19(B)	Supplementary Overcurrent Protection	Fine as is
	425.22. Title	Overcurrent Protection	Fine as is
	425.22(A)	Overcurrent Protection	Fine as is
	425.22(A)	protected against overcurrent	"shall be permitted to have overcurrent protection"
	425.22(B)	Supplementary Overcurrent Protective Device	Supplementary OCPD
	425.22(C). Title	Overcurrent Protective Devices	Fine as is
	425.22(C)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.22(C). (X2)	Supplementary Overcurrent Protection	Fine as is
	425.22(D). Title	Supplementary Overcurrent Protective Devices	Fine as is
	425.22(D). (X2)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.22(E)(X3)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.72	Overcurrent Protection	Fine as is
	425.72(A)	Overcurrent protective device	OCPD
	425.72(B)	Overcurrent protective device	OCPD
	425.72(C). Title	Supplementary Overcurrent Protective Devices	Fine as is
	425.72(C)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs

	425.72(C)	Overcurrent Protection	Fine as is
	425.72(D)	Overcurrent protection	Fine as is
	425.72(E). Title	Supplementary Overcurrent Protective Devices	Fine as is
	425.72(E)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.72(E)	Overcurrent Protective Devices	OCPD
	425.72(F). (X3)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.82	Overcurrent protective devices	OCPDs
17	Article 427		
	427.57	Overcurrent Protection	Fine as is
	427.57	considered protected against Overcurrent	considered to have overcurrent protection
17	Article 680		
	680.10.(A)& (B)(2)	Overcurrent protective devices	OCPDs
	680.23(F)(2)	Overcurrent Protection	Fine as is

	CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-1			
CMP	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
1	Article 110			
	110.10.	overcurrent protective devices	OCPDs	
	110.10.	circuit protective devices	Fine as is	
	110.26(C)(2)	overcurrent devices	OCPD	
	110.26(C)(3)	overcurrent devices	OCPD	
	110.52	Overcurrent protection	Fine as is	
	110.52	Overcurrent	Motor-operated Equipment shall be provided with	
			overcurrent protection	
			Transformers shall be provided with overcurrent	
	110.52	Overcurrent	protection	

	CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-2			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
2	Article 100			
	Branch Circuit (Branch-Circuit)	overcurrent device	overcurrent protective device (OCPD)	
2	Article 120			
	120.5(E)	overcurrent device	OCPD	
	120.7(B)	overcurrent protective device	OCPD	
	120.87(3)	Overcurrent protection	Fine as is	
2	Article 210			
	210.4(A)	branch-circuit overcurrent protective device, OCPD	Fine as is	
	210.4(C)	branch-circuit OCPD	Fine as is	
	210.11(B)	branch-circuit OCPD	Fine as is	
	210.12(A)	branch-circuit OCPD (X-8)	Fine as is	
	210.18	overcurrent device OCPD (X-2)	Fine as is	
	210.19(A)(1)EX	branch-circuit OCPD	Fine as is	
	210.20.	Overcurrent protection	Fine as is	
	210.20.	branch-circuit OCPD	Fine as is	
	210.20(A)	branch-circuit OCPD	Fine as is	
	210.20(C)	branch-circuit OCPD	Fine as is	
	T-210.24	Overcurrent protection	Fine as is	
2	Annex D			
		Overcurrent Protection	CMP-2 To review references to OCPD and the revised	
	D3. (X2)		terms.	
	D3a. (X8)	Branch-Circuit OCPD	CMP-2 to Review	
	D3a.	Overcurrent Protection	CMP-2 to Review	
	D3a. (X2)	Branch-Circuit OCPD	CMP-2 to Review	

CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-3			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language
3	Article 100		
	Fault Managed Power.	Overcurrent protection	Fine as is
	Fire Alarm Circuit	Overcurrent device	overcurrent protective device (OCPD)
3	Article 300		
	300.5-T	Overcurrent Protection	Fine as is
	300.17(I)	Overcurrent Device	OCPD
	300.28(C)(3). (X5)	Overcurrent Protection	Fine as is
3	Article 590		
	590.6(A)	Overcurrent Protection	Fine as is
	590.6(B)	be protected from Overcurrent	shall be provided with overcurrent protection
	590.9. Title	Overcurrent protective device	Fine as is
	590.9(A)	Overcurrent protective devices	OCPDs
	590.9(B) Title	Service Overcurrent protective devices	Fine as is
	590.9(B)	Overcurrent protective devices	OCPDs
3	Article 721		
	721.50(A)	Overcurrent	Fine as is
3	Article 722		
	722.1	Overcurrent Protection	Fine as is
3	Article 724	Class 1	
	724.40(B). (X3)	Overcurrent Devices	OCPDs
	724.40(B). (X2)	Overcurrent Device	OCPD
	724.40(B). (X2)	Overcurrent Protection	Fine as is
	724.43. (X4)	Overcurrent Protection	Fine as is
	724.45	Overcurrent Device	OCPD
	724.45. (X3)	Overcurrent Devices	OCPDs
	724.45(A)	Overcurrent Devices	OCPDs
	724.45(B)	Overcurrent Protection	Fine as is
	724.45(B)	Overcurrent Device	OCPD
	724.45(C). (X2)	Overcurrent protective devices	OCPDs
	724.45(D)	Overcurrent Protection	Fine as is
	724.45(E)	Overcurrent Protection	Fine as is
3	Article 725		
	725.1 ln	Overcurrent Protection	Fine as is

	725.127	Overcurrent Device	OCPD
3	Article 760		
	760.41(B)	Overcurrent protective device	OCPD
	760.41(B)	Overcurrent protection devices	OCPDs
	760.43. (X3)	Overcurrent Protection	Fine as is
	760.45. Title	Overcurrent device	Overcurrent protective device
	760.45	Overcurrent protection devices	OCPDs
	760.45 Ex 1 & 2	Overcurrent Protection	Fine as is
	760.121(B)	Branch-Circuit Overcurrent protective device	OCPD
	760.121(B)	Overcurrent protection devices	OCPDs
	760.127	Overcurrent Protection	Fine as is
	760.127	Overcurrent Device	OCPD
3	Article 794		
	794.1	Overcurrent Protection	Fine as is

	CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-4			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
4	Article 690			
	690.2	PV dc Overcurrent protective devices	PV dc OCPDs	
	690.8	Overcurrent Device	OCPD and OCPDs	
	690.9. Title	Overcurrent Protection	Fine as is	
	690.9(A). (X2)	be protected from Overcurrent	shall be provided with overcurrent protection	
	690.9(A)(1). Title	Overcurrent Protection	Fine as is	
	690.9(A)(1).	Overcurrent protective devices	OCPDs	
	690.9(A)(2). Title	Overcurrent Protection	Fine as is	
	690.9(A) (2)	be protected from Overcurrent	shall be provided with overcurrent protection	
	690.9(A) (2) In	Overcurrent protection	Fine as is	
	690.9(A) (2) In	Overcurrent device	OCPD	
	690.9(A)(3)	Overcurrent	Fine as is	
	690.9(B)	shall be permitted to prevent overcurrent of conductors	Fine as is	
	690.9(B)	Overcurrent device	OCPD and OCPDs	
	690.9(C)	Overcurrent protective device and Devices	OCPD and OCPDs	
	690.31(E)	Overcurrent protective devices	OCPDs	
	690.45	Overcurrent protective device	OCPD	
	690.45	Overcurrent Device	OCPD	
4	Article 692			
	692.8. Title	Overcurrent Device	Overcurrent Protective Devices	
	692.8	Overcurrent protective device	OCPDs	
	692.9	Overcurrent Protection	Fine as is	
	692.9	Overcurrent Devices	OCPDs	
4	Article 694			
	694.7(D)	Overcurrent Device	OCPD	
	694.12(B). Title	Overcurrent Device	Overcurrent Protective Device	
	694.12(B)(2). Title	Overcurrent Devices	Overcurrent Protective Devices	
	694.12(B)(2)	Overcurrent Devices	OCPDs	
	694.15	Overcurrent Protection	Fine as is	
	694.15	Overcurrent Devices	OCPDs	
	694.15 In	Overcurrent Protection	Fine as is	
	694.15(B)(1)	Overcurrent Protection	Fine as is	
	694.15(C)	Overcurrent Devices	OCPDs	

4	Article 705		
	705.11(C). Title	Overcurrent Protection	Fine as is
	705.11(C)	be protected from overcurrent	have overcurrent protection
	705.11(C)(1). (1)(2)(3)	Overcurrent protective device	OCPD
	705.11(C)(2)	Overcurrent protection devices	OCPDs
	705.12(A)(2). (X4)	Overcurrent Device	OCPD
	705.12(A)(3)	Overcurrent Devices	OCPDs
	705.12(B)	(Multiple) Overcurrent Device and (s)	OCPD. And OCPDs
	705.12(B)	(Warning labels) Overcurrent Device and (s)	Overcurrent Protective Device and Devices
	705.28(B)Ex.1	Overcurrent Devices	OCPDs
	705.28(B)Ex.3	Overcurrent Device	OCPD
	705.30. Title	Overcurrent Protection	Fine as is
	705.30(A). (X2)	Overcurrent Protection	Fine as is
	705.30(A)	Overcurrent Devices	OCPDs
	705.30.(C)	Overcurrent Devices	OCPDs
	705.30.(F)	Overcurrent Protection	Fine as is
	705.70.	Overcurrent Devices	OCPDs
	705.70.	Overcurrent Protection	Fine as is

CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-5			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language
5	Article 100		
	Ground-Fault Current Path, Effective	overcurrent protective device	overcurrent protective device (OCPD)
	Ground-Fault Protection of Equipment	overcurrent device	overcurrent protective device (OCPD)
5	Article 200		
	200.10(E)	overcurrent device	OCPD
5	Article 250		
	250.4(A)(5). Title	Overcurrent protective Device	Fine as is
	250.4(A)(5)	Overcurrent Device	OCPD
	250.4(B)(4)	Overcurrent Devices	OCPDs
	250.30(A)(1)	Overcurrent Device	OCPD
	250.30(A)(1)	Overcurrent Devices	OCPDs
	250.32(B)(2). (X4)	Overcurrent Protection	Fine as is
	250.32(C)(2). (X4)	Overcurrent Protection	Fine as is
	250.35(B)	Overcurrent Protection	Fine as is
	250.36(D)	Overcurrent Device	Fine as is
	250.36(E)(1)	Overcurrent Device	OCPD
	250.102(B)(2)	Overcurrent Protection	Fine as is
	250.102(D). (X3)	Overcurrent Devices	OCPDs
	250.118(A)(5)	Overcurrent Devices	OCPDs
	250.118(A)(6)	Overcurrent Devices	OCPDs
	250.118(A)(7)	Overcurrent Devices	OCPDs
	250.122(C)	Overcurrent Device	OCPD
	250.122(F)(1). (X3)	Overcurrent protective device	OCPD
	250.122(G)	Overcurrent Device	OCPD
	250.142. (X2)	Overcurrent Device	OCPD
	250.148	Overcurrent Device	OCPD
	250.164	Overcurrent Device	OCPD
	250.166	Overcurrent Protection	Fine as is
	250.169	Overcurrent Devices	OCPD
5	Article 270		
	270.4(A)(5)	Overcurrent Device	OCPD
	270.4(B)(4)	Overcurrent Devices	OCPDs
	270.30(A)(1)	Overcurrent Devices	OCPDs

270.32(B)(2). (X4)	Overcurrent Protection	Fine as is
270.32(C)(2). (X4)	Overcurrent Protection	Fine as is
270.35(B)	Overcurrent Protection	Fine as is
270.35(B)	Overcurrent protective device	OCPD
270.36(D)	Overcurrent Device	OCPD
270.36(E)	Overcurrent Devices	OCPDs
270.102(C)(2)	Overcurrent Protection	Fine as is
270.102(D)	Overcurrent Device	OCPDs
270.114(C)(3)	Overcurrent setting	CMP to review Language based on new terms
270.118	Overcurrent Devices	OCPDs
270.142	Overcurrent Devices	OCPDs
270.148(B)	Overcurrent Device	OCPD
270.164(B)	Overcurrent Device	OCPD
270.166(A)	Overcurrent Protection	Fine as is
270.169	Overcurrent Devices	OCPDs

	CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-6			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
6	Article 310			
	310.10(G).	Overcurrent Protection	Fine as is	
	310.15(A)	Overcurrent Protection	Fine as is	
	310.16-Т	Overcurrent Protection	Fine as is	
	310.17-Т	Overcurrent Protection	Fine as is	
6	Article 335			
	335.90.	Overcurrent Protection	Fine as is	
6	Article 382			
	382.4	Supplementary Overcurrent Protection	Supplementary Overcurrent Protective Device	
6	Article 400			
	400.16	Overcurrent Protection	Fine as is	
	400.16	protected against Overcurrent	shall be provided with overcurrent protection	
6	Article 402			
	402.14 (X2)	Overcurrent Protection	Fine as is	

CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-7			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language
7	Article 100		
	Service Equipment, Mobile Home	overcurrent protective devices	overcurrent protective devices (OCPDs)
7	Article 545		
	545.24	Branch-circuit overcurrent protective device	Branch-circuit OCPD
	545.24(B) Title	Branch Circuit Overcurrent Protection Device	Overcurrent protective devices
	545.24(B)	a Branch Circuit Overcurrent Protective Device	an OCPD
7	Article 547		
	547.41(A)(6). (X2)	Overcurrent Protection	Fine as is
	547.41(B)	Overcurrent Protection	Fine as is
	547.42	Overcurrent Protection	Fine as is
7	Article 550		
	550.11(B). Title	Branch-Circuit protective equipment	Branch-Circuit Overcurrent Protection
	550.11(B)	Overcurrent Protection	Fine as is
	550.11(B)	Branch-Circuit Overcurrent Devices	OCPDs
	550.11(B)	Overcurrent protection size	OCPD rating
	550.15(E)	Branch-circuit overcurrent protective device	OCPD
	550.32	Overcurrent Protection	Fine as is
7	Article 551		
	551.31(A)	Overcurrent protective device	OCPD
	551.31(C)	Overcurrent protective device	OCPD
	551.31(D)	Overcurrent Protection	Fine as is
	551.42	Overcurrent Protection	Fine as is
	551.43. Title	Branch-Circuit protection	Branch-Circuit Overcurrent Protection
	551.43(A)	Branch Circuit Overcurrent Devices	Branch-Circuit OCPDs
	551.43(A)(3)	Overcurrent Protection	Fine as is
	551.45(C)	Overcurrent protective device	OCPD
	551.47(Q)	Overcurrent protective device	OCPD
	551.47(R)	Overcurrent Protection	Fine as is
	551.47(S)	Overcurrent Protection	Fine as is
	551.74	Overcurrent Protection	Fine as is
7	Article 552		
	552.10.(E) Title	Overcurrent Protection	Fine as is
	552.10(E)(1)	Overcurrent protective devices	OCPDs

	T-552.10(E)(1)	Overcurrent Protection	Fine as is
	552.10(E)(4). (X2)	Overcurrent protective device	OCPD
	552.42(A)	Branch Circuit Overcurrent Devices	OCPDs
	552.42(A)	Overcurrent Protection	Fine as is
	552.45(C)	Overcurrent protective device	OCPD
	552.46(A) IN	Overcurrent Protection	Fine as is
	552.47(P)	Overcurrent protective device	OCPD
	552.47(Q)	Overcurrent Protection	Fine as is
7	Article 555		
	555.53	Overcurrent protective device	OCPD
7	Article 675		
	675.6	Branch Circuit Overcurrent Protective Device	OCPD
	675.7	Branch Circuit Overcurrent Protective Devices	OCPDs
	675.8	Overcurrent Protection	Fine as is
7	Article 682		
	682.15(B)	Feeder Overcurrent protective device	Feeder OCPD

	CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-8			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
8	Article 312			
	312.11. Title	Overcurrent Devices	Overcurrent Protective Device	
	312.11	Overcurrent Devices	OCPDs	
	312.11(A). (X3)	Overcurrent Device	OCPDs	
	312.11(B)	Overcurrent Devices	OCPDs	
	312.11(B)(1)	Overcurrent Device	OCPD	
8	Article 366			
	366.12	Overcurrent Devices	OCPDs	
	366.56(D)	Overcurrent Protection	Fine as is	
8	Article 368			
	368.17(A). Title	Overcurrent Protection	Fine as is	
	368.17	Overcurrent Protection	Fine as is	
	368.17(A)	Protected against Overcurrent	shall be provided with overcurrent protection	
	368.17(B). (X2)	Overcurrent Protection	Fine as is	
	368.17(B)	Overcurrent Device	OCPD	
	368.17(C)	Overcurrent Devices	OCPDs	
	368.17(C)Ex.2	Branch-Circuit Overcurrent Device	Branch-Circuit OCPD	
	368.17(C)Ex.3	Overcurrent Device	OCPD	
	368.17(C)Ex.4	Branch-Circuit overcurrent plug-in device	CMP to review Language based on new terms	
	368.17(D). Title	Overcurrent Protection	Fine as is	
	368.17(D)	Protected against Overcurrent	shall be provided with overcurrent protection	
8	Article 370			
	370.23. Title	Overcurrent Protection	Fine as is	
	370.23	Protected against Overcurrent	shall be provided with overcurrent protection	
8	Article 371			
	371.17. Title	Overcurrent Protection	Fine as is	
	371.17	Overcurrent Protection	Fine as is	
	371.17 (A)-(C). Titles	Overcurrent Protection	Fine as is	
	371.17(A)-(C)	Protected against Overcurrent	shall be provided with overcurrent protection	
	371.17(D)	Protected against Overcurrent	shall be provided with overcurrent protection	
	371.17(F)	Overcurrent	shall be provided with overcurrent protection	
	371.17(G)	Overcurrent Protection		
	371.17(G)Ex	Overcurrent Protection	Fine as is	
	371.17(G)Ex	Overcurrent Device	OCPD	

CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-9			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language
9	Article 265		
	265.18	Overcurrent Device	OCPD
	265.20.	Overcurrent Protection	Fine as is
	265.20.	Overcurrent protective devices	OCPDs
	265.20.	Overcurrent Devices	OCPDs
9	Article 266		
	266.1	Overcurrent Protection	Fine as is
	266.5	Overcurrent Protection	Fine as is
	266.5	Protected against overcurrent	shall be provided with overcurrent protection
	266.5	Overcurrent Device	OCPD
9	Article 268		
	268.2. (X2)	Overcurrent Protection	Fine as is
	268.70(F)	Overcurrent Devices	OCPDs
	268.82. (X4)	Overcurrent Protection	Fine as is
	Art. 268 Part VII	Overcurrent Protection	Fine as is
	268.90.	Overcurrent Device	OCPD
	268.90.	Overcurrent Devices	OCPDs
	268.91	Overcurrent Device	OCPD
	268.92	Overcurrent Devices	OCPDs
	268.93	Overcurrent Device	OCPD
9	Article 450		
	450.5 (previously 450.3). (X3)	overcurrent protection	Fine As Is
	450.5(A) and Table. (X3)	overcurrent protection	Fine As Is
	Table 450.5(A) Footnote 2. (X4)	overcurrent device	OCPD
	450.5(B)	overcurrent protection	Fine As Is
	Table 450.5(B) and Table (X2)	overcurrent protection	OCPD
	Table 450.5(B) Footnote 2. (X3)	overcurrent device	OCPD
	Table 450.5(B) Footnote 3	overcurrent protection	OCPD
	450.6(A) Title	overcurrent protection	Fine As Is
	450.6(A) (X3)	overcurrent device	OCPD
	450.6(A) Exception	overcurrent device	OCPD
	450.7(A)(1). (X2)	overcurrent protection	OCPD
	450.7(A)(2). Title	overcurrent protection	Fine As Is

		overcurrent sensing device	Fine As Is
	450.7(A)(2)	overcurrent protection	OCPD
	430.7 (A)(2)	overcurrent device	OCPD
		branch or feeder protective devices	branch or feeder OCPDs
	450.7(A)(3)	overcurrent device	OCPD
	450.7(B)(2)	overcurrent protection	Fine As Is
	450.7(B)(2)(a)	overcurrent protective device	OCPD
	450.7(B)(2)(b)	overcurrent protection	OCPD
	450.7(B)(2)(b)	overcurrents	Fine As Is
	450.7(B)(2)(b) Exception	overcurrent device	OCPD
	450.8(A). (X2)	overcurrent protection	Fine As Is
	450.8(A)(1)	overcurrent protection	Fine As Is
	450.8(A)(2)	overcurrent protection	Fine As Is
	450.8(A)(3)	protective device	OCPD
	450.8(A)(4)(a)	protective device	OCPD
	450.8(B). Title	Overcurrent Protection	Fine As Is
	450.8(B)	overcurrent device	OCPD
	450.9	overcurrent protection	Fine As Is
	450.9	protective devices (2x)	OCPDs
	450.23(A)(1)(d) Informational Note	overcurrent protection	OCPD
	450.23(B)(1) Informational Note 2	overcurrent protection	OCPD
9	Article 495		
	495.62. Title	Overcurrent Protection	Fine As Is
	495.72	Overcurrent Relay	Fine As Is

CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-10			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language
10	Article 100		
	Circuit Breaker	Overcurrent	Fine as is
	Coordination, Selective. (Selective Coordination)	Overcurrent condition	Fine as is
	Coordination, Selective. (Selective Coordination)	overcurrent protective devices	overcurrent protective devices (OCPDs)
	Coordination, Selective. (Selective Coordination)	overcurrents	Fine as is
	Coordination, Selective. (Selective Coordination)	overcurrent protective device	overcurrent protective device (OCPD)
	Current Limiting (as applied to overcurrent protection devices)	overcurrent protection devices	overcurrent protective devices (OCPDs)
	Feeder	final branch-circuit overcurrent protective device	overcurrent protective device (OCPD)
	Fuse	overcurrent protective device	overcurrent protective device (OCPD)
	Fuse	overcurrent	Fine as is
	Fuse, Electronically Actuated	overcurrent protective device	overcurrent protective device (OCPD)
	Fuse, Electronically Actuated	overcurrent	Fine as is
	Overcurrent	Overcurrent protection	Fine as is
	Overcurrent Protective Device, Branch-Circuit	Revise with the term Overcurrent Protective Device. (OCPD)	
	Overcurrent Protective Device, Supplementary (need to Revise term with acronym)	overcurrent protective device	overcurrent protective device (OCPD)
	Panelboard	overcurrent devices	overcurrent protective devices (OCPDs)
	Surge-Protective Device (SPD). (X2)	overcurrent device. (X2)	overcurrent protective device (OCPD)
	Switchboard	overcurrent	overcurrent protective devices (OCPDs)
	Tap Conductor	Overcurrent protection	Fine as is
10	Article 215		
	215.1	Overcurrent protection	Fine as is
	215.4(A)(1)Ex.1	overcurrent devices protecting the feeders	feeder OCPD
	215.4(A)(1)Ex.3	overcurrent device	OCPD
	215.5 Title	Overcurrent protection	Fine as is
	215.5	Feeders shall be protected against overcurrent	Feeders shall be provided with overcurrent protection in accordance with Article 240, Parts I
	215.5	overcurrent device	OCPD
	215.5Ex	overcurrent device protecting the feeders	feeder OCPDs
	215.5Ex	overcurrent device	OCPD

	215.18(B)	branch circuit overcurrent devices	OCPDs
10	Article 225		
	225.40. Title	Overcurrent protective devices	Fine as is
	225.40.	feeder overcurrent device (x2)	feeder OCPD
	225.40.	branch circuit overcurrent devices	Branch circuit OCPDs
	225.42(B)	branch circuit overcurrent devices	OCPDs
10	Article 230		
	230.7 Ex.2	Overcurrent protection	Fine as is
	230.42(A)(1)	overcurrent device (X3)	OCPD
	230.82(6)	Overcurrent protection	Fine as is
	230.82(7)	Overcurrent protection	Fine as is
	230.82(8)	Overcurrent protection	Fine as is
	230.82(9)	Overcurrent protection	Fine as is
	230.82(10)	Overcurrent protection	Fine as is
	230 Part VII	Overcurrent protection	Fine as is
	230.90(A)	overcurrent device	OCPD
	230.90(A)Ex.3	overcurrent device	OCPD
	230.90(B)	overcurrent device	OCPD
	230.91	overcurrent device (X2)	OCPD
	230.92	overcurrent device (X4)	OCPDs and OCPD
	230.93	overcurrent device	OCPD
	230.94	overcurrent device (X3)	OCPD
	230.94	Overcurrent protection (X2)	Fine as is
	230.95(A)	overcurrent device	OCPD
	230.95(B)	overcurrent device	OCPD
10	Article 240		
	240	Overcurrent Protection	Fine as is
	240.1 (X3)	Overcurrent protection	Fine as is
	240.2	branch-circuit Overcurrent protective devices	branch-circuit-Overcurrent protective devices
	240.4. Title	Protection of Conductors	Overcurrent Protection of Conductors
	240.4		shall be provided with overcurrent protection in
		Protected against overcurrent	accordance with
	240.4(B). Title	Overcurrent devices	Overcurrent protective Devices
	240.4(B)	Overcurrent device	OCPD
	240.4(B)	Overcurrent protective device	OCPD

240.4(C). Title	Overcurrent devices	Overcurrent protective Devices
240.4(C). (X2)	Overcurrent device.	OCPD
240.4(D)	Overcurrent Protection	Fine as is
240.4(D)(1)	Overcurrent protection	Fine as is
240.4(D)(1)(2)		 (a) OCPDs in accordance with 240.7 shall be marked for use with 18 AWG copper conductor (b) Delete (c) change to (b)
240.4(D)(2)	Overcurrent protection	Fine as is
240.4(D)(2)(2)		 (a) OCPDs in accordance with 240.7 shall be marked for use with 16 AWG copper conductor (b) Delete (c) change to (b)
240.4(D)(3)	Overcurrent protection	Fine as is
240.4(D)(3)(2)		(a) Fuses and circuit breakers in accordance with 240.7- marked for use with 14 AWG copper-clad aluminum- conductor (b) Delete
240.4(D)(3)(2)		OCPDs in accordance with 240.7 shall be marked for use with 14 AWG copper-clad aluminum conductor
240.4(E)	Protected against overcurrent	shall be permitted to have overcurrent protection in accordance with the following
240.4(F)	Overcurrent protection	Fine as is
240.4(F)	Overcurrent protective device	OCPD
240.4(G). (X2)	Overcurrent protection	Fine as is
240.4(H)	Protected against overcurrent	shall be provided with overcurrent protection in accordance with
240.5	Protected against overcurrent	shall be provided with overcurrent protection in accordance with
240.5(A)	Overcurrent device	OCPD
240.5(A)	Protected against overcurrent	Fixture wires shall be provided with overcurrent protection in accordance with
240.5(A)	Supplementary overcurrent protection	Fine as is

240.9	Protection of conductors against overcurrent	Fine as is
240.10. Title	Supplementary Overcurrent protection	Fine as is
240.10.	Supplementary overcurrent protection	Fine as is
240.10.	Branch-Circuit overcurrent devices	OCPDs
240.10.	Supplementary overcurrent devices	Supplementary OCPDs
240.11. (X2)	Feeder overcurrent protective devices.	Feeder OCPDs
240.11. (X2)	Service overcurrent protective device.	Service OCPD
240.15(A). Title	Overcurrent device	Overcurrent protective device required
240.15(A)	Overcurrent device	OCPD
240.15(A)	Overcurrent trip. Overcurrent relay	Fine as is
240.15(B) Title	Overcurrent device	Circuit breaker as Overcurrent protective device
240.16	Branch circuit overcurrent protective devices	OCPDs
240.21	Overcurrent Protection	Fine as is
240.21	overcurrent protective device	OCPD
240.21 (A)	Overcurrent Protection	Fine as is
240.21 (B)	Overcurrent Protection	Fine as is
240.21 (B) (1) (1) (b)	Overcurrent device(s)	OCPDs
240.21 (B) (1) (1) (b)	overcurrent protective device	OCPD
240.21 (B)(1) (1) (4)	Overcurrent device	OCPD
240.21 (B) (1)(1) (4) In	Overcurrent Protection	Fine as is
240.21 (B) (2) (1)	Overcurrent device	OCPD
240.21 (B) (2) (2)	Overcurrent devices	OCPDs
240.21 (B) (3) (1)	Overcurrent device	OCPD
240.21 (B) (3) (2)	Overcurrent device	OCPD
240.21 (B) (4) (3)	Overcurrent device	OCPD
240.21 (B) (4) (4)	Overcurrent device	OCPD
240.21 (B) (4) (4)	Overcurrent devices	OCPDs
240.21 (B) (5) (2)	Overcurrent device	OCPD
240.21 (B) (5) (2)	Overcurrent devices	OCPDs
240.21 (B) (5) (3)	Overcurrent device	OCPD
240.21 (C). (X2)	Overcurrent Protection	Fine As Is
240.21 (C) (1). Title	Title change	Overcurrent Protective Device
240.21 (C)(1)	"protected by overcurrent protection"	Fine As Is
240.21 (C)(1)	Overcurrent protective device	OCPD
240.21 (C) (2) (1) (b)	Overcurrent device(s)	OCPDs

240.21 (C) (2) (1) (b)	Overcurrent device	OCPD
240.21 (C) (2) (4)	Overcurrent device	OCPD
240.21 (C) (2) (4)	Overcurrent device	OCPD
240.21 (C) (2) (4)	Overcurrent protection	Fine as is
240.21 (C) (3) (2)	Overcurrent devices	OCPDs
240.21 (C) (3) (3)	Overcurrent devices	OCPDs
240.21 (C) (4) (2)	Overcurrent device	OCPD
240.21 (C) (4) (2)	Overcurrent devices	OCPDs
240.21 (C) (4) (3)	Overcurrent device	OCPD
240.21 (C) (5)	Overcurrent Protection	Fine As Is
240.21 (C) (6) (1)	Overcurrent device	OCPD
240.21 (D)	Overcurrent devices	OCPDs
240.21(E)	shall be permitted to be protected against overcurrent.	"shall be permitted to have overcurrent protection"
240.21 (F)	.shall be permitted to be protected against overcurrent.	"shall be permitted to have overcurrent protection"
240.21 (H). (X2)	Overcurrent Protection	Fine As Is
240.22. (X2)	Overcurrent device	OCPD
240.24(A)	Supplementary overcurrent protection	Fine as is
240.24(A). (X4)	Overcurrent protective devices	OCPDs
240.24(B)	Overcurrent devices	OCPDs
240.24(B)(1). Title	Feeder overcurrent protective devices	Feeder OCPDs
240.24(B)(1)	Service overcurrent protective devices	Service OCPDs
240.24(B)(2). TITLE	Branch-circuit overcurrent protective device	Fine as is
240.24(B)(2).	Branch-circuit overcurrent protective device	Branch-Circuit OCPD
240.24(C)	Overcurrent protective devices	OCPDs
240.24(D)	Overcurrent protective devices	OCPDs
240.24(E)	Overcurrent protective devices	OCPDs
240.24(E)	Supplementary overcurrent protection	Fine as is
240.24(E) (X2)	Overcurrent protective devices	OCPDs
240.24(F)	Overcurrent protective devices	OCPDs
240.30(A)	Overcurrent devices	OCPDs
240.32	Overcurrent devices	OCPDs
240.33	Overcurrent devices	OCPDs
240.86	Overcurrent device	OCPD
240.86(B)	Overcurrent device	OCPD
240.86(C)	Overcurrent device	OCPD

	240.87	Overcurrent device	OCPD
	240.90.	Overcurrent protection	Fine as is
	240.91(B). (X2)	Overcurrent device	OCPD
	240.92	Overcurrent device	OCPD
	240.92(A)	be protected	shall be provided with overcurrent protection
	240.92(C)	Overcurrent protection	Fine as is
	240.92(C)(1)(1)	Overcurrent device	OCPD
	240.92(C)(1)(2)	protective devices	Fine as is
	240.92(C)(1)(3)	Overcurrent devices	OCPDs
	240.92(C)(2)(1)	Overcurrent device	OCPD
	240.92(C)(2)(2) (X3)	Overcurrent devices	OCPDs
	240.92(C)(2)(3)	Overcurrent relaying	Fine as is
	240.92(C)(2)(4)	Overcurrent device	OCPD
	240.92(D)	Overcurrent protection	Fine as is
	240.92(D)(2). (X3)	Overcurrent devices	OCPDs
	240.92(D)(4)	Overcurrent device	OCPD
	240.92(E)	Overcurrent device	OCPD
	240.92(E)	Overcurrent protection	Fine as is
10	Article 242		
	242.14(ABC)	Overcurrent device	OCPD
	242.16	Overcurrent protection	Branch-circuit OCPD
10	Article 404		
	404.5	Overcurrent Devices	OCPDs
10	Article 408		
	408.4(A)	Overcurrent device	OCPD
	408.6 (X2)	Overcurrent protection devices	OCPDs
	408.36. Title	Overcurrent protection	Fine as is
	408.36. (X2)	Overcurrent protective device	OCPD
	408.36. (X3)	Overcurrent devices	OCPDs
	408.36(A)	Overcurrent protection	Fine as is
	408.36(B)	Overcurrent protection	Fine as is
	408.36(C)	Overcurrent device	OCPD
	408.36(D)	Overcurrent protection devices	OCPDs
	408.52	Overcurrent devices	OCPDs
	408.54	Overcurrent devices	OCPDs

408.55	Overcurrent devices	OCPDs

	CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-11			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
11	Article 409			
	409.21. TITLE	Overcurrent Protection	Fine as is	
	409.21(A)	Overcurrent Protection	Fine as is	
	409.21(B)	Protection	Overcurrent protection	
	409.21(B)	overcurrent protective device	OCPD	
	409.21(B)	Overcurrent Protection	Fine as is	
	409.21(C). (X2)	overcurrent protective device	OCPD	
	409.104	Overcurrent Devices	OCPDs	
11	Article 430			
	430.10(A) In.	Overcurrent Device	OCPD	
	430.22(G)(1)(1)	Overcurrent Protection	Fine as is	
	430.22(G)(1)(2)	Overcurrent Protection	Fine as is	
	430.22(G)(2)(1)	Overcurrent Protection	Fine as is	
	430.22(G)(2)(2)	Overcurrent Protection	Fine as is	
	430.28	Branc-Circuit protective device	OCPD	
	430.28	Overcurrent Device	OCPD	
	430.51	Overcurrent	Fine as is	
	430.53(C)(5)	Overcurrent Protection	Fine as is	
	430.55	Overcurrent Protection	Fine as is	
	430.61	Overcurrents	Fine as is	
	430.62(A)Ex.2	Feeder Overcurrent protective device	Feeder OCDP	
	430.62(A)Ex.2	Overcurrent Protection	Fine as is	
	430.62(B)	Feeder Overcurrent protective device	Feeder OCDP	
	430.63Ex.	Feeder Overcurrent device	Feeder OCDP	
	430.63Ex.	Overcurrent Protection	Fine as is	
	430.72. Title	Overcurrent Protection	Fine as is	
	430.72(A)	protected against overcurrent	shall be provided with overcurrent protection in accordance with	
	430.72(A)	Branch-circuit overcurrent protective devices	OCPDs	
	430.72(A)	protected against overcurrent	shall be provided with overcurrent protection in accordance with	
	430.72(B). (X2)	Overcurrent Protection	Fine as is	
	430.72(B)	Overcurrent Device	OCPD	

	430.72(B)	Overcurrent Protection	Fine as is
	430.72(B)(1) (X3)	Overcurrent Protection	Fine as is
	430.72(B)(2) Title	Branch-circuit overcurrent protective device	Fine as is
	430.72(B)(2) (X2)	protective devices	OCPDs
	430.72(C)Ex.	Overcurrent Protection	Fine as is
	430.72(C)(3)	Overcurrent Devices	OCPDs
	430.72(C)(4)	Overcurrent Device	OCPD
	430.72(C)(5)	Protection	Overcurrent protection
	430.87	Overcurrent Device	OCPD
	430.94. (X2)	Overcurrent Protection	Fine as is
	430.94. (X3)	Overcurrent protective device	OCPD
	430.109(A)(7)	Overcurrent protection	Fine as is
	430.109(B)	Branch-circuit overcurrent device	branch-circuit OCPD
	430.111(A). (X2)	Overcurrent Device	Fine as is
	430.112 Ex.	Branch circuit protective device	Suggest CMP to Review
	430.206. Title	Overcurrent protection	Fine as is
	430.206(B)(2)	considered to have Overcurrent	Overload
	430.206(C)	Fault-Current protection	Suggest CMP to Review
	430.207	Overcurrent (overload)Relays	Fine as is
	430.207	Overcurrent Relays	Fine as is
11	Article 440		
	440.21	Overcurrent	Fine as is
	440.21	Overcurrent Protection	Fine as is
	440.22(B)(2)Ex.	Overcurrent device	OCPD
	440.52(B)	Overcurrent	shall be provided with overcurrent protection
11	Article 460		
	460.9. Title	Overcurrent Protection	Fine As Is
	460.9. (X3)	Overcurrent Device	OCPD
	460.25	Overcurrent Protection	Fine As Is
	460.28(B)	Overcurrent Device	OCPD

CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-12			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language
12	Article 610		
	610. Part V	Overcurrent Protection	Fine as is
	610.41(A)	Overcurrent Devices	OCPDs
	610.43(A)(1)	Branch Circuit Overcurrent Device	OCPD
	610.53 Title	Overcurrent Protection	Fine as is
	610.53	be protected from Overcurrent	shall be provided with overcurrent protection
	610.53	Overcurrent Devices	OCPDs
	610.53(B)	Branch Circuit Overcurrent Devices	OCPDs
12	Article 620		
	620.12(A)(4)	Overcurrent Protection	Fine as is
	620.22(A)(2) Title	Overcurrent protective device	Fine as is
	620.22(A)(2)	Overcurrent Device protecting	branch-circuit OCPD
	620.22(A)(2)	Overcurrent Device	OCPD
	620.22(B)	Overcurrent Device protecting	branch-circuit OCPD
	620.22(B)	Overcurrent Device	OCPD
	620.25 Title	Overcurrent Devices	Overcurrent Protective Devices
	620.25. (X2)	Overcurrent Devices	OCPDs
	620.53	Overcurrent protective device	OCPD
	620.54	Overcurrent protective device	OCPD
	620.55	Overcurrent protective device	OCPD
	Art 620 Part VII	Overcurrent Protection	Fine as is
	620.61	Overcurrent Protection	Fine as is
	620.61(A). (X2)	be protected against Overcurrent	shall be provided with overcurrent protection
	620.62(A)	Overcurrent protective devices, (OCPD)	OCPDs
	620.62(B)	OCPDs	Fine as is
	620.62(C)	OCPDs. And. Overcurrent Devices	Fine as is. And. OCPDs
	620.62	Overcurrent protective devices	OCPDs
	620.65. (X3)	Overcurrent Devices	OCPDs
12	Article 625		
	625.60(C). (X4)	Overcurrent Protection	Fine as is
12	Article 627		
	627.41	Overcurrent Protection	Fine as is
	627.41(A)	Overcurrent Protection	Fine as is

	627.41(B)	Overcurrent Devices	OCPDs
12	Article 630		
	630.12	Overcurrent Protection	Fine as is
	630.12	Overcurrent Device	OCPD
	630.12(A). (X2)	Overcurrent Protection	Fine as is
	630.12(A). (X5)	Overcurrent Device	OCPD
	630.13	Overcurrent Protection	Fine as is
	630.32	Overcurrent Protection	Fine as is
	630.32	Overcurrent Device	OCPD
12	Article 640		
	640.9(C)	Overcurrent Protection	Fine as is
	640.22	Overcurrent protection devices	OCPDs
	640.22	Overcurrent Devices	OCPDs
	640.43	Overcurrent protection devices	OCPDs
12	Article 645		
	645.27	Overcurrent protective devices, (OCPD)	OCPDs
	645.27	Overcurrent protective devices	OCPDs
12	Article 646		
	646.7. (X11)	Overcurrent Protection	Fine as is
12	Article 647		
	647.5	Overcurrent Protection	Fine as is
12	Article 650		
	650.9	Overcurrent Protection	Fine as is
	650.9	Overcurrent Device	OCPD
12	Article 660		
	660.7	Overcurrent Protection	Fine as is
	660.7(A)	Overcurrent protective devices	OCPDs
	660.7(B)	Overcurrent Devices	OCPDs
	660.7(B)	Overcurrent Protection	Fine as is
	660.9	Overcurrent Devices	OCPDs
12	Article 665		
	665.24	Overcurrent Protection	Fine as is
12	Article 668		
	668.4(C)(2)	Overcurrent Protection	Fine as is
	668.21	Overcurrent Protection	Fine as is

	668.21	Overcurrent Device	OCPD
12	Article 669		
	669.9	Overcurrent Protection	Fine as is
	669.9	be protected from Overcurrent	shall be provided with overcurrent protection
12	Article 670		
	670.1	Overcurrent Protection	Fine as is
	670.4(B). (X3)	Overcurrent Protection	Fine as is
	670.5. (X4)	Overcurrent Protection	Fine as is
	670.5(C). (X2)	Overcurrent protective device	OCPD
12	Article 685		
	685.10.	Overcurrent Devices	OCPDs

	CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-13			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
13	Article 100			
	Emerg.Power Supply Systems (EPSS)	overcurrent protection devices	overcurrent protective devices (OCPDs)	
	Transfer-Switch B-C Emerg. Ltg.	branch-circuit overcurrent device	branch-circuit overcurrent protective device (OCPD)	
13	Article 130			
	130.80(C)	overcurrent devices	OCPDs	
	130.80(C)	branch-circuit overcurrent device	OCPD	
13	Article 445			
	445.11	Overcurrent protective Relay	Fine as is	
	445.12. Title	Overcurrent Protection	Fine as is	
	445.12(A)	Overcurrent protective means	Overcurrent protection means	
	445.12(B)	Overcurrent Protection	Fine as is	
	445.12(B) (X2)	Overcurrent Device	OCPD	
	445.12(C)	Overcurrent Device	OCPD	
	445.12(D)	Overcurrent Devices	OCPDs	
	445.12(E). (X3)	Overcurrent Devices	OCPDs	
	445.13(A). (X2)	Overcurrent Protection	Fine as is	
	445.13(B). Title	Overcurrent protection	Fine as is	
	445.13(B).	Overcurrent protective device	OCPD	
	445.13(B)	Overcurrent Relay	Fine as is	
13	Article 455			
	455.7	Overcurrent Protection	Fine As Is	
	455.7	protected from Overcurrent	shall be provided with overcurrent protection in	
			accordance with	
	455.7(A)	Overcurrent Protection	Fine As Is	
	455.7(B)	Overcurrent Protection	Fine As Is	
13	Article 480			
	480.4(B) IN.2	Overcurrent Protection	Fine As Is	
	480.6. (X2)	Overcurrent Protection	Fine As Is	
	480.7	Overcurrent Device	OCPD	
13	Article 695			
	695.4(C)	Overcurrent protective devices	OCPDs	
	695.4(H). Title	Overcurrent Device Selection	Overcurrent Protective Device Selection	
	695.4(H)	Overcurrent Devices	OCPDs	

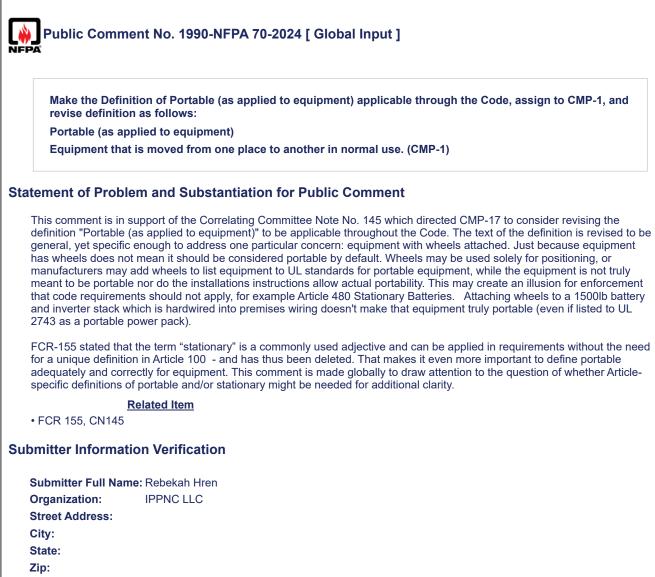
	695.5	Overcurrent Device	OCPD
	695.5	Overcurrent protective devices	OCPDs
	695.5	Overcurrent Protection	Fine as is
	695.6	Overcurrent protective devices	OCPDs
	695.6	Overcurrent Devices	OCPD
	695.6	Overcurrent Protection	Fine as is
	695.7(A)(2)	Overcurrent Devices	OCPDs
	695.7	Overcurrent Protection	Fine as is
13	Article 700		
	700.4(F)(8)	Overcurrent protective devices, (OCPD)	OCPDs
	700.6(E)	Overcurrent protective device	OCPD
	700.10(B). (X6)	Overcurrent Protection	Fine as is
	700.10(B)(6)(b)(ii)	Overcurrent protective device	OCPD
	700.10(B)(6)(e)	Overcurrent protective devices	OCPDs
	Art. 700 Part VI	Overcurrent Protection	Fine as is
	700.30.	Branch-circuit overcurrent devices	OCPDs
	700.32(A)	Overcurrent protective devices, (OCPDs)	OCPDs
	700.32(A) In	Overcurrent Protection	Fine as is
	700.32(C)	Overcurrent Devices	OCPDs
13	Article 701		
	701.6(C)	Overcurrent protective device	OCPD
	701.10(B)(1). (X5)	Overcurrent Protection	Fine as is
	701.10(B)(1)	Overcurrent protective device	OCPD
	Art. 701. Part IV	Overcurrent Protection	OCPDs
	701.30.	Branch-Circuit Overcurrent devices	Branch-Circuit OCPDs
	701.32(A). (X2)	Overcurrent protective devices, OCPDs	OCPDs
	701.32(B). (X3)	OCPDs	Fine as is
	701.32(C). (X2)	OCPDs	Fine as is
	701.32(C)Ex	Overcurrent Devices	OCPDs
	701.32(C) In 2	OCPD and OCPDs	Fine as is
13	Article 702		
	702.5(C)	Overcurrent protective device	OCPD
13	Article 706		
	706.15(E)(1)	Overcurrent Device	OCPD
	706.30(B)	Overcurrent Devices	OCPDs

	706.31 Title	Overcurrent Protection	Fine as is
	706.31(A)	shall be protected at the source from overcurrent.	shall be provided with overcurrent protection at the
			source
	706.31(A)	shall be protected from overcurrent.	shall be provided with overcurrent protection
	706.31(A) In	Overcurrent Device	OCPD
	706.31(B). Title	Overcurrent Device	Overcurrent Protective Device
	706.31(B)	Overcurrent protective devices	OCPDs
	706.31(B)	Overcurrent devices	OCPDs
	706.31(C)	Overcurrent protective devices	OCPDs
	706.31(E)	Overcurrent Protection	Fine as is
	706.33(B)(2)	Overcurrent Device	OCPD
13	Article 708		
	708.10(B)	Overcurrent Protection	Fine as is
	708.24(E)	Overcurrent protective device	OCPD
	Art. 708. Part IV	Overcurrent Protection	Fine as is
	708.50.	Feeder- and Branch-circuit overcurrent devices	Feeder- and Branch-circuit OCPDs
	708.52(B)	Overcurrent Devices	OCPDs
	708.54(A)	Overcurrent protective devices, (OCPD)	OCPDs
	708.54(A). (B). (C)	OCPDs	Fine as is
	708.54	Overcurrent Devices	OCPDs

	CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-14			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
14	Article 500			
	500.30(A)(2)	Branch Circuit Overcurrent Protection	OCPD	
	500.30.	Overcurrent Protection	Fine as is	
14	Article 501			
	501.105(B)(5)	Overcurrent Protection	Fine as is	
	501.125(B)(2)	Motor Overcurrent	Fine as is	
14	Article 502			
	502.120(A)	Overcurrent Devices	OCPDs	
	502.120(B)(1)	Overcurrent Devices	OCPDs	
	502.125	Motor Overcurrent	Fine as is	
14	Article 505			
	505.30(A)(2)	Branch Circuit Overcurrent Protection	OCPD	
	505.30.	Overcurrent Protection	Fine as is	
14	Article 506			
	506.30.	Branch Circuit Overcurrent Protection	OCPD	
	506.30.	Overcurrent Protection	Fine as is	

	CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-15			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
15	Article 100			
	Bull Switch	Overcurrent protection	Fine as is	
15	Article 517			
	517.17(B)	Overcurrent protective devices	OCPDs	
	517.31(G). (X5)	Overcurrent protective devices	OCPDs	
	517.31(G)	Overcurrent	Fine as is	
	517.33((C). (X5)	Overcurrent protective devices	OCPDs	
	517.42(F)	Overcurrent protective devices	OCPDs	
	517.42(F)	Overcurrent	Fine as is	
	517.73	Overcurrent Protection	Fine as is	
	517.73(A)	Overcurrent protective devices	OCPDs	
	517.73(B)	Overcurrent protective devices	OCPDs	
	517.73(B)	Overcurrent Protection	Fine as is	
	517.74(B)	Overcurrent protective devices	OCPDs	
	517.160(A)(2)	Overcurrent Protection	Fine as is	
	517.160(A)(2)	Overcurrent protective device	OCPD	
	517.160(A)(2)	be protected against Overcurrent	be provided with overcurrent protection	
	517.160(A)(3)	Overcurrent protective devices	OCPDs	
	517.160(B)(1)	Overcurrent protective devices	OCPDs	
15	Article 518			
	518.7(A)(1)	Overcurrent Protection	Fine as is	
	518.17(A)(1) and (2)	Overcurrent Devices	OCPDs	
15	Article 520			
	520.9	Branch Circuit Overcurrent Device	OCPD	
	520.21	Overcurrent protective devices	OCPDs	
	520.25. (X3)	Overcurrent Protection	Fine as is	
	520.26	Overcurrent protective devices	OCPD	
	520.26. (X3)	Overcurrent Protection	Fine as is	
	520.27. (X2)	Overcurrent Device	OCPD	
	520.44-T	Overcurrent Devices	OCPD	
	520.50(C)	Overcurrent Protection	Fine as is	
	520.50.	Branch-circuit overcurrent protective device	OCPDs	
	520.52	Overcurrent Protection	Fine as is	

	520.53(A)	Overcurrent protective devices	OCPDs
	520.53(D)	Overcurrent Protection	Fine as is
	520.54	Overcurrent Devices	OCPDs
	520.54(D)	Overcurrent Device	OCPD
	520.54(D)(1) and (2)	Overcurrent protective devices	OCPD
	520.54(E)	Overcurrent protective device	OCPD
	520.54(E). (X4)	Overcurrent protection device	OCPD
	520.54(E)	Overcurrent Devices	OCPDs
	520.54(K)	Overcurrent Device	OCPD
	520.68	Overcurrent protective device	OCPD
	520.68(3)	Overcurrent Device	OCPD
	520.68(4)	Overcurrent protective device	OCPD
	520.68(6)	Overcurrent Devices	OCPDs
	520.68(C)	Overcurrent Protection	Fine as is
15	Article 522		
	522.10(A)(2). (X3)	Overcurrent Devices	OCPDs
	522.10(A)(2	Overcurrent protective device	OCPD
	522.10(B). (X4)	Overcurrent Devices	OCPDs
	522.23. (X3)	Overcurrent Protection	Fine as is
15	Article 525		
	525.12	Overcurrent Device	OCPD
	525.23(B)	Overcurrent Device	OCPD
	525.23(C). (X2)	Overcurrent Protection	Fine as is
15	Article 530		
	530.9(A)	Branch-circuit overcurrent device	Branch-circuit OCPD
	530.10(C)	Overcurrent Protection	Fine as is
	530.23 and (A)	Overcurrent Protection	Fine as is
	530.23(B)	Overcurrent protective devices	OCPDs
	530.23(D)	Overcurrent Protection	Fine as is
	530.42	Overcurrent Protection	Fine as is
15	Article 540		
	540.11(B)	Overcurrent Devices	OCPDs


	CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-16			
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
16	Article 830			
	830.15. (X4)	Overcurrent Protection	Fine as is	

	CMP-10 TG-4 Review of Ov	ercurrent Language for the Articles undeer	the purview of CMP-17
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language
17	Article 422		
	422.5(C)	Branch-circuit overcurrent protective device	Branch-Circuit OCPD
	422.11. Title	Overcurrent Protection	Fine as is
	422.11	protected against overcurrent	shall be provided with overcurrent protection
	422.11(A)	Overcurrent Protection	Fine as is
	422.11(A)	Branch-circuit overcurrent protective device	Branch-Circuit OCPD
	422.11(B)	Overcurrent Protection	OCPDs
	422.11(C)	Overcurrent Protection	OCPDs
	422.11(D)	Overcurrent protective devices	OCPDs
	422.11(E)	Overcurrent Protection	Fine as is
	422.11(E)(1)	Overcurrent Protection	Fine as is
	422.11(E)(2)	Overcurrent Protection	Fine as is
	422.11(E)(3)	Overcurrent Protection	OCPD
	422.11(E)(3)	Overcurrent Device	OCPD
	422.11(F)(1)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	422.11(F)(1)	Overcurrent Protective Devices	OCPDs
	422.11(G)	Overcurrent Protective Devices	OCPDs
	422.13	Overcurrent Protection	Fine as is
	422.31(A)	Branch-circuit overcurrent protective device	Branch-Circuit OCPD
	422.60(A)	Overcurrent Protection	Fine as is
	422.62(B)(1). (X2)	Overcurrent protective device	OCPD
17	Article 424		
	424.19	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	424.19(A)	Supplementary Overcurrent Protection	Fine as is
	424.19(A)	Supplementary Overcurrent Protection	Fine as is
	424.19(A)	Supplementary Overcurrent Protective Device(s)	Supplementary OCPDs
	424.19(B)	Supplementary Overcurrent Protection	Fine as is
	424.22	Overcurrent Protection	Fine as is
	424.22(A)	Overcurrent Protection	Fine as is
	424.22(A)	protected against overcurrent	"shall be permitted to have overcurrent protection.
	424.22(B)	Supplementary Overcurrent Protective Device	Supplementary OCPD
	424.22(C). Title	Overcurrent Protective Devices	Fine as is
	424.22(C)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs

	424.22(C)	Overcurrent Protection	Fine as is
	424.22(C)	Supplementary Overcurrent Protection	Fine as is
	424.22(D)(X2)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	424.22(E). (X3)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	424.72	Overcurrent Protection	Fine as is
	424.72(A)	Overcurrent protective device	OCPD
	424.72(B)	Overcurrent protective device	OCPD
	424.72(C). Title	Supplementary Overcurrent Protective Devices	Fine as is
	424.72(C)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	424.72(C)	Overcurrent Protection	Fine as is
	424.72(D). Title	Supplementary Overcurrent Protective Devices	Fine as is
	424.72(D).	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	424.72(D)	Overcurrent protective device	OCPD
	424.72(E)	Supplementary Overcurrent Protective Devices. (X3)	Supplementary OCPDs
	424.82	Overcurrent protective devices	OCPDs
17	Article 425		
	425.19	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.19(A). (X2)	Supplementary Overcurrent Protection	Fine as is
	425.19(A)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.19(B)	Supplementary Overcurrent Protection	Fine as is
	425.22. Title	Overcurrent Protection	Fine as is
	425.22(A)	Overcurrent Protection	Fine as is
	425.22(A)	protected against overcurrent	"shall be permitted to have overcurrent protection"
	425.22(B)	Supplementary Overcurrent Protective Device	Supplementary OCPD
	425.22(C). Title	Overcurrent Protective Devices	Fine as is
	425.22(C)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.22(C). (X2)	Supplementary Overcurrent Protection	Fine as is
	425.22(D). Title	Supplementary Overcurrent Protective Devices	Fine as is
	425.22(D). (X2)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.22(E) (X3)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.72	Overcurrent Protection	Fine as is
	425.72(A)	Overcurrent protective device	OCPD
	425.72(B)	Overcurrent protective device	OCPD
	425.72(C). Title	Supplementary Overcurrent Protective Devices	Fine as is
	425.72(C)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs

	425.72(C)	Overcurrent Protection	Fine as is
	425.72(D)	Overcurrent protection	Fine as is
	425.72(E). Title	Supplementary Overcurrent Protective Devices	Fine as is
	425.72(E)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.72(E)	Overcurrent Protective Devices	OCPD
	425.72(F). (X3)	Supplementary Overcurrent Protective Devices	Supplementary OCPDs
	425.82	Overcurrent protective devices	OCPDs
17	Article 427		
	427.57	Overcurrent Protection	Fine as is
	427.57	considered protected against Overcurrent	considered to have overcurrent protection
17	Article 680		
	680.10.(A)& (B)(2)	Overcurrent protective devices	OCPDs
	680.23(F)(2)	Overcurrent Protection	Fine as is

CMP-10 TG-4 Review of Overcurrent Language for the Articles undeer the purview of CMP-18				
СМР	NEC Section (using First Draft of 2026 NEC)	Current Language	"New" Language	
18	Article 393			
	393.45. Title	Overcurrent Protection	Overcurrent Protection	
	393.45(A)	Overcurrent Protection	Fine as is	
18	Article 406			
	406.46(F)	Overcurrent Device	OCPD	
18	Article 410			
	410.59(A)	Branch-circuit overcurrent devices	Branch-Circuit OCPD	
	410.153	Overcurrent Protection	Fine as is	
18	Article 600			
	600.41	Overcurrent	CMP to Review	

Submittal Date: Committee: Wed Aug 28 14:23:55 EDT 2024 NEC-P17

Appliance.		
installed or o		ly other than industrial, that is normally built in a standardized size or type and is it to perform one or more functions such as clothes washing, air-conditioning, food P-17)
ditional Prop	osed Changes	5
File Name CN_126.pdf	Description	Approved
tement of Pro	oblem and Su	bstantiation for Public Comment
NOTE: The follo	wing CC Note No	. 126 appeared in the First Draft Report on First Revision No. 8854.
	• ··· ·· ·	s CMP-17 to review the definition "appliance" and consider placing
		note to comply with the NEC Style
the examples in	an informational ו <u>Related</u>	note to comply with the NEC Style
the examples in Manual 2.1.2.5. • First Revision I	an informational ו <u>Related</u>	note to comply with the NEC Style
the examples in Manual 2.1.2.5. • First Revision I omitter Inform	an informational r <u>Related</u> No. 8854	note to comply with the NEC Style
the examples in Manual 2.1.2.5. • First Revision I omitter Inform	an informational r <u>Related</u> No. 8854 nation Verifica Name: CC Notes	note to comply with the NEC Style
the examples in Manual 2.1.2.5. • First Revision I omitter Inform Submitter Full I Organization: Street Address	an informational n <u>Related</u> No. 8854 nation Verifica Name: CC Notes NEC Corre	Item
the examples in Manual 2.1.2.5. • First Revision I omitter Inform Submitter Full I Organization: Street Address City:	an informational n <u>Related</u> No. 8854 nation Verifica Name: CC Notes NEC Corre	Item
the examples in Manual 2.1.2.5. • First Revision I omitter Inform Submitter Full I Organization: Street Address City: State:	an informational n <u>Related</u> No. 8854 nation Verifica Name: CC Notes NEC Corre	Item
the examples in Manual 2.1.2.5. • First Revision I omitter Inform Submitter Full I Organization: Street Address City:	an informational i <u>Related</u> No. 8854 nation Verifica Name: CC Notes NEC Corre	Item

E.

Correlating Committee Note No. 126-NFPA 70-2024 [Definition: Appliance.]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Wed May 08 15:00:12 EDT 2024

Committee Statement

Committee The Correlating Committee directs CMP-17 to review the definition "appliance" and consider placing the examples in an informational note to comply with the NEC Style Manual 2.1.2.5.

First Revision No. 8854-NFPA 70-2024 [Definition: Appliance.]

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

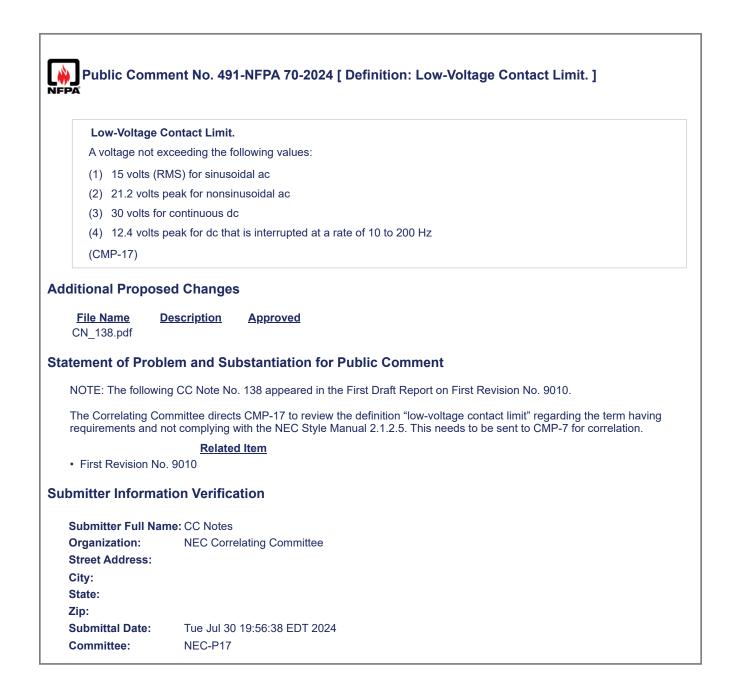
McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

Public Comment No. 5-NFPA 70-2024 [Definition: Appliance.]	
Appliance.	
Utilization equipment, generally other than industrial, that is normally built in a standardized size or type and is installed or connected as a unit to perform one or more functions such as, but not limited to, clothes washing, ai conditioning, food mixing, and deep frying. (CMP-17)	r-
Statement of Problem and Substantiation for Public Comment	
The proposed FR wording can appear to be more restrictive than intended and may be construed to apply only to th appliances in the list. The addition of "but not limited to" clarifies that the list constitutes examples.	ie
Related Item	
• FR-8854-NFPA 70-2024	
Submitter Information Verification	
Submitter Full Name: E. P. Hamilton	

 Organization:
 E. P. Hamilton & amp; Associates, I


 Affiliation:
 Self

 Street Address:
 City:

 State:
 Zip:

 Submittal Date:
 Wed Jul 10 10:04:25 EDT 2024

 Committee:
 NEC-P17

Correlating Committee Note No. 138-NFPA 70-2024 [Definition: Low-Voltage NFPA Contact Limit.]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Wed May 08 15:50:08 EDT 2024

Committee Statement

Committee Statement: The Correlating Committee directs CMP-17 to review the definition "low-voltage contact limit" regarding the term having requirements and not complying with the NEC Style Manual 2.1.2.5. This needs to be sent to CMP-7 for correlation.

First Revision No. 9010-NFPA 70-2024 [Definition: Low-Voltage Contact Limit.]

Ballot Results

✓ This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

Public Comment No. 496-NFPA 70-2024 [Definition: Pool, Permanently Installed Swimming, Wading, I...] Pool, Permanently Installed Swimming, Wading, Immersion, and Therapeutic. (Permanently Installed Swimming, Wading, Immersion, and Therapeutic Pools) Those that are permanently constructed or installed in the ground, partially in the ground, above ground, inside of a building, or on a building, whether or not served by electrical circuits. (680) (CMP-17) **Additional Proposed Changes** File Name **Description** Approved CN_143.pdf Statement of Problem and Substantiation for Public Comment NOTE: The following CC Note No. 143 appeared in the First Draft Report on First Revision No. 9012. The Correlating Committee directs CMP-17 to review the definition "Pool, Permanently Installed Swimming" and consider the term as "Pool, Permanently Installed" and use alternate terms for the various types of permanently installed pools. Additionally, beginning the first sentence of the definition with the word "pools" adds clarity. Related Item • First Revision No. 9012 **Submitter Information Verification** Submitter Full Name: CC Notes **Organization:** NEC Correlating Committee Street Address: City: State: Zip: Submittal Date: Tue Jul 30 20:09:18 EDT 2024 Committee: NEC-P17

Correlating Committee Note No. 143-NFPA 70-2024 [Definition: Pool,

Permanently Installed Swimming, Wading, I...]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Wed May 08 16:53:23 EDT 2024

Committee Statement

Committee Statement: The Correlating Committee directs CMP-17 to review the definition "Pool, Permanently Installed Swimming" and consider the term as "Pool, Permanently Installed" and use alternate terms for the various types of permanently installed pools. Additionally, beginning the first sentence of the definition with the word "pools" adds clarity.

<u>First Revision No. 9012-NFPA 70-2024 [Definition: Pool, Permanently Installed Swimming, Wading,</u> I...]

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

Public Comment No. 495-NFPA 70-2024 [Definition: Pool, Storable (Storable Immersion Pool).

(Stor...]

Pool, Storable (Storable Immersion Pool). (Storable Pool)

Pools of any water depth, used for swimming, wading, or immersion, installed entirely on or above the ground that are intended to be stored when not in use or are designed for ease of relocation. (680) (CMP-17)

Informational Note: A storable pool that is installed with a permanent deck around all or a portion of its perimeter is considered a permanently installed pool.

Additional Proposed Changes

File Name Description Approved

CN_142.pdf

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 142 appeared in the First Draft Report on First Revision No. 9014.

The Correlating Committee directs CMP-17 to review the definition "Pool, Storable" and revise the informational note to comply with the NEC Style Manual 2.1.10.2 as it contains an interpretation.

Related Item

First Revision No. 9014

Submitter Information Verification

Submitter Full Name: CC NotesOrganization:NEC Correlating CommitteeStreet Address:Image: City:State:Image: City:State:Image: City:Zip:Image: City:Submittal Date:Tue Jul 30 20:06:36 EDT 2024Committee:NEC-P17

Correlating Committee Note No. 142-NFPA 70-2024 [Definition: Pool,

Storable; used for Swimming, Wading, or I...]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Wed May 08 16:52:11 EDT 2024

Committee Statement

Committee The Correlating Committee directs CMP-17 to review the definition "Pool, Storable" and revise the informational note to comply with the NEC Style Manual 2.1.10.2 as it contains an interpretation.

First Revision No. 9014-NFPA 70-2024 [Definition: Pool, Storable; used for Swimming, Wading, or I...]

Ballot Results

✓ This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A. Public Comment No. 7-NFPA 70-2024 [Definition: Pool, Storable (Storable Immersion Pool).

Pool, Storable (Storable Immersion Pool). (Storable Pool)

Pools of any water depth, used for swimming, wading, or immersion, installed entirely on or above the ground that are intended to be stored when not in use or are designed for ease of relocation. (680) (CMP-17)

Informational Note: A storable pool that is installed with a permanent deck around assembled on-site in accordance with the manufacturer's instructions and which abuts a permanent deck which is part of the pool installation and which is intended to provide ready access to the pool by swimmers, and which encloses all or a portion of its the pool's perimeter, is considered a permanently installed pool.

Statement of Problem and Substantiation for Public Comment

There is an unintended consequence in the revised FR wording. As written, the Informational Note can be misconstrued to mean that a storable pool sitting on a patio ("deck") that surrounds it is permanently installed, particularly given the expansion of the vertical criteria for a perimeter surface in680.26(B) from 2 ft below max water level to 3 ft. As written, this Informational Note can be construed to mean that a small storable "kiddie wading pool" sitting on a concrete patio ("deck" within 3 ft vertically of the maximum water level") is a permanently installed pool, which was never the intent of the Panel. The proposed revised wording in the IN provides clarification.

Related Item

• FR 9014-NFPA 70-2024

Submitter Information Verification

Submitter Full Name: E. P. HamiltonOrganization:E. P. Hamilton & amp; Associates, IAffiliation:SelfStreet Address:Image: City:State:Image: City:Zip:Ved Jul 10 10:09:53 EDT 2024Committee:NEC-P17

Public Comment No. 494-NFPA 70-2024 [Definition: Pool.]

Pool.

Manufactured or field-constructed equipment designed to contain water and intended for use by persons for swimming, wading, immersion, recreational, or therapeutic purposes, but not including bodies of water incorporated as part of an industrial process, lakes, lagoons, surf parks, or other natural and artificially made bodies of water that could incorporate swimming and swimming areas. (680) (CMP-17)

Informational Note: Natural and man-made bodies of water, which includes lakes, lagoons, surf parks, or other similar bodies of water, are addressed in Article 682.

Additional Proposed Changes

File Name Description Approved

CN_141.pdf

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 141 appeared in the First Draft Report on First Revision No. 9017.

The Correlating Committee directs CMP-17 to review the definition "Pool" and consider having the definition state what a "pool" is and reference examples that are not pools in an informational note. That information could also be contained in the scope of the article.

Related Item

• First Revision No. 9017

Submitter Information Verification

Correlating Committee Note No. 141-NFPA 70-2024 [Definition: Pool.]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Wed May 08 16:50:58 EDT 2024

Committee Statement

Committee The Correlating Committee directs CMP-17 to review the definition "Pool" and consider having the definition state what a "pool" is and reference examples that are not pools in an informational note. That information could also be contained in the scope of the article.

First Revision No. 9017-NFPA 70-2024 [Definition: Pool.]

Ballot Results

✓ This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A. Public Comment No. 8-NFPA 70-2024 [Definition: Pool.]

Pool.

Manufactured or field-constructed equipment designed to contain water and intended for use by persons for swimming, wading, immersion, recreational, or therapeutic purposes, <u>including "lazy river" and similar attractions</u>, but not including bodies of water incorporated as part of an industrial process, lakes, lagoons, surf parks, or other natural and artificially made bodies of water that could incorporate swimming and swimming areas. (680) (CMP-17)

Informational Note: Natural and man-made bodies of water, which includes lakes, lagoons, surf parks, or other similar bodies of water, are addressed in Article 682.

Statement of Problem and Substantiation for Public Comment

"Lazy river" attractions have been discussed in the panel, in the light that such attractions are pools which are intended to be included under Art. 680; however, the FR wording is not explicit in that regard. A recent fatal incident involving such an attraction justifies clarifying the text to explicitly identify these types of facilities as pools and not as natural and artificially-made bodies of waters.

Related Item

• FR 9017-NFPA 70-2024

Submitter Information Verification

Submitter Full Name: E. P. HamiltonOrganization:E. P. Hamilton & amp; Associates, IAffiliation:SelfStreet Address:Image: City:State:Image: City:Zip:Ved Jul 10 10:15:20 EDT 2024Committee:NEC-P17

Public Com	ment No. 498-NFPA 70-2024 [Definition: Portable (as applied to equipment).]				
Portable (as	applied to equipment).				
Equipment that	Equipment that is actually moved or can easily be moved from one place to another in normal use. (680) (CMP-17)				
Additional Propos	sed Changes				
File Name CN_145.pdf	Description Approved				
Statement of Prol	blem and Substantiation for Public Comment				
NOTE: The follow	ring CC Note No. 145 appeared in the First Draft Report.				
	The Correlating Committee directs CMP-17 to review the definition "Portable (as applied to equipment)" and consider revising this term to apply throughout the code.				
Correlating Com	mittee Note No. 145				
Submitter Inform	ation Verification				
Submitter Full Na	ame: CC Notes				
Organization:	NEC Correlating Committee				
Street Address:					
City:					
State:					
Zip:					
Submittal Date:	Tue Jul 30 20:23:46 EDT 2024				
Committee:	NEC-P17				

Correlating Committee Note No. 145-NFPA 70-2024 [Definition: Portable (as applied to equipment).]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Wed May 08 17:02:01 EDT 2024

Committee Statement

CommitteeThe Correlating Committee directs CMP-17 to review the definition "Portable (asStatement:applied to equipment)" and consider revising this term to apply throughout the code.

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A. Public Comment No. 1733-NFPA 70-2024 [New Definition after Definition: Concealed Knob-NFPA and-Tube Wi...]

TITLE OF NEW CONTENT

New definition in Article 100 after Concealed Knob-and-Tube Wiring

<u>Conductive Pavement Heating System</u>. A system in which heat is generated by passing current through the pavement material and between electrodes embedded within the pavement material. (426) (CMP-17)

Statement of Problem and Substantiation for Public Comment

A new definition for Conductive Pavement Heating System has been added to Article 100 for this new technology.

This is a new definition to be added to support a new Part VI in Article 426 for electrically conductive pavement heating systems where the pavement is part of the heating circuit. This new part in Article 426 is to provide requirements for the safe installation of such systems that have been under development for several years with several installations completed for research purposes. The definition is needed to establish the new term for understanding how the requirements are to be applied to these new innovative snow melting and deicing systems.

Relationship

This new definition is being recommended to be under the purview of CMP-17 and applicable to Article 426 only.

Related Public Comments for This Document

 Related Comment

 Public Comment No. 1734-NFPA 70-2024 [Section No. 426.1]

 Public Comment No. 1735-NFPA 70-2024 [Sections Part VI., 426.50, 426.51]

 Public Comment No. 1734-NFPA 70-2024 [Section No. 426.1]

 Public Comment No. 1735-NFPA 70-2024 [Sections Part VI., 426.50, 426.51]

 Public Comment No. 1735-NFPA 70-2024 [Sections Part VI., 426.50, 426.51]

PI 3479 and CI 8998

Submitter Information Verification

Submitter Full Name: Charles Mello			
Organization:	Cdcmello Consulting Llc		
Affiliation:	State of Iowa Department of Transportation		
Street Address:			
City:			
State:			
Zip:			
Submittal Date:	Mon Aug 26 19:47:42 EDT 2024		
Committee:	NEC-P17		

Public	Comment No.	1590-NFPA	70-2024 [Section No	o. 422.5]

422.5 GFCI Protection.

GFCI protection shall be provided in accordance with 422.5(A) through 422.5(C). Multiple GFCI devices shall be permitted but shall not be required.

(A) Circuit Rating.

The appliances indicated in 422.5(B) shall be GFCI protected if supplied by branch circuits that meet all the following conditions:

- (1) Exceed the low-voltage contact limit, as defined in Article 100
- (2) Do not exceed 150 volts to ground
- (3) Do not exceed 60 amperes single-phase or 100 amperes 3-phase
- (B) Appliances.
- The following appliances shall be GFCI protected:
- (1) Automotive vacuum machines
- (2) Drinking water coolers and bottle fill stations
- (3) Cord- and plug-connected high-pressure spray washing machines
- (4) Tire inflation machines
- (5) Vending machines
- (6) Sump pumps
- (7) Dishwashers

Informational Note No. 1: See 210.8 for CFCI protection requirements for branch-circuit outlets where covered locations warrant such protection.

Informational Note No. 2: Electrically cooled drinking water fountains are one type of drinking water cooler.

(C) Type and Location.

The GFCI shall be readily accessible, listed, and located in one or more of the following locations:

- (1) Within the branch-circuit overcurrent protective device
- (2) <u>In</u>
- a device or outlet within the supply circuitIn
- (3) an integral part of the attachment plug
- (4) Within the supply cord not more than 300 mm (12 in.) from the attachment plug
- (5) Factory installed within the appliance

Statement of Problem and Substantiation for Public Comment

The suggested change removes the conflict between 210.8 and 422. the scope of Article 422 is "This article covers electrical appliances used in any occupancy." The UL standard for Appliances UL 751 has a requirement for GFCI protection in a vending machine is section 16.1.4 which states "A cord-connected vending machine shall be provided with a factory installed ground-fault

circuit-interrupter (GFCI)." Section 16.1.5 states that "The GFCI shall comply with UL 943 and be either: a) An integral part of the attachment plug; or b) Located such that it is in the supply cord within 12 in (305 mm) of the attachment plug."

GFCI requirements for specific appliances is not encroaching on the scope of Article 422 because the GFCI requirements are not there to protect the appliance. GFCI requirements provide protection for personnel which is the purview of Section 210.8. The significance of placing the requirements in 210.8 ensures that the branch circuit includes the GFCi protection regardless of the vintage of appliance that is installed on that circuit.

Related Item

• FR 8871

Submitter Information Verification

Submitter Full Name: Thomas DomitrovichOrganization:Eaton CorporationStreet Address:-City:-State:-Zip:-Submittal Date:Sat Aug 24 13:13:10 EDT 2024Committee:NEC-P17

Public Comment No. 1900-NFPA 70-2024 [Section No. 422.5]

422.5 GFCI Protection.

GFCI protection shall be provided in accordance with 422.5(A) through 422.5($G\underline{D}$). Multiple GFCI devices shall be permitted but shall not be required.

(A) Circuit Rating.

The appliances indicated in 422.5(B) shall be GFCI protected if supplied by branch circuits that meet all the following conditions:

- (1) Exceed the low-voltage contact limit, as defined in Article 100
- (2) Do not exceed 150 volts to ground
- (3) Do not exceed 60 amperes single-phase or 100 amperes 3-phase

(B) Appliances.

- The following appliances shall be GFCI protected:
- (1) Automotive vacuum machines
- (2) Drinking water coolers and bottle fill stations
- (3) Cord- and plug-connected high-pressure spray washing machines
- (4) Tire inflation machines
- (5) Vending machines
- (6) Sump pumps
- (7) Dishwashers

Informational Note No. 1: See 210.8 for GFCI protection requirements for branch-circuit outlets where covered locations warrant such protection.

Informational Note No. 2: Electrically cooled drinking water fountains are one type of drinking water cooler.

(C)- High Frequency Appliances

If GFCI protection is required on the following appliances as per 210.8(A), the GFCI shall be listed and identified as High Frequency (HF):

- (1) <u>Refrigerators</u>
- (2) HVAC appliances
- (D) Type and Location.

The GFCI shall be readily accessible, listed, and located in one or more of the following locations:

- (1) Within the branch-circuit overcurrent protective device
- (2) In a device or outlet within the supply circuit
- (3) In an integral part of the attachment plug
- (4) Within the supply cord not more than 300 mm (12 in.) from the attachment plug
- (5) Factory installed within the appliance

Statement of Problem and Substantiation for Public Comment

The UL 943 standard for GFCIs is being updated to reduce nuisance tripping on loads which contain modernized electrical components such as variable frequency drives.

The next version of the UL 943 draft (expected Q3/Q4 2024) will introduce requirements for the High Frequency (HF) rating. GFCIs which meet pass the additional HF tests will be less prone to nuisance tripping.

Related Public Comments for This Document

Related Comment

Relationship

Public Comment No. 1902-NFPA 70-2024 [New Definition after Definition: Ground-Fault Circuit Inter...]

	Related Item	
• FR 7788		

Submitter Information Verification

Submitter Full Name: Greg WoyczynskiOrganization:Association of Home ApplianceStreet Address:-City:-State:-Zip:-Submittal Date:Tue Aug 27 21:59:31 EDT 2024Committee:NEC-P17

	Public Comment No.	1994-NFPA 70-2024	[Section No. 422.5]
IFPA			

422.5 GFCI Protection.

GFCI protection shall be provided in accordance with 422.5(A) through 422.5(C). Multiple GFCI devices shall be permitted but shall not be required.

(A) Circuit Rating.

The appliances indicated in 422.5(B) -shall be GFCI protected if supplied by branch circuits that meet all the following conditions:

- (1) Exceed the low-voltage contact limit, as defined in Article 100
- (2) Do not exceed 150 volts to ground
- (3) Do not exceed 60 amperes single-phase or 100 amperes 3-phase

(B) Appliances.

The following appliances shall be GFCI protected:

- (1) Automotive vacuum machines
- (2) Drinking water coolers and bottle fill stations
- (3) Cord- and plug-connected high-pressure spray washing machines
- (4) Tire inflation machines
- (5) Vending machines
- (6) Sump pumps
- (7) Dishwashers

Informational Note No. 1: See 210.8 for GFCI protection requirements for branch-circuit outlets where covered locations warrant such protection.

Informational Note No. 2: Electrically cooled drinking water fountains are one type of drinking water cooler.

(C) Type and Location.

The GFCI shall be readily accessible, listed, and located in one or more of the following locations:

- (1) Within the branch-circuit overcurrent protective device
- (2) In a device or outlet within the supply circuit
- (3) In an integral part of the attachment plug
- (4) Within the supply cord not more than 300 mm (12 in.) from the attachment plug
- (5) Factory installed within the appliance

Statement of Problem and Substantiation for Public Comment

this public comment is being offered as a method to resolve the conflict between Article 422 and Article 210. the GFCI requirements are there for personnel protection and not protection of the appliance. One option may be to delete the requirements of GFCI from Article 422 unless the CMP wants GFCI as part of the appliance standard. The UL standard for vending machines includes a requirement for the vending machine to include GFCI in the cord. This could be left in this Article but because it is already a part of the product standard, the presence of this section isn't needed for this appliance. If other appliances should include GFCI as part of the product, it would be fair to include them in this section.

Related Item

• FR 8871

Submitter Information Verification

Submitter Full Name:Thomas DomitrovichOrganization:Eaton Corporation

Street Address:City:State:Zip:Submittal Date:Wed Aug 28 14:35:20 EDT 2024Committee:NEC-P17

Public Comment No. 686-NFPA 70-2024 [Section No. 422.5]

422.5 GFCI Protection.

GFCI protection shall be provided in accordance with 422.5(A) through 422.5(C). Multiple GFCI devices shall be permitted but shall not be required.

(A) Circuit Rating.

The appliances indicated in 422.5(B) shall be GFCI protected if supplied by branch circuits that meet all the following conditions:

- (1) Exceed the low-voltage contact limit, as defined in Article 100
- (2) Do not exceed 150 volts to ground
- (3) Do not exceed 60 amperes single-phase or 100 amperes 3-phase
- (B) Appliances.
- The following appliances shall be GFCI protected:
- (1) Automotive vacuum machines
- (2) Drinking water coolers and bottle fill stations
- (3) Cord- and plug-connected high-pressure spray washing machines
- (4) Tire inflation machines
- (5) Vending machines
- (6) Sump pumps
- (7) Dishwashers

Informational Note No. 1: See 210.8 for GFCI protection requirements for branch-circuit outlets where covered locations warrant such protection.

Informational Note No. 2: Electrically cooled drinking water fountains are one type of drinking water cooler.

(C) Type and Location.

The GFCI shall be readily accessible, listed, and located in one or more of the following locations:

- (1) Within the branch-circuit overcurrent protective device
- (2) In a device or outlet within the supply circuit
- (3) In an integral part of the attachment plug
- (4) Within the supply cord not more than 300 mm (12 in.) from the attachment plug
- (5) Factory installed within the appliance

Additional Proposed Changes

File Name	Description	<u>Approved</u>	
CN 389.pdf			

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 389 appeared in the First Draft Report on First Revision No. 8871.

The Correlating Committee directs that a task group be formed with members from CMP 2 and CMP 17 to address the concerns raised over purview of GFCI protection requirement for appliances. Article 422 contains specific requirements for appliances and Article 210 provides the requirements for branch circuits. Correlation between these two articles is needed on this topic.

As part of Decision D#22-11 the NFPA Standards Council stated "Lastly the Appellant raises concerns that GFCI requirements related to appliances are not properly in the scope of Article 210 (and therefore the responsibility of CMP 2), rather, that appliances are addressed in Article 422 and therefore within the scope of CMP 17. The matter of technical scope among articles within the NEC is the responsibility for the NEC Correlating Committee, which is balloted on correlation between articles within the NEC. Section 210.8(D) addresses receptacle protection based on the equipment that may be used with the receptable, and therefore Council finds no reason to second guess the

ballot of the NEC Correlating Committee on this issue. However, the Council encourages the NEC Correlating Committee to review this specific concern, to the extent there may be overlap that requires clarification between CMP 2 and CMP 17."

Related Item

• First Revision No. 8871

Submitter Information Verification

Submitter Full Name: CC NotesOrganization:NEC Correlating CommitteeStreet Address:-City:-State:-Zip:-Submittal Date:Fri Aug 02 11:14:44 EDT 2024Committee:NEC-P17

Correlating Committee Note No. 389-NFPA 70-2024 [Section No. 422.5]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Fri May 10 11:30:48 EDT 2024

Committee Statement

Committee The Correlating Committee directs that a task group be formed with members from CMP
 Statement: 2 and CMP 17 to address the concerns raised over purview of GFCI protection requirement for appliances. Article 422 contains specific requirements for appliances and Article 210 provides the requirements for branch circuits. Correlation between these two articles is needed on this topic.

As part of Decision D#22-11 the NFPA Standards Council stated "Lastly the Appellant raises concerns that GFCI requirements related to appliances are not properly in the scope of Article 210 (and therefore the responsibility of CMP 2), rather, that appliances are addressed in Article 422 and therefore within the scope of CMP 17. The matter of technical scope among articles within the NEC is the responsibility for the NEC Correlating Committee, which is balloted on correlation between articles within the NEC. Section 210.8(D) addresses receptacle protection based on the equipment that may be used with the receptable, and therefore Council finds no reason to second guess the ballot of the NEC Correlating Committee to review this specific concern, to the extent there may be overlap that requires clarification between CMP 2 and CMP 17."

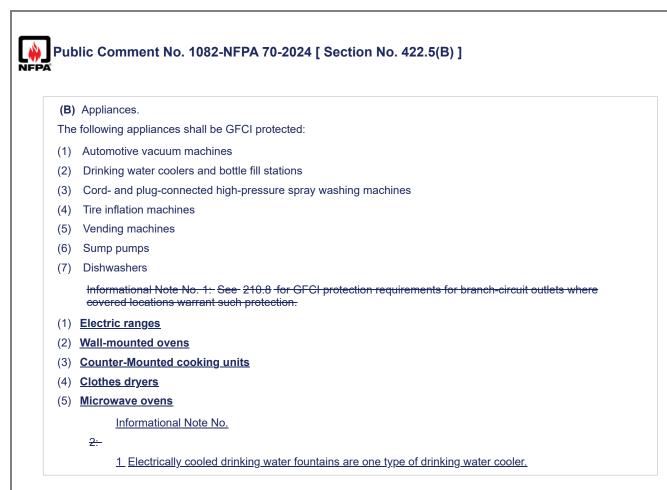
First Revision No. 8871-NFPA 70-2024 [Section No. 422.5]

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned


McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

Public Comment No. 1014-NFPA 70-2024 [Section No. 422.5(B)] (B) Appliances. The following appliances shall be GFCI protected: (1) Automotive vacuum machines (2) Drinking water coolers and bottle fill stations (3) Cord- and plug-connected high-pressure spray washing machines (4) Tire inflation machines (5) Vending machines (6) Sump pumps (7) Dishwashers (8) Electric ranges (9) Wall-mounted ovens (10) Counter-mounted cooking units (11) Clothes dryers (12) Microwave ovens Informational Note No. 1: See 210.8 for GFCI protection requirements for branch-circuit outlets where covered locations warrant such protection. Informational Note No. 2: Electrically cooled drinking water fountains are one type of drinking water cooler. Statement of Problem and Substantiation for Public Comment The items in this list are also found in 210.8(D) verbatim. With the proposed changes this would make both lists identical and aid in clarification for the user. **Related Item** •• Public Input No. 1770, • FR-8871-NFPA 70-2024 **Submitter Information Verification** Submitter Full Name: Edward Brown Organization: Independent Electrical Contrac Street Address: Citv:

State: Zip: Submittal Date: Sat Aug 10 18:25:58 EDT 2024 Committee: NEC-P17

Statement of Problem and Substantiation for Public Comment

This public comment is a response to Public Input No. 1548-NFPA 70-2023 [Section No. 422.5(A) which was resolved by CMP-17. The resolution stated that "insufficient technical substantiation has been submitted to expand the list." CMP 2 has purview of the branch circuit requirements in 210.8(D) and CMP 17 has purview over the requirements in 422.5(A).

This resolution which stated no technical substation was submitted was not a valid response to the PI, when in fact the list had already been expanded per the Substantiation provided as part of SR 7966 during the 2023 Code cycle by CMP 2. Currently two different lists of appliances requiring GFCI exist in Article 210 and Article 422, and they do not match. The submitter of PI 1170 proposed that the list should match to facilitate users of the Code applying the requirements, the PI was not requesting an expansion of the list.

Having two appliance lists requiring GFCI protection that don't match in Articles 210 and 422 is confusing and difficult for users of this Code to reconcile. This PC, along with a related PC f#1081 for 210.8(D) updates the language to harmonize the requirements of 210.8(D) and the requirements of 422(5). This will add clarity for both installers and enforcement.

Related Public Comments for This Document

Related Comment

Relationship

Public Comment No. 1081-NFPA 70-2024 [Section No. 210.8(D)]
Public Comment No. 1081-NFPA 70-2024 [Section No. 210.8(D)]
Related Item

• PI 1548 PI 195

Submitter Information Verification

Submitter Full Name: Rebekah Hren Organization: IPPNC LLC Street Address: City: State: Zip: Submittal Date: Wed Aug 14 10:01:48 EDT 2024 Committee: NEC-P17

Public Comment No. 1164-NFPA 70-2024 [Section No. 422.5(B)]

(B) Appliances.

The following appliances shall be GFCI protected:

- (1) Automotive vacuum machines
- (2) Drinking water coolers and bottle fill stations
- (3) High pressure spray washing machines
- (4) Cord- and plug-connected high-pressure spray washing machines
- (5) Tire inflation machines
- (6) Vending machines
- (7) Sump pumps
- (8) Dishwashers
- (9) <u>Electric ranges</u>
- (10) Wall mounted ovens
- (11) Counter mounted cooking units
- (12) Clothes washers
- (13) Microwave ovens

Informational Note No. 1: See 210.8 for GFCI protection requirements for branch-circuit outlets where covered locations warrant such protection.

Informational Note No. 2: Electrically cooled drinking water fountains are one type of drinking water cooler.

Statement of Problem and Substantiation for Public Comment

Relocating the specific appliances from 210.8(D) to this section will eliminate redundancy in the code. A companion PC removes the list items from 210.8(D) with a pointer to 422.5.

Related Public Comments for This Document

Related Comment

Public Comment No. 1162-NFPA 70-2024 [Section No. 210.8(D)] Public Comment No. 1162-NFPA 70-2024 [Section No. 210.8(D)] Related Item

• FR-7736, FR-8871

Submitter Information Verification

Submitter Full Name: David HittingerOrganization:Independent Electrical ContractorsAffiliation:IEC Codes and StandardsStreet Address:IEC Codes and StandardsCity:State:Zip:Fri Aug 16 10:50:03 EDT 2024Committee:NEC-P17

Relationship

Public Comment No. 1275-NFPA 70-2024 [Section No. 422.5(B)]

(B) Appliances.

The following appliances shall be GFCI protected:

- (1) Automotive vacuum machines
- (2) Drinking water coolers and bottle fill stations
- (3) Cord- and plug-connected high-pressure spray washing machines
- (4) Tire inflation machines
- (5) Vending machines
- (6) Sump pumps
- (7) Dishwashers
- (8) Electric Ranges
- (9) Wall-mounted ovens
- (10) Counter-mounted cooking units
- (11) Clothes dryers
- (12) Microwave ovens

Informational Note No. 1: See 210.8 for GFCI protection requirements for branch-circuit outlets where covered locations warrant such protection.

Informational Note No. 2: Electrically cooled drinking water fountains are one type of drinking water cooler.

Statement of Problem and Substantiation for Public Comment

As requested by the Correlating Committee, a task group was created to address the correct location of the technical material currently found in both 210.8(D) and 422.5, with the aim of limiting that content to one location or the other. Unlike the GFCI requirements set forth in 210.8(A), (B), (C), (E), and (F), the requirements in (D) are not driven by physical location. They are specific to appliances, and therefore should reside in the appliance article.

Relocating all the specific appliances from list in 210.8(D) to this section and adding list items 8-12 appliances relocated from 210.8(D) to be included in the list of appliances requiring GFCI protection.

A companion PC removes the list items from 210.8(D) with a pointer to 422.5.

The task group consisted of the following members of Code-Making Panel 2 and Code-Making Panel 17: David Johnson (Chair), Ryan Jackson, Robert DellaValle, Greg Woyczynski, and Larry Wildermuth. The chair appreciates the time and efforts put forth by these individuals.

Related Public Comments for This Document

Related Comment

Public Comment No. 1273-NFPA 70-2024 [Section No. 210.8(D)] Public Comment No. 1273-NFPA 70-2024 [Section No. 210.8(D)] Related Item

• FR7736, FR8871

Submitter Information Verification

Submitter Full Name: David JohnsonOrganization:CenTex IECAffiliation:Tack Group for correlation of 210.8(D) and 422.5.Street Address:City:

Relationship PC#1273 State:Zip:Submittal Date:Mon Aug 19 14:46:08 EDT 2024Committee:NEC-P17

Public Comment No. 1853-NFPA 70-2024 [Section No. 422.5(B)]

(B) Appliances.

The following appliances shall be GFCI protected:

- (1) Automotive vacuum machines
- (2) Drinking water coolers and bottle fill stations
- (3) Cord- and plug-connected high-pressure spray washing machines
- (4) Tire inflation machines
- (5) Vending machines
- (6) Sump pumps
- (7) Dishwashers
- (8) Electric Ranges
- (9) Wall-mounted ovens
- (10) Counter-mounted cooking units
- (11) Clothes dryers
- (12) Microwave Ovens

Informational Note No. 1: See 210.8 for GFCI protection requirements for branch-circuit outlets where covered locations warrant such protection.

Informational Note No. 2: Electrically cooled drinking water fountains are one type of drinking water cooler.

Statement of Problem and Substantiation for Public Comment

The addition of these appliances to section 422.5 correlates with section 210.8 (D) where these were added for increased life safety by reducing electrocutions. Section 422.5 has a long history of providing GFCI protection for appliances. The addition of these appliances will save lives which is the primary objective of GFCI's.

The correlation between branch circuit electrocution protection and individual appliance electrocution protection allows for maintaining the protections where hazards continue to exist. Here are some current examples https://www.cpsc.gov/Recalls/2017/Following-Plumbers-Death-Electric-Ranges-Recalled-by-Arcelik-AS. There also are numerous clothes dryer electrocution of children plus non-fatal shock hazards, see https://www.yahoo.com/lifestyle/4-year-old-girl-electrocuted-dryer-heres-parents-need-know-175906515.html, https://www.justanswer.com/neurology/moztc-shocked-myself-clothes-dryer-timer-morning-it-s.html, https://www.dallasnews.com/news/2018/07/10/10-year-old-girl-died-rescuing-beloved-kittens-from-behind-a-dryer-in-east-texas-home/, and many others. There have been several shocks and electrocutions tied to microwaves. While most of these involve maintenance or repair activities. Per the Texas department of insurance."..improper use or maintenance of microwaves can cause some dangers, primarily fire or electric shock."

Related Item

• PI 1548 • PI 1770 • PI 3205

Submitter Information Verification

Submitter Full Name: Keith WatersOrganization:Schneider ElectricStreet Address:City:City:State:State:Zip:Submittal Date:Tue Aug 27 17:35:40 EDT 2024Committee:NEC-P17

Public Comment No. 1891-NFPA 70-2024 [Section No. 422.5(B)]

(B) Appliances.

The following appliances shall be GFCI protected:

- (1) Automotive vacuum machines
- (2) Drinking water coolers and bottle fill stations
- (3) Cord- and plug-connected high-pressure spray washing machines
- (4) Tire inflation machines
- (5) Vending machines
- (6) Sump pumps
- (7) Dishwashers

Exception No. 1: GFCI protection shall not be required for an electric range, wall-mounted oven, or counter-mounted cooking unit if all the following conditions are met:

- a. The appliance is not portable
- b. The receptacle is not installed within 1.8m (6 ft) of the top inside edge of the bowl of a sink
- c. The receptacle is installed within 1.2m (4 ft) of the appliance enclosure
- d. The receptacle is a single receptacle

This exception shall expire January 1, 2028

Informational Note No. 1: See 210.8 for GFCI protection requirements for branch-circuit outlets where covered locations warrant such protection.

Informational Note No. 2: Electrically cooled drinking water fountains are one type of drinking water cooler.

Statement of Problem and Substantiation for Public Comment

AHAM is against expanding the list of appliances until UL standard requirements have been updated to resolve nuisance tripping, including requirements within the UL 943 standard for GFCIs. If additional appliances are not carried over from Chapter 2 to Chapter 4, this PC should be withdrawn. However, if additional appliances are carried over from Chapter 2 to Chapter 4, consumers must be protected from nuisance tripping.

The First Draft allows the use of modernized GFCIs, termed Class A-HF. These modernized GFCIs are not required in the First Draft which means the higher risk of GFCI nuisance tripping remains if the appliance is connected to a non-modernized Class A GFCI.

The code should allow a proactive approach in preventing GFCI nuisance tripping by making an exception for appliances which present a lower risk of shock. This lower risk is achieved through four conditions of acceptability listed in (a.) through (d.) A number of these conditions were added and edited in response to comments provided during the First Draft meetings.

An expiration date was also added in response to comments provided during the First Draft meeting. AHAM hopes that, by 2028, modernization will be required in the UL 943 standard for all Class A GFCIs, not just GFCIs which meet an optional rating.

Related Item

• FR 7788 • PI 1770

Submitter Information Verification

Submitter Full Name	: Greg Woyczynski
Organization:	Association of Home Appliance
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Tue Aug 27 21:18:04 EDT 2024
Committee:	NEC-P17

Public Comm	ent No. 1865-NFPA 70-2024 [Section No. 422.5 [Excluding any Sub-Sections]]
GFCI protection	shall be provided in accordance with 422.5(A) through 422.5(C). Multiple GFCI devices shall be
permitted but sh	all not be required. <u>The GFCI may be listed and identified as High Frequency (HF)</u> .
atement of Probl	em and Substantiation for Public Comment
	rd for GFCIs is being updated to reduce nuisance tripping on loads which contain modernized electric is LED drivers, switched-mode power supplies, and variable frequency drives.
the UL 943 draft (ex	ninary review draft (April 2024), this modernized GFCI was referred to as Class A-HF. The next versi «pected Q3/Q4 2024) will change Class A-HF to a High Frequency (HF) rating. Although the name is rlying technical specifications are not.
This change to the	First Draft will better align language in the NEC with the latest language in UL standards work.
elated Public Cor	nments for This Document
	Related Comment Relationship
Public Comment N	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]]
Public Comment N Related	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]]
Public Comment N	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]]
Public Comment N Related • FR 7788	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]] Item
Public Comment N <u>Related</u> • FR 7788 Ibmitter Informat	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]] Item
Public Comment N <u>Related</u> • FR 7788 Ibmitter Informat	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]] Item Item Item
Public Comment N Related • FR 7788 Ibmitter Informat Submitter Full Nan	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]] Item Item Item
Public Comment N Related • FR 7788 Jbmitter Informat Submitter Full Nan Organization:	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]] Item Item Item
Public Comment N Related • FR 7788 Jobmitter Informat Submitter Full Nan Organization: Street Address:	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]] Item Item Item
Public Comment N Related • FR 7788 Jobmitter Informat Submitter Full Nan Organization: Street Address: City:	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]] Item Item Item
Public Comment N Related • FR 7788 ubmitter Informat Submitter Full Nan Organization: Street Address: City: State:	Related Comment Relationship Io. 1857-NFPA 70-2024 [Section No. 210.8 [Excluding any Sub-Sections]] Item Item Item

Public Comment No. 1595-NFPA 70-2024 [Section No. 422.10]

422.10 Branch Circuits.

Branch circuits supplying appliances shall comply with 422.10(A) or 422.10(B) -

(A) Individual Branch Circuits.

Individual branch circuits supplying appliances shall comply with the following as applicable:

- (1) The ampacities of branch-circuit conductors shall not be less than the marked rating of the appliance or the marked rating of an appliance having combined loads.
- (2) The ampacities of branch-circuit conductors for motor-operated appliances not having a marked rating shall comply with Article 430, Part II.
- (3) The branch-circuit rating for an appliance that is a continuous load, other than a motor-operated appliance, shall not be less than 125 percent of the marked rating, or not less than 100 percent of the marked rating if the branch-circuit device and its assembly are listed for continuous loading at 100 percent of its rating.
- (4) Branch circuits and branch-circuit conductors for household ranges and cooking appliances shall be permitted to comply with Table 120.55 and be sized in accordance with 210.19(C).
- (B) Branch Circuits Supplying Two or More Loads.

For branch circuits supplying appliances and other loads, the rating shall be determined in accordance with 210.23.

Statement of Problem and Substantiation for Public Comment

This section is out of scope for Article 422 and already covered as part of Article 210. The scope of Article 422 is "This article covers electrical appliances used in any occupancy." Branch circuit requirements for appliances and motors and other loads are already addressed as part of Article 210.

Related Item

• FR 8838

Submitter Information Verification

Submitter Full Name	: Thomas Domitrovich
Organization:	Eaton Corporation
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Sat Aug 24 13:24:17 EDT 2024
Committee:	NEC-P17

Public Comment No. 1598-NFPA 70-2024 [Section No. 422.11]

422.11 Overcurrent Protection.

Appliances shall be protected against overcurrent in accordance with 422.11(A) through 422.11(G) and 422.10.

(A) Branch-Circuit Overcurrent Protection.

Branch circuits shall be protected in accordance with 240.4 -

If a protective device rating is marked on an appliance, the branch-circuit overcurrent protective device rating shall not exceed that rating.

(B) Household-Type Appliances with Surface Heating Elements.

Household-type appliances with surface heating elements having a maximum demand of more than 60 amperes calculated in accordance with Table 120.55 shall have their power supply subdivided into two or more circuits, each of which shall be provided with overcurrent protection rated at not over 50 amperes.

(C) Infrared Lamp Commercial and Industrial Heating Appliances.

Infrared lamp commercial and industrial heating appliances shall have overcurrent protection not exceeding 50 amperes.

(D) Open-Coil or Exposed Sheathed-Coil Types of Surface Heating Elements in Commercial-Type Heating Appliances.

Open-coil or exposed sheathed-coil types of surface heating elements in commercial-type heating appliances shall be protected by overcurrent protective devices rated at not over 50 amperes.

(E) Single Non-Motor-Operated Appliance.

If the branch circuit supplies a single non-motor-operated appliance, the rating of overcurrent protection shall comply with the following:

- (1) Not exceed the overcurrent protection rating marked on the appliance.
- (2) Not exceed 20 amperes if the overcurrent protection rating is not marked and the appliance is rated 13.3 amperes or less.
- (3) Not exceed 150 percent of the appliance rated current if the overcurrent protection rating is not marked and the appliance is rated over 13.3 amperes. Where 150 percent of the appliance rating does not correspond to a standard overcurrent device ampere rating, the next higher standard rating shall be permitted.
- (F) Electric Heating Appliances Employing Resistance-Type Heating Elements Rated More Than 48 Amperes.
- (1) Electric Heating Appliances.

Electric heating appliances employing resistance-type heating elements rated more than 48 amperes, other than household appliances with surface heating elements covered by 422.11(B), and commercial-type heating appliances covered by 422.11(D), shall have the heating elements subdivided. Each subdivided load shall not exceed 48 amperes, and each subdivided load shall be protected at not more than 60 amperes.

These supplementary overcurrent protective devices shall be (1) factory-installed within or on the heater enclosure or provided as a separate assembly by the heater manufacturer; (2) accessible; and (3) suitable for branch-circuit protection.

The main conductors supplying these overcurrent protective devices shall be considered branch-circuit conductors.

(2) Commercial Kitchen and Cooking Appliances.

Commercial kitchen and cooking appliances using sheathed-type heating elements not covered in 422.11(D) shall be permitted to be subdivided into circuits not exceeding 120 amperes and protected at not more than 150 amperes where one of the following is met:

- (1) Elements are integral with and enclosed within a cooking surface.
- (2) Elements are completely contained within an enclosure identified as suitable for this use.
- (3) Elements are contained within an ASME-rated and stamped vessel.

(3) Water Heaters and Steam Boilers.

Resistance-type immersion electric heating elements shall be permitted to be subdivided into circuits not exceeding 120 amperes and protected at not more than 150 amperes as follows:

- (1) Where contained in ASME-rated and stamped vessels
- (2) Where included in listed instantaneous water heaters
- (3) Where installed in low-pressure water heater tanks or open-outlet water heater vessels

Informational Note: See IEC 60335-2-21, *Household and similar electrical appliances* — *Safety* — *Particular requirements for storage water heaters*, for information on low-pressure and open-outlet heaters are atmospheric pressure water heaters

(G) Motor-Operated Appliances.

Motors of motor-operated appliances shall be provided with overload protection in accordance with Article 430, Part III. Hermetic refrigerant motor-compressors in air-conditioning or refrigerating equipment shall be provided with overload protection in accordance with Article 440, Part VI. Where appliance overcurrent protective devices that are separate from the appliance are required, data for selection of these devices shall be marked on the appliance. The minimum marking shall be that specified in 430.7 and 440.4.

Statement of Problem and Substantiation for Public Comment

Branch circuit requirements for protection of branch circuits are not in the scope of Article 422. This change ensures the proper sections are all addressed as appropriate elsewhere in this code. the scope of Article 422 reminds us that this article only applies to electrical appliances. "This article covers electrical appliances used in any occupancy."

Related Item

• FR 8877

Submitter Information Verification

Submitter Full Name: Thomas DomitrovichOrganization:Eaton CorporationStreet Address:Image: City:City:State:State:Image: City:Submittal Date:Sat Aug 24 13:31:08 EDT 2024Committee:NEC-P17

Public Comment No. 1443-NFPA 70-2024 [Section No. 422.18(A)]

(A) Support.

Ceiling-suspended (paddle) fans shall be supported independently of an outlet box or by one of the following:

- (1) A listed outlet box or listed outlet box system identified for fan support installed in accordance with 314.27(B)
- (2) A listed outlet box system, a listed weight-supporting ceiling receptacle (<u>WSCR</u>), and a compatible factoryinstalled weight-supporting attachment fitting (<u>WSAF</u>) that is installed in accordance with 314.27(E)
- (3) Exception: In bedrooms of one- and two-family dwellings, ceiling-suspended (paddle) fans shall be supported in accordance with both the following: (1) A listed outlet box or listed outlet box system identified for fan support installed in accordance with 314.27(C) (2) A listed outlet box system, a listed WSCR, and a compatible factory installed WSAF that is installed in accordance with 314.27(E).
- (4) This exception shall become effective on January 1, 2029.

Additional Proposed Changes

File Name SKYX Final Report 20240828.pdf Description Supporting Material SKYX Final Report Approved

Statement of Problem and Substantiation for Public Comment

The only change in this PC is to modify (A)(2) and add an effective date. The PC only addresses ceiling-suspended (paddle) fan installation in new construction or a significant remodel; there are no retroactive requirements. Additionally, a letter of compliance was provided to NFPA to satisfy the ANSI/NFPA Essential Patent Requirements; if the mandatory use of the WSCR is approved in the NEC-2026, SKYX Platforms will agree to license the WSCR for no licensing fee.

Based on prior Panel feedback, a standard NEMA configuration was attained and published in ANSI/NEMA WD 6, "American National Standard for Wiring Devices - Dimensional Specifications." The WSCR for ceiling-suspended (paddle) fans is keyed so that it will only accept the WSAF for ceiling fans. The WSCR for ceiling fans is a more robust receptacle, which is designed to support up to 70-pounds and the vibration from the dynamic load of a fan.

In the panel statement, it was acknowledged that "...these devices may improve safety and ease of installation...", but didn't want to "...restrict other options which are still in use and supported by manufacturers..." The WSCR has been determined to be compatible with all known ceiling outlet boxes. Additionally, an effective date was added to allow time for implementation by the industry, including depleting current inventory or inventory retrofitting. The panel statement indicated that mandated WSCR would restrict the options for installation. Currently, there are two options: traditional and the WSCR. In the new study detailed below, the WSCR has been proven to be a safer installation method; as a result, there should just be one option for new construction. If the requirement for the use of WSCRs for ceiling fans is accepted, SKYX Platforms will agree to license the WSCR for no licensing fee; all manufacturers would have access for use.

The Panel noted that the use of the WSCR "...may improve safety and ease of installation...". The NEC is the minimum electrical safety standard. If there are new technologies available to improve safety, they should be adopted as mandatory. For example, GFCI, AFCI, and tamper-resistant receptacles were new technologies to improve safety and are now mandated.

NEW STUDY: LADDER USE DURING INSTALLATIONS. To further quantify how much safer and easier the ceiling fan installation with the WSCR when compared to the traditional ceiling fan installation, a study with a 3rd party was commissioned to review factors that contribute to the severity of hazards during installation.

Although the study was completed using luminaires, it is reasonable to extrapolate the study results for the installation of ceiling fans. With more overhead work time and greater average fan weight, the safety improvement when using the WSCR versus traditional installation would be even more significant.

There were three installation types that were examined in this study: a) traditional to traditional, b) convert traditional to WSCR/WSAF and c) replacing existing luminaire with a WSAF to a new luminaire with WSAF. All luminaires were assembled prior to installation. The study conducted by Dr. Erika M. Pliner, PhD and Kurt E. Beschorner, PhD is attached and the major conclusions follow.

1. The more time on the ladder, the more risk for a fall or injury. The study found the average installation time on the ladder is 20 minutes for a) traditional, less than 4 minutes to b) convert from traditional to WSCR/WSAF, and less than a half minute for c) replacing an existing WSAF luminaire.

2. Time holding the luminaire during installation was examined. The study found a holding time of 1.33 minutes for a) traditional to traditional [when using a cross-bar to temporarily support the luminaire], 0.76 minutes [43% reduction in time] for b) traditional to WSCR, and 0.22 minutes [83% reduction from traditional] for a c) replacement of a new luminaire with

WSAF. For conditions b) and c), a temporary support for the luminaire is not necessary.

3. Time on the ladder that required the installer's shoulder(s) to be raised 90 degrees or more during the uninstallation and installation of a light fixture was examined. The average raised shoulder time for a) traditional installation to traditional installation is 13 minutes, 2.04 minutes for b) traditional to WSCR, and less than a minute for a c) replacement of a luminaire with WSAF

A reduced time on the ladder reduces the risk of a fall and injury. While on the ladder and performing multiple tasks, the risk of fall and injury is increased. If the WSCR is installed during construction, the installer never needs to touch the wires and be exposed to a shock hazard. With the WSCR, the inspector can easily confirm proper wiring through the use of a circuit tester, which could eliminate the need for an inspector to use a ladder.

Falls are a leading cause of injuries based on CDC data. Reducing fall hazards has been a major educational goal of OSHA for many years. Simplifying the task that needs to be performed on a ladder (which also reduces the time spent on a ladder) has been shown to greatly minimize the fall hazard. Multi-tasking while on a ladder contributes to the likelihood of falling. Clearly this applies to a traditional ceiling fan installation with many steps. Weight and off-set balance factors contribute to the fall hazard. The installer must not only balance himself but also the ceiling fan while on a ladder.

According to Pliner et al, a longer time to complete the task resulted in poorer performance in accomplishing the task and increased ladder fall risk exposure. This research involved older individuals, which reflects the aging population of the skilled electrical industry. In Pliner's 2020 doctoral dissertation study, it was clear that multi-tasking negatively affected task completion time.

Additionally, there are instances documented in the CPSC database of parts or entire ceiling fans falling, as well as the installers themselves falling.

NEW CONSTRUCTION INSTALLATION. The installer is wiring a 3-ounce fan WSCR into the ceiling versus the traditional wiring while supporting the weight and balancing the fan. On average, ceiling fans weigh 18 pounds. The simplified wiring minimizes the potential for injury from either falling or electric shock. With the WSCR, the inspector can easily confirm proper wiring through the use of a circuit tester, which could eliminate the need for an inspector to use a ladder.

FUTURE CEILING FAN INSTALLATION OR REPLACEMENT. With the WSCR already being installed in the ceiling, the ceiling fan is plug-and-play. This feature is convenient for the installer, as the ceiling fan can be installed at a later date.

In the past, televisions and many appliances were hardwired; imagine having to rewire whenever the appliance needs to be moved or replaced. Microwave ovens and toaster ovens likely wouldn't be as popular today if they were hardwired. These examples illustrate the importance of making the WSCR/WSAF mandatory. Hardwiring limits consumer flexibility to change decor and devices. When looking around the home, most electrical equipment is plug and play, except ceiling luminaires and ceiling fans.

DATA TO SUBSTANTIATE. A significant amount of information was collected and analyzed and was provided during the First Draft stage, including information from the U.S. Census Bureau, OSHA, NIOSH, CPSC, and CDC.

According to OSHA, falls are the leading cause of death in construction (see https://www.osha.gov/stop-falls), The use of ladders cannot be eliminated, but the simplified installation will reduce the time spent on ladders. It will also eliminate the need to juggle fixtures, while trying to make electrical connections. By engineering out the hazard, the human factors contributing to injuries or deaths are mitigated. The proposed changes to this section increase safety for the initial installation and for future exchanges of luminaires or ceiling-suspended (paddle) fans in one- and two-family dwellings. OSHA reports point to two professional electricians' deaths that potentially could've been prevented by the use of WSCR. See the following links: https://www.osha.gov/pls/imis/establishment.inspection_detail?id=18396960 https://www.osha.gov/pls/imis/establishment.inspection_detail?id=314163627 According to the

According to the American Ladder Institute, as published on February 15, 2018 on the ANSI Blog: https://blog.ansi.org/ali/common-causes-ladder-incidents/?amp=1, the number 3 cause of ladder incidents is overreaching while on the ladder. This is common when installing ceiling fans.

The CPSC's National Electronic Injury Surveillance System (NEISS) contains numerous incidents involving injuries from ceiling fans which was provided during the First Draft.

The document entitled "Relevant Incidents involving Ceiling (Paddle) Fans 2022-2013" reports on incidents where patient care was provided by one of those 96 hospitals. It is important to note that these incidents likely injuries caused by a falling fan. This is because NEISS reports on injuries caused by consumer products. Falls are the most common of all injuries, but Incidents that occurred from falls during installation may not show up in this report, because they were not caused by the fan or luminaire. They were cause by a ladder safety issue.

Additionally, there are instances documented in the CPSC database of parts or entire ceiling fans falling, as well as the installers themselves falling.

Many of the incidents involving ceiling fans are the result of improperly installed fans that have fallen on occupants. The WSCR for ceiling fans provides a safe and robust installation that includes a double-locking mechanism, along with an additional locking bracket to provide protection from the dynamic forces from the spinning fan motor.

REFERENCES

National Census of Fatal Occupational Injuries in 2018 (17 Dec. 2019) https://www.bls.gov/news.release/pdf/cfoi.pdf. Accessed 20 May 2020.

National Electronic Injury Surveillance System On-Line Query System U.S. Consumer Products Safety Commission. (2019, July 08). Retrieved July 09, 2020, from https://www.cpsc.gov/cgibin/NEISSQuery/home.aspx Campbell, R. (2022). (rep.).

Pliner, Erika M., Daina L. Sturnieks, Kurt E. Beschorner, Mark S. Redfern, Stephen R. Lord, Individual factors that influence task performance on a stepladder in older people, Safety Science, Volume 136, 2021,105152, ISSN 0925-7535, https://doi.org/10.1016/j.ssci.2020.105152. (https://www.sciencedirect.com/science/article/pii/S0925753520305488)

Pliner, Erika Mae. "Factors Contributing to Ladder Falls and Broader Impacts on Safety and Biomechanics." University of Pittsburgh, 2020.

Related Item

• PI 2484

Submitter Information Verification

Submitter Full Name: Patricia BarronOrganization:SKYX PlatformsStreet Address:City:City:State:Zip:Submittal Date:Committee:NEC-P17

Consulting Report

Time Analysis of Ceiling Light Fixture Installation: Influence of Plug-in Solutions

Prepared by:

Erika M Pliner, PhD Kurt E Beschorner, PhD

Presented for: SKYX Platforms Corp.

August 28th 2024

Erika M Pliner, PhD empliner@gmail.com (920) 328-8546

Kurt E Beschorner, PhD <u>kurt.beschorner@gmail.com</u> (412) 680-5495

Table of Contents

Team Expertise	;
Motivation	3
Purpose	ŀ
Methods	5
Participants	;
Data Collection5	;
Data Analysis	>
Statistical Analysis)
Results)
Results by Condition12	<u>,</u>
Results by Phase15	;
Interpretation of Results	,
Impact of Report	3
Appendix	,
References	

Team Expertise

Dr. Erika Pliner is an Assistant Professor in Mechanical Engineering at the University of Utah. She obtained her PhD in Bioengineering at the University of Pittsburgh with a specialization in whole-body biomechanics. In addition, she completed postdoctoral training in neuromechanics and physiology. She obtained her BS and MS in Mechanical Engineering at the University of Wisconsin-Milwaukee. Dr. Pliner's research applies core competencies on biomechanics, ergonomics and neuroscience to improve personal and occupational safety. She has designed and conducted multiple ladder safety research studies, identifying individual, environmental, and biomechanical risk factors of ladder falls in the occupational and domestic setting. She is the primary instructor of the Ergonomics and Occupational Biomechanics courses at the University of Utah.

Dr. Kurt Beschorner is an Associate Professor in Bioengineering at the University of Pittsburgh. He has specialized in fall prevention using methods of mechanics, understanding of humans and their motion, and ergonomics. He has led several projects to identify contributing factors of falling considering ladder design, individual risk factors, shoes, and flooring. He also is the Chief Executive Manager of Tread Traction Technologies, LLC where he works with companies to develop products that reduce falling risk. In this role, he has worked directly with footwear and walking surface companies to improve product design in ways that reduce fall risk. During this project, he operated in his role at Tread Traction Technologies, LLC and not through his position at the University of Pittsburgh.

Motivation

The installation of ceiling light fixtures subjects the worker or homeowner to risk of a ladder fall injury and musculoskeletal disorders.

The hazardous nature of ladder use is supported by injury records among occupational workers and emergency department visits. Annually, ladders are the primary source to over 136,000 injuries requiring emergency care (D'Souza, Smith and Trifiletti 2007). In addition, ladders are the leading cause of fatality among work-related falls from a height (Bureau of Labor Statistics 2016). Ladder use is a common task among homebuilders, contractors, and homeowners that should be carefully managed and therefore has been the subject of regulation. Minimizing worker fatigue and ladder use exposure can reduce injury risk by improving balance control and limiting the opportunity for a fall, respectively. For example, ladder fall injury records of workers revealed the time to ladder fall injury was further delayed (indicating lower risk) among works who had longer accumulative rest breaks (Arlinghaus, Lombardi et al. 2012),

which suggests the relevance of both fatigue and exposure to fall risk. Faster task completion times for ladder use tasks has been argued to reduce ladder fall risk in other peer-reviewed studies (Pliner, Sturnieks and Lord 2020, Pliner, Sturnieks et al. 2021). New consumer ladder-related products may achieve reduced fall risk if they enhance the efficiency of ladder work tasks and reduce the time spent on a ladder.

The installation of ceiling light fixtures requires overhead arm postures, upper limb effort to support the fixture, bimanual motor control. Overhead arm postures subject tissues in the upper extremities to additional strain during shoulder flexion and abduction (upper arm elevated above 90°). Individual strength is reduced in shoulder flexion and abduction (Stobbe 1982), leading to earlier fatigue (Chaffin 1973). Prolonged exertion, as can occur when holding a light fixture during installation, further exacerbate individual fatigue and pain (Caldwell and Smith 1966). The bimanual motor control during installation of a light fixture (e.g. wiring) hastens fatigue due to the increase in muscle activity that is required for precise actions (i.e. muscle co-contraction). The additive strenuous demands of ceiling light installation (i.e. overhead arm posture, fixture load, motor control) expose the worker or homeowner to a risk for musculoskeletal disorders. Repeated exposure of this type of task can lead to permanent functional disability (Johansson and Sojka 1991). New consumer products that reduce the time of these strenuous demands during ceiling fixture installation are expected to reduce the risk of musculoskeletal disorder.

Purpose

The objective of this project was to conduct a time analysis of ceiling light fixture installation between a traditional installation method and a novel installation method with new consumer products (Figure 1). The new consumer products comprised a weight support ceiling receptacle (WSCR) and weight-supporting attachment fitting (WSAF). The time analysis comprised four task-based measures, quantifying the 1) time on the ladder, 2) time the arm elevated above 90°, 3) time holding the fixture, and 4) the number of dropped items. Longer time durations in these task-based measures are associated with increased injury risk due to a fall from a ladder, user fatigue and musculoskeletal disorder. In particular, task-based measures 2 (time the arm elevated above 90°) and 3 (time holing fixture) are directly related to fall risk. Task-based measures 4 (number of dropped items) is a performance metric related to mistakes where more dropped items indicate poorer performance in completing the fixture-changing task.

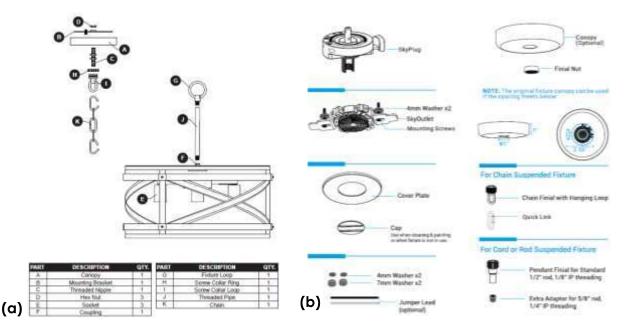


Figure 1: Diagram fo parts for a standard (a) and a novel (b) ceiling light fixture installation.

Methods

Participants

Ten adults [8 men; 2 women; mean (standard deviation) height: 1.78 (0.01) m] were recruited to complete replacement of a ceiling light fixture (referred to hereafter as users). Users were novice to light fixture installation with do-it-yourself project experience.

Data Collection

All users completed three light fixture changing trials. Each trial comprised uninstallation and installation of a light fixture. Three uninstallation/installation conditions were presented in randomized order (order of presentation in Appendix A):

Traditional to Traditional – The standard method to uninstall and install a light fixture (Figure 1a).

Traditional to WSCR/WSAF – The standard method to uninstall a light fixture (Figure 1a), installation of the weight support ceiling receptacle (WSCR), and installation of the light fixture with the weight-supporting attachment fitting (WSAF) (Figure 1b).

WSAF to WSAF – Uninstallation and installation of a light fixture with a weight-supporting attachment fitting (WSAF) (Figure 1b).

The same chain light fixture was used in all conditions (Appendix B; Kichler Lighting LLC, Solon, OH). The diameter (18.5 inches) and weight (10.0 lbs.) of this light fixture fell within one standard deviation of the mean diameter and weight of commercially available light fixtures (Appendix C). Installation instructions were provided for the traditional and novel installation methods (Appendix D-F). To complete the light fixture changing tasks, users climbed a 6-foot fiberglass step ladder with a 250 lbs. load capacity (Werner Co., Itasca, IL). Placement of the ladder was fixed by the project coordinators. The ladder was placed in a location that minimized overreach during the uninstallation/installation task for the average user. Users were provided with non-powered tools to complete the task.

Users were asked to rest for 2-minutes between each uninstallation/installation phase and trial. The **Traditional to Traditional** and **WSAF to WSAF** conditions comprised two phases: uninstallation and installation. The **Traditional to WSCR/WSAF** condition comprised three phases: uninstallation, installation of WSCR, and installation.

Video recordings were captured for each trial. The sagittal plane (side view) of the users completing the task was captured. The spatial resolution of this view captured the user, light fixture and ladder. The temporal resolution of the video was captured at 60 frames per second (60 Hz).

Data Analysis

Video data was post-processed in commercial video editing software to permit frameby-frame analysis (Adobe Premiere Pro, San Jose, CA). Onset, offset and occurrence of task-based measures were denoted along the video timeline via 'Markers' (marker is defined in this report as an event occurring at a specific time). All 'Markers' were assessed by single biomechanist (i.e. a human-movement expert) to promote consistency and accuracy across users and conditions. Specifics defining each timebased measure are as follows: Time on the ladder (Figure 2, green marker) – from first foot onset with the ladder to last foot offset with the ladder.

Figure 2: Green marker denoting ladder onset, 'LADDER_ON'. Ladder offset denoted as 'LADDER_OFF'.

Time the arm above 90° (Figure 3, orange marker) – movement analysis of the left arm. From when the arm displayed visual shoulder flexion or abduction greater than 90°.

Figure 3: Orange marker denoting left arm above 90° onset, 'SHO_90_ON'. Arm above 90° offset denoted as 'SHO_90_OFF'.

Time holding the fixture (Figure 4, purple marker) – from loading one or both of the upper arms with the weight of the light fixture to off-loading the weight of the light fixture.

Figure 4: Purple marker denoting fixture load onset, 'FIXTURE_LOAD_ON'. Fixture load offset denoted as 'FIXTURE_LOAD_OFF'.

Dropped items (Figure 5, yellow marker) – occurrence of an item (e.g. tool, wire cap, light fixture) unintentionally dropping.

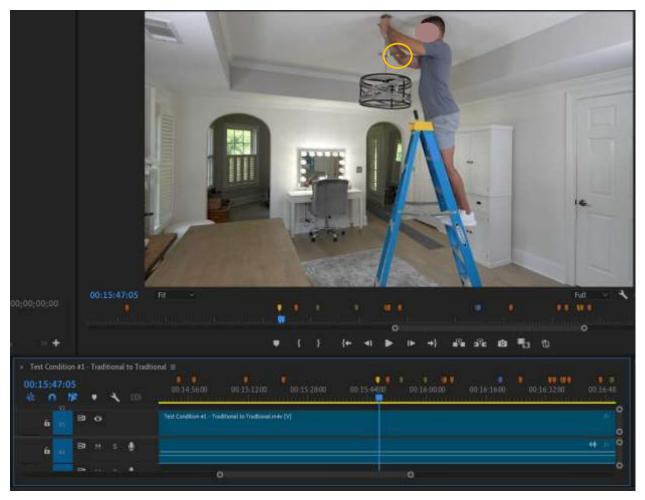


Figure 5: Yellow marker denoting occurrence of a dropped item, 'PART_DROP'.

End of uninstallation (Figure 6, white marker) – occurrence of the conclusion of the uninstallation phase.

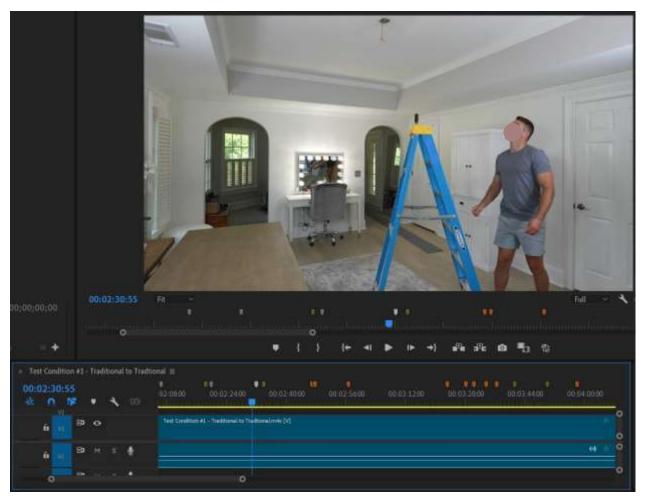


Figure 6: White marker denoting occurrence of the end of uninstallation, 'END_OF_UNINSTALL'. End of WSCR installation denoted as 'END_OF_SKYX_INSTALL'.

End of WSCR installation (Figure 6, white marker) - occurrence of the conclusion of the WSCR installation phase.

Onsets, offsets and occurrence of markers were exported from Adobe Premiere Pro to a comma separated values (CSV) spreadsheet. The duration of timing events was quantified between onsets and offsets. The sum of timing durations and the sum of dropped item occurrences was calculated. Total summed time and occurrence of task-based measures were calculated for each user, condition and phase.

Statistical Analysis

To assess time differences of task-based measures between traditional and novel light fixture installation methods, one-way ANOVAs were performed on time-based measures with condition as the predictor variables. If condition was found to be significant, a Tukey's Honestly Significant Difference (HSD) post-hoc test was performed to assess which groups differed. To meet the assumptions of the parametric statistical analyses, natural logarithmic transformations were performed on task-based measures to achieve a normal data distribution. The occurrence of dropped items was not prevalent across all conditions to be tested statistically. We expect the **Traditional to Traditional** installation method to result in the longest time durations and most dropped item occurrences.

To confirm validity in the research design of this project, paired t-tests were performed on time-base measures (time on ladder, time holding fixture, time arm above 90°) within the uninstallation and installation phases between the **Traditional to Traditional** and **Traditional to WSCR/WSAF** conditions and **Traditional to WSCR/WSAF** and **WSAF** to **WSAF** conditions, respectively. We expected the null hypothesis to not be rejected in these tests due to task requirements being identical in these phases (i.e. both uninstalling a light fixture with the traditional method and both installing a light fixture with the novel method). Confirming these outcomes would suggests appropriate randomization in this project's study design.

Results

Results by Condition

The **Traditional to Traditional** condition resulted in a significantly greater time on the ladder (F_{2:27}=1034; p<0.001) (Figure 7), arm time above 90° (F_{2:27}=392; p<0.001) (Figure 8), and time holding the light fixture (F_{2:27}=34; p<0.001) (Figure 9) than the other two conditions. The **WSAF to WSAF** resulted in significantly less time on the ladder and arm time above 90° than the **Traditional to WSCR/WSAF** condition. The occurrence of dropped items was nearly exclusive to the **Traditional to Traditional** condition (Figure 10). The size of these effects was large. The time on ladder was over 20 minutes for the **Traditional to Traditional to WSCF/WSAF** and under 1 minute for the **WSAF to WSAF** condition. Thus, the presence of the ceiling receptacle reduces the time on the ladder by more than 90% (**WSAF to WSAF** compared to **Traditional to Traditional**). Furthermore, the time with an arm elevated above 90° was reduced from about 13 minutes for the **Traditional to WSCF/WSAF** and under 1 minutes for a **WSAF to WSAF** installation. The time holding the light fixture was also markedly reduced albeit a smaller effect than the other two

assessed time metrics. The user spent nearly 2 minutes holding the fixture in the **Traditional to Traditional** condition, which was reduced to under 1 minute in the **Traditional to WSCF/WSAF** and under half a minute in the **WSAF to WSAF** condition. Lastly, the average user dropped between 2 and 3 objects during **Traditional to Traditional** condition but these instances were rare for the other two installation conditions (Figure 10).

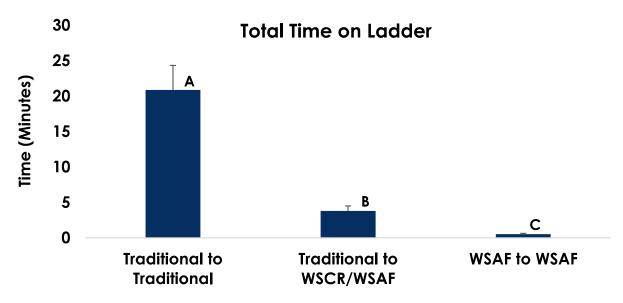


Figure 7: The average total time users spent on the ladder for each uninstallation/installation condition. Error bars denote the standard deviation. Nonmatching letters denote groups that are statistically different from one another.

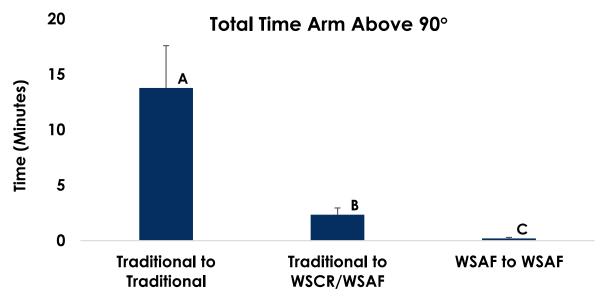


Figure 8: The average total time users had their arm above 90° for each uninstallation/installation condition. Error bars denote the standard deviation. Non-matching letters denote groups that are statistically different from one another.

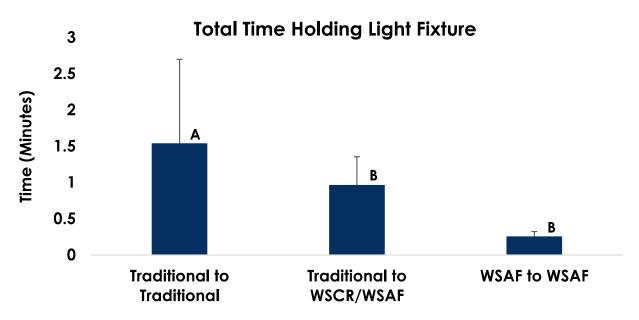


Figure 9: The average total time users were holding the light fixture for each uninstallation/installation condition. Error bars denote the standard deviation. Non-matching letters denote groups that are statistically different from one another.

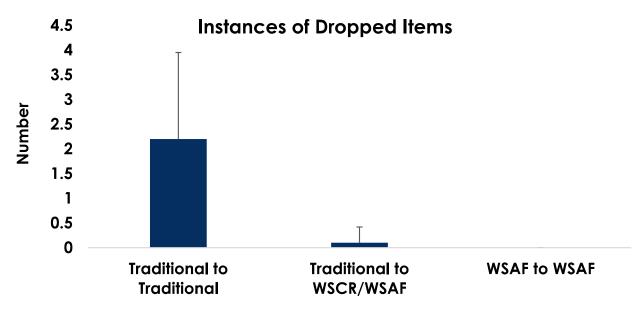


Figure 10: The average total number of dropped items for each uninstallation/installation condition. Error bars denote the standard deviation. Note: no items were dropped during the WSAF to WSAF condition for all users in the project.

Results by Phase

There was no significant differences in time on ladder, time holding the fixture, and arm time above 90° during the uninstallation phase between the **Traditional to Traditional** and **Traditional to WSCR/WSAF** condition (Figure 11). Similarly, there was no significant differences in time on ladder, time holding the fixture, and arm time above 90° during the installation phase between the **Traditional to WSCR/WSAF** and **WSAF to WSAF** condition (Figure 12). Users were on the ladder for about 1 minute and had their arm above 90° for less than 1 minute during the WSCR installation phase (Figure 13). Users were not exposed to addition fixture holding time during the WSCR installation phase.

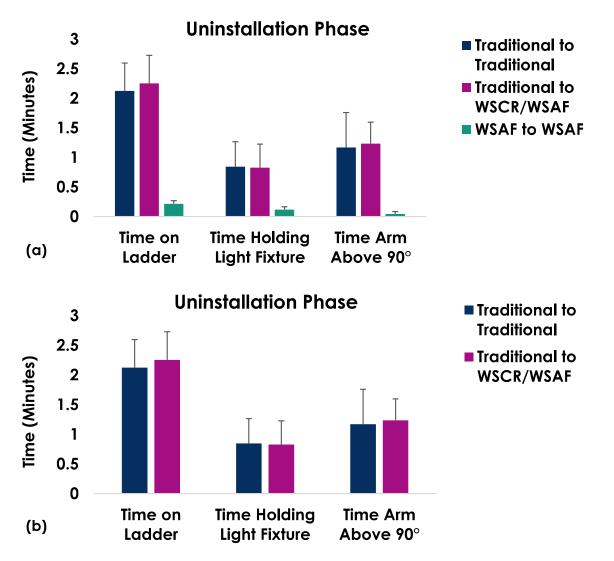


Figure 11: The average total time users spent on the ladder, time holding light fixture and time arm above 90° for each uninstallation phase all three conditions (a) and only two of the conditions (b, conditions that required a traditional uninstallation). Error bars denote the standard deviation.

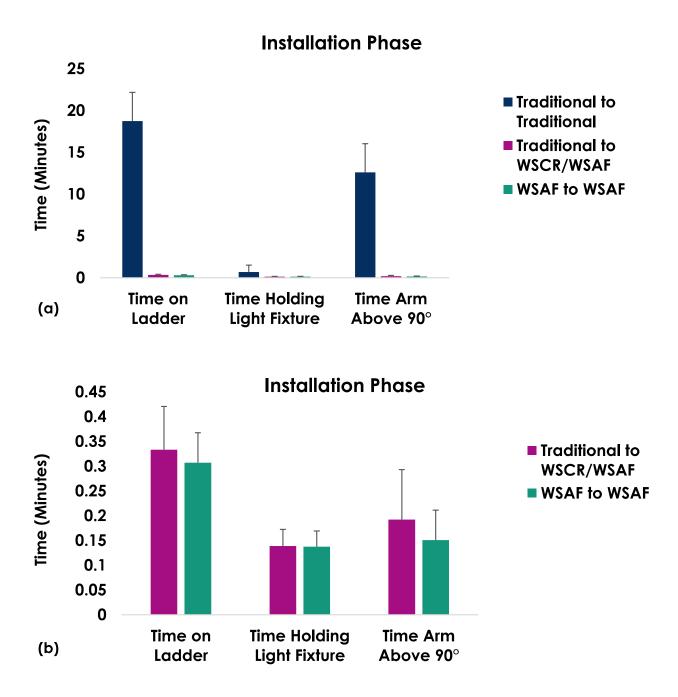


Figure 12: The average total time users spent on the ladder, time holding light fixture and time arm above 90° for each installation phase all three conditions (a) and only two of the conditions (b, conditions that required a novel installation). Error bars denote the standard deviation.

Figure 13: The average total time users spent on the ladder, time holding light fixture and time arm above 90° for the WSCR installation phase for the traditional to WSCR/WSAF condition (the only condition with this phase). During this phase, there was no need for the user to hold the light fixture (no values). Error bars denote the standard deviation.

Interpretation of Results

This analysis determined that a weight-supporting plug-in attachment significantly reduces the time of hazardous and strenuous activities that are associated with light fixture installation and improves performance when considering all metrics that were considered in this study. Notably, the study revealed progressive improvements from a traditional light fixture replacement (**Traditional to Traditional** where a weight-supporting plug-in attachment was not used) to the installation and use of a weight-supporting plug-in attachment (**Traditional to WSCR/WSAF**) and then further improvement when replacing a fixture where the weight-supporting plug-in attachment was already installed (**WSAF to WSAF**). Given these results, the use of weight-supporting plug-in attachments are expected to reduce fatigue and upper extremity musculoskeletal injury risk (through reduced time spent with the arms elevated and reduced time spent holding the fixture). Furthermore, the use of these attachments are anticipated to reduce ladder fall risk compared to changing of light fixture without these attachments through a major reduction in time spent on the ladder and by reducing the impacts of fatigue. The high occurrence of dropped items suggests that performance is enhanced

by these attachments. Dropped items could lead to lost components during installation, which potentially exposes the user to injury risk (if they move abruptly on the ladder in an attempt to catch the falling object or in the case of dropping a large object like the fixture), and may require to complete additional corrective actions such as descending the ladder to retrieve a lost item and then repeating the task that was being conducted when it was dropped.

The analysis described in this report does not address all aspects of safety that may be relevant to light fixture installation. For example, several aspects of ladder fall risk were not considered including the weight distribution on the ladder (i.e., center of pressure) and its impact on tipping of the ladder, the ability of the user to respond to balance disturbances, and whether slip and fall risk might have been influenced during ascent and descent of the user on the ladder. Furthermore, direct measures of fatigue and tissue loading were not conducted, which would provide more detailed insights on musculoskeletal injury risk. Furthermore, the study is unable to estimate the magnitude of risk reduction for either fall risk or musculoskeletal injury.

Impact of Report

This final report provides supportive background, methodological procedures, results, and objective interpretation of ceiling light fixture installation across traditional and novel installation methods. Notably, the report concludes that weight-supporting plugin attachment offers substantial reductions in time spent on a ladder, time with elevated arm postures, time spent holding the light fixtures, and the number of dropped items. These findings indicate that these attachments are expected to reduce fall risk, reduce risk of upper extremity musculoskeletal injury risk, and enhance installation performance.

Knowledge gained from this report can assist in improving worker and homeowner safety. This report may be relevant as:

- Directed safety and injury risk information for workers and homeowners on ceiling fixture installation.
- Additional guidance for National Electrical Code (NEC) standards related to 314.27 Outlet Boxes (A) Boxes at Luminaire or Lampholder Outlets; (C) Boxes at Ceiling-Suspended (Paddle) Fan Outlets.

Appendix

User	Gender	Height (m)	Trial 1	Trial 2	Trial 3
1	М	1.85	Traditional to WSCR/WSAF	WSAF to WSAF	Traditional to Traditional
2	М	1.83	Traditional to Traditional	Traditional to WSCR/WSAF	WSAF to WSAF
3	М	1.83	Traditional to Traditional	Traditional to WSCR/WSAF	WSAF to WSAF
4	М	1.83	Traditional to WSCR/WSAF	Traditional to Traditional	Traditional to WSCR/WSAF
5	М	1.80	WSAF to WSAF	Traditional to Traditional	Traditional to WSCR/WSAF
6	W	1.60	WSAF to WSAF	Traditional to WSCR/WSAF	Traditional to Traditional
7	М	1.80	Traditional to Traditional	WSAF to WSAF	Traditional to WSCR/WSAF
8	М	1.75	Traditional to Traditional	Traditional to WSCR/WSAF	WSAF to WSAF
9	W	1.70	WSAF to WSAF	Traditional to WSCR/WSAF	Traditional to Traditional
10	М	1.83	Traditional to WSCR/WSAF	WSAF to WSAF	Traditional to Traditional

Appendix A: Randomization order of uninstallation/installation conditions by user.

Appendix B: Kichler Stetton 3-Light Anvil Iron Farmhouse Drum Hanging Pendant Light

36	Size	Medium
9.25	Weight (Ibs.)	10.031
46	Width (inches)	18.5
10	Wire Length (inches)	72
	9.25 46	9.25 Weight (lbs.)46 Width (inches)

Appendix C: Diameter and weight of commercially available ceiling light fixtures.

Appendix D: Standard instructions to install a chain light fixture.

Appendix E: Instructions to install a weight supporting ceiling receptacle (WSCR).

https://skyx.vids.io/videos/4490d1b41d1ae1cdcd/install-the-skyoutlet

Appendix F: Instructions to install a weight-supporting attachment fitting (WSAF) for a chain fixture.

https://skyx.vids.io/videos/d390d1b41d1be5c35a/install-a-skyplug-chain-fixture

References

Arlinghaus, A., et al. (2012). "The effect of rest breaks on time to injury—a study on workrelated ladder-fall injuries in the United States." <u>Scandinavian journal of work,</u> <u>environment & health</u>: 560-567.

Bureau of Labor Statistics, U. D. o. L. (2016) Fatal work-related falls to a lower level increased 26 percent from 2011 to 2016. <u>The Economics Daily</u>

Caldwell, L. S. and R. P. Smith (1966). "Pain and endurance of isometric muscle contractions." Journal of Engineering Psychology **5**(1): 25-32.

Chaffin, D. B. (1973). "Localized muscle fatigue—definition and measurement." <u>Journal</u> <u>of Occupational and Environmental Medicine</u> **15**(4): 346-354.

D'Souza, A. L., et al. (2007). "Ladder-related injuries treated in emergency departments in the United States, 1990–2005." <u>American journal of preventive medicine</u> **32**(5): 413-418.

Johansson, H. and P. Sojka (1991). "Pathophysiological mechanisms involved in genesis and spread of muscular tension in occupational muscle pain and in chronic musculoskeletal pain syndromes: a hypothesis." <u>Medical hypotheses</u> **35**(3): 196-203.

Pliner, E. M., et al. (2021). "Individual factors that influence task performance on a stepladder in older people." <u>Safety science</u> **136**: 105152.

Pliner, E. M., et al. (2020). "Individual factors that influence task performance on a straight ladder in older people." <u>Experimental Gerontology</u> **142**: 111127.

Stobbe, T. J. (1982). <u>The development of a practical strength testing program for</u> industry, University of Michigan.

424.3 Reconditioned Equipment.

Reconditioned equipment shall comply with 424.3(A) and 424.3(B).

(A)--Permitted-to be Installed.

Reconditioned equipment shall be permitted- to be installed, except as indicated in 424.3(B).

(B)--Not Permitted-to be Installed .

Reconditioned electric space-heating cables shall not be permitted-to be installed .

Statement of Problem and Substantiation for Public Comment

This public comment is made to address an issue with the first draft language changes. The proposed language in this first revision allows electrical equipment to be reconditioned in place as the language pertains to the installation process and not to when any equipment is reconditioned in place. With the existing language in this first revision, the only time reconditioned equipment would not be permitted is if it is being installed. The Code does apply to existing equipment when additions or modifications are being made. The proposed language change from "installed" to "permitted" is more inclusive.

Related Item

• FR 8941

Submitter Information Verification

Public Comment No.	20-NFPA 70-2024	[Section No. 424.3]

424.3 Reconditioned Equipment.

Reconditioned equipment shall comply with 424.3(A) and 424.3(B).

Informational Note: See NEMA CS 100-2020 "Technical Position on Reconditioned Equipment" and NEMA standards publications GD 1-2019 "Evaluating Water-Damaged Electrical Equipment," GD 2-2021 "Evaluating Fireand Heat-Damaged Electrical Equipment," and GD 3-2019 "Evaluating Earthquake Damaged Electrical Equipment Guide" for guidance as to what electrical equipment and components can and cannot be safely reconditioned and properly marked as such.

(A) Permitted to be Installed.

Reconditioned equipment shall be permitted to be installed, except as indicated in 424.3(B).

(B) Not Permitted to be Installed.

Reconditioned electric space-heating cables shall not be permitted to be installed.

Statement of Problem and Substantiation for Public Comment

Because this change allows some use of reconditioned equipment the addition of an Informational Note to refer readers to the appropriate NEMA standards and publications to reduce the potential for confusion and misapplication is justified.

Related Item

• FR 8941-NFPA 70-2024

Submitter Information Verification

Submitter Full Name:E. P. HamiltonOrganization:E. P. Hamilton & amp; Associates, IAffiliation:SelfStreet Address:SelfCity:State:Zip:Wed Jul 10 11:08:01 EDT 2024Submittal Date:Wed Jul 10 11:08:01 EDT 2024Committee:NEC-P17

Public Comr	nent No. 96-NFPA 70-2024 [Section No. 424.4(B)]
	rcuit Conductor Sizing. cuit conductor(s) ampacity shall not be less than 125 percent of the load of the fixed. Fixed electric
	equipment and any associated motor(s) shall be considered a continuous load.
Statement of Prob	elem and Substantiation for Public Comment
sections and would Without this 'correct for the OCPD only considered 'contin	I my PI with the statement "The sizing of the overcurrent protective device is already addressed in other d be redundant." Unfortunately, this statement by the panel is not accurate. ction,' the conductors are sized at 125% and the OCPD is sized at 100%. Since the 125% rule in 210.20(A) applies to a "continuous load." No where in Article 424 does it specify that the loads in Article 424 are uous.' ircuits rule [625.41] was revised in the first draft (my PI) to the same text.
Related Ite	<u>m</u>
• 3207	
Submitter Informa	tion Verification
Submitter Full Na	me: Mike Holt
Organization:	Mike Holt Enterprises Inc
Street Address:	
City:	

State:Zip:Submittal Date:Tue Jul 16 18:09:22 EDT 2024Committee:NEC-P17

	nent No. 804-NFPA 70-2024 [Section No. 424.38(B)]
(B) Uses Not F	Permitted.
Heating cables	shall not be installed as follows:
(1) In closets,	other than as noted in 424.38(C)
(2) Over the to	op of walls where the wall intersects the ceiling
(3) Over partit	ions that extend to the ceiling, unless they are isolated single runs of embedded cable
(4) Under or th	hrough walls
	nets whose clearance from the ceiling is less than the minimum horizontal dimension of the cabinet to t cabinet edge that is open to the room or area
(6) In tub- and	shower walls
(7) Under cab	inets or similar built-ins having no clearance to the floor
locations. It is belie walls, according to cases of total equip from the walls then	ming in showers using heating cables and heating panels is permitted as long as they are suitable for we eved that heating cables or heating panels in shower walls should be permitted similarly to any other the upcoming 2026 edition of Section 424.48. The reasoning for this, is because in the extremely minor oment malfunction, an electrical shock to a person standing in the shower is much less unlikely to occur from the floor. Heating from shower walls is permitted per the Canadian Electrical Code 2024, and the ion CSA C22.2 No. 130 will provide the testing requirements for heating from walls and from ceilings.
	Related Item
• 839-NFPA 70-202	20
ubmitter Informa	tion Verification
Submitter Full Na	me: Gilles Gagnon
Organization:	TemP4 Inc.
Affiliation:	Schluter Systems L.P.
Street Address:	
City:	
State:	
Zip:	

Submittal Date:Mon Aug 05 14:52:18 EDT 2024Committee:NEC-P17

Public Comment No. 11-NFPA 70-2024 [Section No. 425.2]		
425. 2 Listed 2	Listing Requirements.	
Fixed industrial	process heating equipment shall be listed.	
tement of Probl	em and Substantiation for Public Comment	
Grammatical correct	tion. The word "listed" used in this context is grammatically incorrect.	
	Related Item	
• FR 8906-NFPA 70)-2024	
bmitter Informat	tion Verification	
Submitter Full Nan	ne: E. P. Hamilton	
Organization:	E. P. Hamilton & Associates, I	
Affiliation:	Self	
Street Address:		
City:		
State:		
Zip:		
Submittal Date:	Wed Jul 10 10:27:37 EDT 2024	
o divitilitati b ditor		

	ent No. 752-NFPA 70-2024 [Section No. 425.2]
425.2 Listed Re	equirements Listing Requirements .
Fixed industrial	process heating equipment shall be listed.
tement of Probl	em and Substantiation for Public Comment
"Listing Requirement	nts" should be the title of this section, as indicated in the NEC Style Manual.
Related	ltem
• FR 8906	
bmitter Informat	tion Verification
Submitter Full Nan	ne: Ryan Jackson
Organization:	Self-employed
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Sun Aug 04 15:57:40 EDT 2024
oublinitial Date.	

Public Comment No. 1734-NFPA 70-2024 [Section No. 426.1]

426.1 Scope.

This article covers fixed outdoor electric deicing and snow-melting equipment and the installation of these systems.

(A) Embedded.

Embedded in driveways, walks walkways, steps, roads, and other areas.

(B) Exposed.

Exposed on drainage systems, bridge structures, roofs, roads, and other structures.

Informational Note: See ANSI/IEEE 515.1-2012, *Standard for the Testing, Design, Installation and Maintenance of Electrical Resistance Trace Heating for Commercial Applications*, for further information. See IEEE 844/CSA 293 series of standards for fixed outdoor electric deicing and snow-melting equipment.

(C) Combination. Combinations of embedded and exposed equipment in driveways, walkways, steps, roads, bridge structures and similar locations.

Statement of Problem and Substantiation for Public Comment

The scope of Article 426 has been modified to accommodate the new and innovative technology for conductive pavement systems for snow melting and deicing. The text in 426.1(A) and (B) has been revised to better identify "walkways" rather than "walks". In addition, "roads" has been added. Even present technology under Article 426 can be and has been used in roadways.

Since this new technology is neither fully embedded nor fully exposed, a new item "(C)" has been added to ensure scope coverage for systems that are a combination of embedded and exposed elements. The electrodes for the conductive pavement system are fully embedded into the pavement but since the pavement itself is part of the heating circuit, that is obviously exposed.

Related Public Comments for This Document

Related Comment

Relationship

Public Comment No. 1733-NFPA 70-2024 [New Definition after Definition: Concealed Knob-and-Tube Wi...]

Public Comment No. 1735-NFPA 70-2024 [Sections Part VI., 426.50, 426.51]

Public Comment No. 1733-NFPA 70-2024 [New Definition after Definition: Concealed Knob-and-Tube Wi...]

Public Comment No. 1735-NFPA 70-2024 [Sections Part VI., 426.50, 426.51]

Related Item

• PI 4168 and CI 8998

Submitter Information Verification

Submitter Full Name: Charles Mello

Organization:	Cdcmello Consulting Llc
Affiliation:	State of Iowa Department of Transportation
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Mon Aug 26 20:03:24 EDT 2024
Committee:	NEC-P17

426.3 Recond	litioned Equipment.
Reconditioned	equipment shall not be permitted- to be installed .
Statement of Prob	blem and Substantiation for Public Comment
revision allows ele to when any equip equipment would i	ent is made to address an issue with the first draft language changes. The proposed language in this first actrical equipment to be reconditioned in place as the language pertains to the installation process and not ment is reconditioned in place. With the existing language in this first revision, the only time reconditioned not be permitted is if it is being installed. The Code does apply to existing equipment when additions or being made. The proposed language change from "installed" to "permitted" is more inclusive.
Related	<u>d Item</u>
• FR 8944	
Submitter Informa	ation Verification
Submitter Full Na	Ime: Thomas Domitrovich
Organization:	Eaton Corporation
Street Address:	
City:	
State:	
Zip: Submittal Date:	Fri Aug 23 09:13:47 EDT 2024
Submittal Date:	NFC-P17

427.1 Scope.	
	ers electrically energized heating systems and the installation of these systems used with pipelin her applications for trace heating.
Electrical sections of	onal Note: See IEEE 515-2017, <i>Standard for the Testing, Design, Installation and Maintenance of Resistance Trace Heating for Industrial Applications</i> , for further information. Also see applicable of the IEEE 844/CSA 293 series of standards for alternate technologies for fixed electric heating it for pipelines and vessels.
ditional Propos	ed Changes
File Name C CN_398.pdf	Description Approved
atement of Prob	lem and Substantiation for Public Comment
NOTE: The followin	ng CC Note No. 398 appeared in the First Draft Report on First Revision No. 8917.
CMP 17 should cor The second senten	ng CC Note No. 398 appeared in the First Draft Report on First Revision No. 8917. Insider the informational note in regard to the NEC® Style Manual, Section 2.1.10.3. Ce does not comply with the format requirement, fic standard and should be considered for revision or deletion.
CMP 17 should cor The second senten nor point to a speci	nsider the informational note in regard to the NEC® Style Manual, Section 2.1.10.3. ce does not comply with the format requirement, fic standard and should be considered for revision or deletion. <u>Related Item</u>
CMP 17 should cor The second senten	nsider the informational note in regard to the NEC® Style Manual, Section 2.1.10.3. ce does not comply with the format requirement, fic standard and should be considered for revision or deletion. <u>Related Item</u>
CMP 17 should cor The second senten nor point to a speci • First Revision No.	nsider the informational note in regard to the NEC® Style Manual, Section 2.1.10.3. ce does not comply with the format requirement, fic standard and should be considered for revision or deletion. <u>Related Item</u> 8917
CMP 17 should cor The second senten nor point to a speci • First Revision No.	 asider the informational note in regard to the NEC® Style Manual, Section 2.1.10.3. ce does not comply with the format requirement, fic standard and should be considered for revision or deletion. <u>Related Item</u> 8917 tion Verification
CMP 17 should cor The second senten nor point to a speci • First Revision No. bmitter Informat Submitter Full Nar Organization:	 asider the informational note in regard to the NEC® Style Manual, Section 2.1.10.3. ce does not comply with the format requirement, fic standard and should be considered for revision or deletion. <u>Related Item</u> 8917 tion Verification
CMP 17 should cor The second senten nor point to a speci • First Revision No. bmitter Informat Submitter Full Nar Organization: Street Address:	nsider the informational note in regard to the NEC® Style Manual, Section 2.1.10.3. ce does not comply with the format requirement, fic standard and should be considered for revision or deletion. <u>Related Item</u> 8917 tion Verification me: CC Notes
CMP 17 should cor The second senten nor point to a speci • First Revision No. bmitter Informat Submitter Full Nar Organization:	nsider the informational note in regard to the NEC® Style Manual, Section 2.1.10.3. ce does not comply with the format requirement, fic standard and should be considered for revision or deletion. <u>Related Item</u> 8917 tion Verification me: CC Notes
CMP 17 should cor The second senten nor point to a speci • First Revision No. Ibmitter Informat Submitter Full Nar Organization: Street Address:	nsider the informational note in regard to the NEC® Style Manual, Section 2.1.10.3. ce does not comply with the format requirement, fic standard and should be considered for revision or deletion. <u>Related Item</u> 8917 tion Verification me: CC Notes

Correlating Committee Note No. 398-NFPA 70-2024 [Section No. 427.1]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Fri May 10 12:22:19 EDT 2024

Committee Statement

Committee CMP 17 should consider the informational note in regard to the NEC® Style Manual, **Statement:** Section 2.1.10.3. The second sentence does not comply with the format requirement, nor point to a specific standard and should be considered for revision or deletion.

First Revision No. 8917-NFPA 70-2024 [Detail]

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

427.3 Recon	ditioned Equipment.
Reconditioned	equipment shall not be permitted- to be installed .
Statement of Pro	blem and Substantiation for Public Comment
revision allows ele to when any equi equipment would	ent is made to address an issue with the first draft language changes. The proposed language in this first ectrical equipment to be reconditioned in place as the language pertains to the installation process and not oment is reconditioned in place. With the existing language in this first revision, the only time reconditioned not be permitted is if it is being installed. The Code does apply to existing equipment when additions or being made. The proposed language change from "installed" to "permitted" is more inclusive.
<u>Relate</u>	<u>d Item</u>
• FR 8947	
Submitter Inform	ation Verification
Submitter Full N	ame: Thomas Domitrovich
Organization:	Eaton Corporation
Street Address:	
offoot Address.	
City:	
City: State:	
City:	Fri Aug 23 09:15:55 EDT 2024

Public Comme	ent No. 155-NFPA 70-2024 [Section No. 680.8(B)]	
(B) Equipment C	Construction.	
Statement of Proble	uipment Construction. ent grounding conductors <u>EGC's</u> shall be connected to a fixed metal part of the assembly. Any removable art of the assembly shall be mounted on or bonded to the fixed metal part. f Problem and Substantiation for Public Comment oposes to use the acronym EGC in place of the term equipment grounding conductor. Paragraphs 2.1.2.9 and a NEC Style Manual permit the use of acronyms. Additionally, EGC is already used at 680.7(B), Related Item formation Verification Full Name: Vincent Della Croce on: Siemens	
Related It	em	
• FR 9049		
Submitter Information	on Verification	
Submitter Full Name	e: Vincent Della Croce	
Organization:	Siemens	
Street Address:		
City:		
State:		
Zip:		
Submittal Date:	Mon Jul 22 14:24:44 EDT 2024	
Committee:	NEC-P17	

	nent No. 547-NFPA 70-2024 [Section No. 680.10(B)]
IFPA	
(B) Electrically	y Powered Swimming Pool Heat Pumps and Chillers.
(1) Rating.	
	ered swimming pool heat pumps and chillers using the circulating water system and providing _I , or both shall be rated for their intended use.
(2) Branch Cir	cuit.
	f the branch-circuit conductors and the ampere rating or setting of overcurrent protective devices o comply with the nameplate.
Statement of Prob	lem and Substantiation for Public Comment
	rked for deletion contains nothing that is not already addressed in Chapters 1-4. This is a violation of the 0.3 already covers the issue.
Related	Item
• FR 9150	
ubmitter Informe	tion Varification
Submitter Informa	tion Verification
Submitter Informa	
Submitter Full Na	me: Ryan Jackson
Submitter Full Nat Organization:	me: Ryan Jackson
Submitter Full Nat Organization: Street Address:	me: Ryan Jackson
Organization: Street Address: City:	me: Ryan Jackson
Submitter Full Nat Organization: Street Address: City: State:	me: Ryan Jackson

	Public Comment No. 1128-NFPA 70-2024 [Section No. 680.12(B)]	
NFFA		

(B) Receptacles.

Receptacles shall meet the following requirements:

- (1) At least one GFCI-protected 125-volt, 15- or 20-ampere receptacle shall be located within an equipment room.
- (2) All other receptacles within an equipment room, vault, or pit shall- be GFCI protected or SPGFCI protected, as applicable, under the following conditions:
 - (3) If supplied by branch circuits rated 150 volts or less to ground, 60 amperes or less, single-phase, or 100 amperes or less, 3-phase
 - (4) If supplied by branch circuits exceeding 150 volts to ground but not exceeding 480 volts phase-to-phase

<u>have GFCI protection complying with _680.5(B) _ or SPGFCI protection complying with _680.5(C)</u>, as <u>applicable.</u>

Statement of Problem and Substantiation for Public Comment

There is no need to repeat the details found in 680.5(B) and (C). Other sections of Article 680, such as 680.21(C) and (D) 680.22(A)(4), and 680.22(B)(4) simply reference the requirements of 680.5(B) and (C). There is no reason why this rule should not do the same.

Related Item

• First Revision No. 9045-NFPA 70-2024

Submitter Information Verification

Submitter Full Name: Don GaniereOrganization:noneStreet Address:-City:-State:-Zip:-Submittal Date:Thu Aug 15 17:12:39 EDT 2024Committee:NEC-P17

Ŵ	Public Comment No	. 688-NFPA 70-20	24 [Section No.	680.12(B)
				(-)

(B) Receptacles.

Receptacles shall meet the following requirements:

- (1) At least one GFCI-protected 125-volt, 15- or 20-ampere receptacle shall be located within an equipment room.
- (2) All other receptacles within an equipment room, vault, or pit shall be GFCI protected or SPGFCI protected, as applicable, under the following conditions:
 - a. If supplied by branch circuits rated 150 volts or less to ground, 60 amperes or less, single-phase, or 100 amperes or less, 3-phase
 - b. If supplied by branch circuits exceeding 150 volts to ground but not exceeding 480 volts phase-to-phase

Additional Proposed Changes

File Name Description Approved

CN_391.pdf

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 391 appeared in the First Draft Report on First Revision No. 9054.

CMP 17 should consider revising the requirement here to refer to the general rule in 680.5 (First Revision 9045) instead of repeating the details in this section. The Correlating Committee notes that the definition for SPGFCI in Article 100 has been revised.

Related Item

• First Revision No. 9054

Submitter Information Verification

Submitter Full Name: CC NotesOrganization:NEC Correlating CommitteeStreet Address:Image: City:City:Image: City:State:Image: City:Zip:Image: City: City:Submittal Date:Fri Aug 02 11:18:28 EDT 2024Committee:NEC-P17

Correlating Committee Note No. 391-NFPA 70-2024 [Section No. 680.12(B)]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Fri May 10 12:08:21 EDT 2024

Committee Statement

Committee Statement: CMP 17 should consider revising the requirement here to refer to the general rule in 680.5 (First Revision 9045) instead of repeating the details in this section. The Correlating Committee notes that the definition for SPGFCI in Article 100 has been revised.

FR-9054-NFPA 70-2024

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

Public NFPA	Comment No. 814-NFPA 70-2024 [Section No. 680.12(B)]
(B) Red	ceptacles.
Recepta	cles shall meet the following requirements:
(1) At I	east one GFCI-protected 125-volt, 15- or 20-ampere receptacle shall be located within an equipment room.
	other receptacles within an equipment room, vault, or pit shall be GFCI protected or SPGFCI protected, as licable, under the following conditions:
(3)	If supplied by branch circuits rated 150 volts or less to ground, 60 amperes or less, single-phase, or 100 amperes or less, 3-phase
(4)	If supplied by branch circuits exceeding 150 volts to ground but not exceeding 480 volts phase-to-phase
<u>in a</u>	ccordance with 680.5.
Statement of	Problem and Substantiation for Public Comment
As indicated	d in the Correlating Committee Note, this requirement can be simplified by simply pointing to 680.5.
<u>F</u>	Related Item
• FR 9045	
Submitter In	formation Verification
Submitter F	Full Name: Ryan Jackson
Organizatio	
Street Add	ress:
City: State:	
Zip:	
Submittal E	Date: Mon Aug 05 17:00:03 EDT 2024
Committee	: NEC-P17
Committee	

Public Comm	nent No. 815-NFPA 70-2024 [Section No. 680.14(A)]
(A) Wiring Met	hods.
rigid polyvinyl cl	shall be suitable for use in corrosive environments. Rigid metal conduit, intermediate metal conduit, nloride conduit, reinforced thermosetting resin conduit, liquidtight flexible nonmetallic conduit, and e metal conduit shall be considered suitable for use. Aluminum conduit and tubing wiring methods mitted.
Statement of Prob	lem and Substantiation for Public Comment
	m cables are permitted while aluminum raceways are not. None of these options provide sufficient n, so the rule should be clarified and expanded to address all wiring methods.
Related	Item
• FR 9060	
Submitter Informa	tion Verification
Submitter Full Nar	ne: Ryan Jackson
Organization:	Self-employed
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Mon Aug 05 17:03:44 EDT 2024
Committee:	NEC-P17

(C) Ground-Fault Protection.

Outlets serving pool motors shall have ground-fault protection complying with 680.5(B) or 680.5(C), as applicable. For a variable-speed pool motor employing a variable-frequency drive (VFD), the ground-fault protection shall be located on the branch circuit connected to the input terminals of the VFD, and not on the circuit between the output terminals of the VFD and the motor.

Exception: Listed low-voltage motors not requiring grounding, with ratings not exceeding the low-voltage contact limit that are supplied by listed transformers or power supplies that comply with 680.23(A)(2), shall be permitted to be installed without ground-fault protection.

Statement of Problem and Substantiation for Public Comment

FR language in Section 680.21(C) does not clearly address proper and safe application of GFCI and SPGFCI protection for variable-speed motors. The proposed language is added to clarify that the ground-fault protected outlet serving the motor must be installed on the line (input) side of the variable-frequency drive (VFD). As written, current language can misinterpreted to require the GFCI/SPGFCI be installed on the output (motor) side of the VFD (which is being incorrectly interpreted to be the outlet serving the motor). The output of a VFD, which is what actually connects to the variable speed motor, is a pulse-width modulated variable-voltage output which is incompatible with the internal power supply of the GFCI or SPGFCI (which utilizes the line voltage to power the electronics). The result is that a GFCI or SPGFCI connected in such a fashion offers no ground-fault protection for the motor and may catastrophically fail. This is not the same issue as nuisance tripping from GFCIs which are properly installed on the input side of the VFD.

Related Public Comments for This Document

Related Comment

Public Comment No. 13-NFPA 70-2024 [Section No. 680.21(D)] Related Item

• FR 9153-NFPA 70-2024

Submitter Information Verification

Submitter Full Nar	ne: E. P. Hamilton
Organization:	E. P. Hamilton & Associates, I
Affiliation:	Self
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Wed Jul 10 10:41:56 EDT 2024
Committee:	NEC-P17

Relationship

Public Comment No. 13-NFPA 70-2024 [Section No. 680.21(D)]

(D) Pool Pump Motor Replacement-

Where

, Reconditioning, or Repair

If a pool pump motor in 680.21(C) is replaced, reconditioned, or repaired, the replacement or repaired pump motor shall be provided with ground-fault protection complying with 680.5(B) or 680.5(C), as applicable outlet serving it shall comply with 680.21(C).

Statement of Problem and Substantiation for Public Comment

This FR revision failed ballot because it made unintended elimination of some GFCI/SPGFCI requirements, which was not the intent of the Panel. The revised wording provides the clarification intended in the FR revision language but incorporates the intended .GFCI/SPGFCI requirements.

Related Public Comments for This Document

Related Comment
Public Comment No. 14-NFPA 70-2024 [Section No. 680.21(C)]
Related Item

• FR 9153-NFPA 70-2024

Submitter Information Verification

Submitter Full Name: E. P. HamiltonOrganization:E. P. Hamilton & amp; Associates, IAffiliation:SelfStreet Address:Image: City:State:Image: City:Zip:Image: City:Submittal Date:Wed Jul 10 10:31:38 EDT 2024Committee:NEC-P17

Relationship

Where a pool pump motor in 680.21(C) is replaced or repaired, the replacement or repaired pump motor shall be provided with ground-fault protection complying with 680.5(B) or 680.5(C), as applicable. ditional Proposed Changes File Name Description Approved CN_392.pdf atement of Problem and Substantiation for Public Comment NOTE: The following CC Note No. 392 appeared in the First Draft Report. The Correlating Committee directs CMP 17 to add any reconditioned equipment requirements to the XXX.3 section in accordance with NEC Style Manual Section 2.2.1. Once it is established which type(s) of reconditioned equipment are permitted to be installed, the panel can then state the GFCI requirements in this section referring back to the general rule as is done in FR-9153. Related Item • Correlating Committee Note No. 392 ubmitter Information Verification Submitter Full Name: CC Notes Organization: NEC Correlating Committee Street Address: City: State: Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024 Committee: NEC-P17		np Motor Replacement.
File Name CN_392.pdf Description Approved atement of Problem and Substantiation for Public Comment NOTE: The following CC Note No. 392 appeared in the First Draft Report. The Correlating Committee directs CMP 17 to add any reconditioned equipment requirements to the XXX.3 section in accordance with NEC Style Manual Section 2.2.1. Once it is established which type(s) of reconditioned equipment are permitted to be installed, the panel can then state the GFCI requirements in this section referring back to the general rule as is done in FR-9153. Related Item • Correlating Committee Note No. 392 whitter Information Verification Submitter Full Name: CC Notes: Organization: NEC Correlating Committee Street Address: City: State: Zip: Submitted Date: Fri Aug 02 11:23:23 EDT 2024		
CN_392.pdf atement of Problem and Substantiation for Public Comment NOTE: The following CC Note No. 392 appeared in the First Draft Report. The Correlating Committee directs CMP 17 to add any reconditioned equipment requirements to the XXX.3 section in accordance with NEC Style Manual Section 2.2.1. Once it is established which type(s) of reconditioned equipment are permitted to be installed, the panel can then state the GFCI requirements in this section referring back to the general rule as is done in FR-9153. <u>Related Item</u> • Correlating Committee Note No. 392 bmitter Information Verification Submitter Full Name: CC Notes Organization: NEC Correlating Committee Street Address: City: State: Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024	Iditional Propos	sed Changes
NOTE: The following CC Note No. 392 appeared in the First Draft Report. The Correlating Committee directs CMP 17 to add any reconditioned equipment requirements to the XXX.3 section in accordance with NEC Style Manual Section 2.2.1. Once it is established which type(s) of reconditioned equipment are permitted to be installed, the panel can then state the GFCI requirements in this section referring back to the general rule as is done in FR-9153. Related Item • Correlating Committee Note No. 392 ubmitter Information Verification Submitter Full Name: CC Notes Organization: NEC Correlating Committee Street Address: City: State: Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024		Description Approved
The Correlating Committee directs CMP 17 to add any reconditioned equipment requirements to the XXX.3 section in accordance with NEC Style Manual Section 2.2.1. Once it is established which type(s) of reconditioned equipment are permitted to be installed, the panel can then state the GFCI requirements in this section referring back to the general rule as is done in FR-9153. Related Item • Correlating Committee Note No. 392 Ibmitter Information Verification Submitter Full Name: CC Notes Organization: NEC Correlating Committee Street Address: City: State: Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024	atement of Prol	blem and Substantiation for Public Comment
requirements to the XXX.3 section in accordance with NEC Style Manual Section 2.2.1. Once it is established which type(s) of reconditioned equipment are permitted to be installed, the panel can then state the GFCI requirements in this section referring back to the general rule as is done in FR-9153. Related Item • Correlating Committee Note No. 392 Ibmitter Information Verification Submitter Full Name: CC Notes Organization: NEC Correlating Committee Street Address: City: State: Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024	NOTE: The follow	ing CC Note No. 392 appeared in the First Draft Report.
Correlating Committee Note No. 392 Jbmitter Information Verification Submitter Full Name: CC Notes Organization: NEC Correlating Committee Street Address: City: State: Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024	requirements to the established which then state the GF	ne XXX.3 section in accordance with NEC Style Manual Section 2.2.1. Once it is type(s) of reconditioned equipment are permitted to be installed, the panel can CI requirements in this section referring back
Submitter Full Name: CC Notes Organization: NEC Correlating Committee Street Address: City: State: Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024	Correlating Com	
Organization: NEC Correlating Committee Street Address: Image: City: State: Image: City: Submittal Date: Fri Aug 02 11:23:23 EDT 2024	Ibmitter Inform	ation Verification
Street Address: City: State: Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024	Submitter Full Na	ame: CC Notes
City: State: Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024	Organization:	NEC Correlating Committee
State: Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024		
Zip: Submittal Date: Fri Aug 02 11:23:23 EDT 2024	-	
Submittal Date: Fri Aug 02 11:23:23 EDT 2024	State.	
	Zip:	

Correlating Committee Note No. 392-NFPA 70-2024 [Section No. 680.21(D)]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Fri May 10 12:11:50 EDT 2024

Committee Statement

Committee Statement: The Correlating Committee directs CMP 17 to add any reconditioned equipment requirements to the XXX.3 section in accordance with NEC Style Manual Section 2.2.1. Once it is established which type(s) of reconditioned equipment are permitted to be installed, the panel can then state the GFCI requirements in this section referring back to the general rule as is done in FR-9153.

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

Public Comm	ent No. 816-NFPA 70-2024 [Section No. 680.21(D)]
(D) Pool Pump	Motor Replacement.
pump motor sha	l pump motor in 680.21(C) - is replaced <u>, reconditioned,</u> or repaired, the replacement or repaired ill be provided with ground-fault protection complying with 680.5(B) or 680.5(C) , as it for the motor_shall be GFCI protected or SPGFCI protected, as applicable, in accordance with
atement of Prob	em and Substantiation for Public Comment
This comment addr	esses the concerns in the negative voting on CI 9153.
Related I	<u>tem</u>
• CI 9153	
bmitter Informat	tion Verification
Submitter Full Nar	ne: Ryan Jackson
Organization:	Self-employed
Street Address:	
City:	
City: State:	
-	
State:	Mon Aug 05 17:08:33 EDT 2024

Public Comment No. 693-NFPA 70-2024 [Section No. 680.22(A)(4)]

(4) Ground-Fault Circuit-Interrupter (GFCI) and Special Purpose Ground-Fault Circuit-Interrupter (SPGFCI) Protection.

All receptacles located within 6.0 m (20 ft) of the inside walls of a pool shall have GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable, under the following conditions:

- (1) If supplied by branch circuits rated 150 volts or less to ground, 60 amperes or less, single-phase, or 100 amperes or less, 3-phase
- (2) If supplied by branch circuits exceeding 150 volts to ground but not exceeding 480 volts phase-to-phase

Additional Proposed Changes

File Name Description Approved

CN_393.pdf

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 393 appeared in the First Draft Report on First Revision No. 9065.

CMP 17 should consider revising this requirement to state the receptacles located within 6.0 m (20 ft) of the inside walls of a pool shall have GFCI protection in accordance with 680.5(B) or SPGFCI protection in accordance with 680.5(C), as applicable, to eliminate the redundancy between these sections.

Related Item

• First Revision No. 9065

Submitter Information Verification

Correlating Committee Note No. 393-NFPA 70-2024 [Section No. 680.22(A)(4)]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Fri May 10 12:13:21 EDT 2024

Committee Statement

Committee Statement: CMP 17 should consider revising this requirement to state the receptacles located within 6.0 m (20 ft) of the inside walls of a pool shall have GFCI protection in accordance with 680.5(B) or SPGFCI protection in accordance with 680.5(C), as applicable, to eliminate the redundancy between these sections.

First Revision No. 9065-NFPA 70-2024 [Section No. 680.22(A)(4)]

Ballot Results

- This item has passed ballot
 - 12 Eligible Voters
 - 1 Not Returned
 - 11 Affirmative All
 - 0 Affirmative with Comments
 - 0 Negative with Comments
 - 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

(4) Ground-Fau Protection.	ult Circuit-Interrupter (GFCI) and Special Purpose Ground-Fault Circuit-Interrupter (SPGFCI)
	ocated within 6.0 m (20 ft) of the inside walls of a pool shall have GFCI protection complying with GFCI protection complying in accordance with 680.5(C), as applicable , under the following
	by branch circuits rated 150 volts or less to ground, 60 amperes or less, single-phase, or 100 less, 3-phase
(2) If supplied I	by branch circuits exceeding 150 volts to ground but not exceeding 480 volts phase-to-phase
ement of Prob	em and Substantiation for Public Comment
	em and Substantiation for Public Comment anguage by simply pointing to 680.5.
	anguage by simply pointing to 680.5.
his simplifies the I <u>Related</u>	anguage by simply pointing to 680.5.
his simplifies the I <u>Related</u> FR 9065	anguage by simply pointing to 680.5.
his simplifies the l <u>Related</u> FR 9065 mitter Informat	anguage by simply pointing to 680.5. Item tion Verification
his simplifies the I <u>Related</u> FR 9065	anguage by simply pointing to 680.5. Item tion Verification
This simplifies the I Related FR 9065 mitter Informat ubmitter Full Nar Organization:	anguage by simply pointing to 680.5. Item tion Verification ne: Ryan Jackson
his simplifies the l <u>Related</u> FR 9065 mitter Informat	anguage by simply pointing to 680.5. Item tion Verification ne: Ryan Jackson
This simplifies the I Related FR 9065 mitter Informat Submitter Full Nar Organization: Street Address:	anguage by simply pointing to 680.5. Item tion Verification ne: Ryan Jackson
This simplifies the I Related FR 9065 mitter Information Submitter Full Nar Organization: treet Address: Sity:	anguage by simply pointing to 680.5. Item tion Verification ne: Ryan Jackson
This simplifies the I Related FR 9065 mitter Information Submitter Full Nar Organization: Street Address: Sity: State:	anguage by simply pointing to 680.5. Item tion Verification ne: Ryan Jackson

Г

(D) Portable Signs

Portable electric signs shall not be placed within pools or within 1.5 m (5 ft) measured horizontally from the inside walls of a pool.

Statement of Problem and Substantiation for Public Comment

680.22 Lighting, Receptacles and Equipment contains requirements for electrical receptacles and devices including luminaires, lighting outlets, ceiling-suspended fans, switching devices, other outlets, and other equipment, which are located in proximity to pools. FR 9129 added a similar provision for electric signs, which would be more appropriately included in the text of 680.22 under 2.1.4.1 of the Style Manual, as it is also electrical equipment in proximity to a pool. The revised language submitted simply moves the intact language of the new 680.29 and relocates as 680.22(D). See also accompanying Public Comment 23-NFPA 70-2024.

Related Public Comments for This Document

Related Comment
Public Comment No. 23-NFPA 70-2024 [Section No. 680.29]
Related Item

Public Comment 23-NFPA 70-24

Submitter Information Verification

Submitter Full Name	e: E. P. Hamilton
Organization:	E. P. Hamilton & amp; Associates, I
Affiliation:	Self
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Wed Jul 10 11:16:18 EDT 2024
Committee:	NEC-P17

Relationship

Public Comment No. 17-NFPA 70-2024 [Section No. 680.23(B)(2)]

(2) Wiring Extending Directly to the Forming Shell.

Conduit shall be installed from the forming shell to a junction box or other enclosure conforming to the requirements in 680.24. Conduit shall be rigid metal, intermediate metal, liquidtight flexible nonmetallic, or rigid polyvinyl chloride conduit.

(a) Metal Conduit. Metal conduit shall be listed and be red brass or stainless steel.

Informational Note: See UL 6A, *Electrical Rigid Metal Conduit—Aluminum, Red Brass, and Stainless Steel*, for information on the listing criteria for red brass and stainless steel conduit.

(b) *Nonmetallic Conduit*. Where a nonmetallic conduit is used, an 8 AWG insulated solid or stranded copper bonding jumper shall be installed in this conduit unless a listed low-voltage lighting system not requiring grounding is used. The bonding jumper shall be terminated in the forming shell, <u>and also in the</u> junction box-or, <u>the</u> transformer enclosure, or <u>the</u> GFCI enclosure. The termination of the 8 AWG bonding jumper in the forming shell shall be covered with, or encapsulated in, a listed potting compound to protect the connection from the possible deteriorating effect of pool water.

Statement of Problem and Substantiation for Public Comment

There is an unintended consequence in the 680.23(B)(2)(b) FR language, which can create confusion, as it could be construed to mean the bonding jumper could be connected on only one end. The revised language provides the necessary clarification.

Related Item

• FR 9086-NFPA 70-2024

Submitter Information Verification

Submitter Full Name:E. P. HamiltonOrganization:E. P. Hamilton & amp; Associates, IAffiliation:SelfStreet Address:ICity:IState:IZip:Wed Jul 10 10:57:02 EDT 2024Committee:NEC-P17

Public Commen	nt No. 818-NFPA 70-2024 [Section No. 680.24(D)]
(D) Grounding Ter	minals.
Grounding termina	Is shall comply with the requirements in 680.24(D)(1) and 680.24(D)(2), as applicable.
(1) Number of Gro	ounding Terminals.
directly to a forming	nsformer and power-supply enclosures, and GFCI enclosures connected to a conduit that extends g shell or mounting bracket of a no-niche luminaire shall be provided with a number of grounding w - <u>is no_</u> fewer than one more than the number of conduit entries.
(2) Connected to F	Panelboard Enclosure.
niche or no-niche lu	ninals of a junction box, transformer enclosure, or other enclosure in the supply circuit to a wet- uminaire and the field-wiring chamber of a dry-niche luminaire shall be connected to an equipment or, which is directly connected to the panelboard enclosure.
	unnecessary words to comply with 4.1.3 of the NEC Style Manual, and changes "are" to "is" where the ngular word (number, not "numbers"). m
Submitter Information	n Verification
Submitter Full Name:	Ryan Jackson
	Self-employed
Street Address:	
City:	
State:	
Zip:	
Submittal Date: Committee:	Mon Aug 05 17:20:15 EDT 2024 NEC-P17

_	
Public Comm	nent No. 10-NFPA 70-2024 [Section No. 680.24(D)(1)]
NFPA	
(1) Number of	Grounding Terminals.
directly to a form	transformer and power-supply enclosures, and GFCI enclosures connected to a conduit that extends ning shell or mounting bracket of a no-niche luminaire shall be provided with a number of grounding re- is no fewer than one more than the number of conduit entries.
Statement of Prob	lem and Substantiation for Public Comment
Grammatical correct	ction. The use of the word "are" in this instance is grammatically incorrect.
	Related Item
• FR 9099-NFPA 70	D-2024
Submitter Informa	tion Verification
Submitter Full Na	me: E. P. Hamilton
Organization:	E. P. Hamilton & Associates, I
Affiliation:	Self
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Wed Jul 10 10:25:00 EDT 2024
Committee:	NEC-P17

Public Comment No. 292-NFPA 70-2024 [Section No. 680.26(B)(1)]

(1) Conductive Pool Shells.

Bonding to conductive pool shells shall be provided as specified in 680.26(B)(1)(a) or 680.26(B)(1)(b). Cast-in-place concrete, pneumatically applied or sprayed concrete, and concrete block with painted or plastered coatings shall all be considered conductive materials due to water permeability and porosity. Reconstructed pool shells shall also meet the requirements of this section. Vinyl liners and fiberglass composite shells shall be considered nonconductive materials and not subject to these requirements.

(a) Structural Reinforcing Steel. Unencapsulated structural reinforcing steel shall be bonded together by steel tie wires or the equivalent. Where structural reinforcing steel is encapsulated in a nonconductive compound, a copper conductor grid shall be installed in accordance with 680.26(B)(1)(b).

(b) - Copper Conductor Grid Conductive Grid. A copper or 40% copper-clad steel conductor grid shall be provided in accordance with the following:

- (3) <u>Be constructed of minimum 8 AWG bare solid copper or 40% copper-clad steel conductors bonded to each other at all points of crossing in accordance with 250.8 or other approved means</u>
- (4) Conform to the contour of the pool
- (5) <u>Be arranged in a 300 mm (12 in.) by 300 mm (12 in.) network of conductors in a uniformly spaced perpendicular grid pattern with a tolerance of 100 mm (4 in.)</u>
- (6) Be secured within or under the pool no more than 150 mm (6 in.) from the outer contour of the pool shell

Additional Proposed Changes

File Name	Description	Approved
CCS_Corrosion_paper_Rev2.pdf	Technical Report Highlighting Corrosion Mechanism of Cut Ends of 40% CCS	
2024.08.27_CCS_Corrosion_Testing _Exponent_Report.pdf	Corrosion Testing	
2024.08.27_Lightning_Testing_Report.pdf	Transient / Lightning Current Comparative Research of Electrical Connections: Cu and 40% CCS Conductors	

Statement of Problem and Substantiation for Public Comment

The following is the CMP17 panel statement from the First Revision of the 2026 Cycle regarding this question: "CMP17 has concerns including corrosion at the ends of copper-clad steel conductors and copper-clad reenforcing steel installed in concrete, earth, or other corrosive environments. CMP17 also requests data showing how the product reacts to exothermic welding, as that process is a permitted method of connection in this section."

The panel's concerns are addressed here:

First, 40% CCS has a similar corrosion performance profile to copper on the galvanic scale. When Cu/CCS conductors are electrically connected in simulated seawater (sodium chlorides - considered an extremely corrosive environment), the rate of galvanic corrosion differs by only a few percentage points when compared to Cu/Cu and CCS/CCS pairs. This is in stark contrast to when bare steel and copper (or bare steel and 40% CCS) are coupled together in simulated seawater, as the differences in the rates of galvanic corrosion are a level of magnitude greater: +/- 15 X higher.

The data demonstrates that for pool locations, 40% CCS would perform equivalently to, if not better than, copper in general terms.

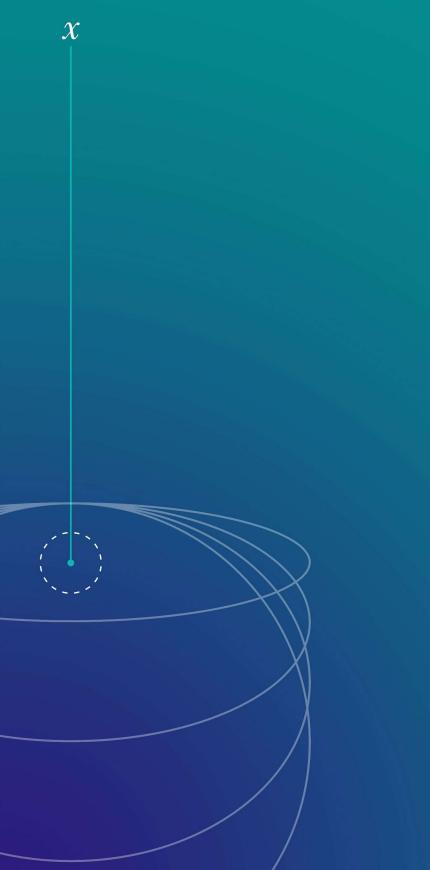
But it also indicates that it would perform equally or better than copper both in concrete (caustic) and acidic soils. When comparing the general corrosion rates in simulated seawater of the two metals individually, 40% CCS actually has a lower corrosion rate than copper. The general corrosion rate of 40% CCS was calculated to be 2.92 thousandths of an inch per year, whereas the corrosion rate for copper was nearly three times higher -- 8.35 thousandths of an inch per year.

Please find the attached report from Exponent, a U.S. scientific research firm with an active practice in the disciplines of corrosion science and forensics. Scientific reporting by Exponent must undergo a strict internal quality control process, as much of the company's work is peer reviewed for educational purposes or used in forensic evaluations for litigation. Corrosion science is a branch of materials science, and both authors of the report are PhD level materials scientists.

The corrosion mechanism of the cut ends of 40% CCS is well understood, as literally hundreds of millions of feet of 40% CCS wire and cable are in use today around the world in below grade utility applications. Ferrous oxides form immediately at the cut ends of CCS when buried in soil. Over time, as these ferrous oxides continue to grow thicker, they form a hard protective barrier on the steel, prohibiting further corrosion of the core.

Second, regarding 40% CCS's ability to be exothermically welded, the world's largest and most recognized manufacturer of exothermic welding systems and equipment, nVent Erico, recently published information on its website in September 2023 reconfirming the compatibility of their exothermic systems with 40% CCS conductors. This information may be found at https://blog.nvent.com/nvent-erico-and-copperweld-partnership/. The knowledge surrounding this question has been settled for decades. In fact, most 40% CCS strand in use today for substation grounding is exothermically welded.

I encourage CMP17 members to also view the technical substantiation included in NEC 2026 Public Comments 218, 193, 194 and 195. These PCs deal with various Article 250 grounding and bonding applications pertaining to 40% CCS. The data therewith should provide further insight into Article 680 questions regarding the performance of 40% CCS.


Related Item

• PI 2019

Submitter Information Verification

Submitter Full Name: Peter GraserOrganization:Copperweld Bimetallics, LLC.Affiliation:ABAStreet Address:-City:-State:-Zip:-Submittal Date:Sat Jul 27 17:14:55 EDT 2024Committee:NEC-P17

Lightning Impulse Testing of 40% Copper-Clad Steel (CCS) Conductors and Associated Connectors

Exponent

Lightning Impulse Testing of 40% Copper-Clad Steel (CCS) Conductors

and Associated Connectors

Prepared For:

Copperweld Bimetallics, LLC. Brentwood, TN 37027 For Use and Publication in the NFPA Standards Setting Process

Prepared By:

Peter Lindahl, Ph.D., CFEI Senior Managing Engineer, Electrical & Computer Science

Malima Wolf, Ph.D., CFEI Managing Engineer, Thermal Sciences

Exponent, Inc. 1075 Worcester St., Natick, MA 01760

August 27, 2024

Exponent, Inc.

Table of Contents

List of Figures	iii
List of Tables	iv
Acronyms and Abbreviations	vi
1.0 Introduction	1
2.0 Executive Summary	2
2.1 Connector Testing with CCS and Copper Conductors	2
2.1.1 Testing Overview	
2.1.2 Testing Results	
2.2 Connector Testing with CCS and Copper Conductors	
2.2.1 Testing Overview	
2.2.2 Testing Results	4
3.0 Testing Overview	
3.1 Testing Programs	5
3.2 Lightning Current Impulse Waveforms	
4.0 Connector Testing with CCS and Copper Conductors	
4.1 Busbar Testing Setup	
4.2 Lightning Protection System Connector Testing Setup	
4.3 Testing and Evaluation	
4.4 Testing Results	
4.5 Connector Integrity and Conductor Displacement	
4.6 Contact Resistance	
4.7 Loosening Torque	
5.0 Transient Voltage in CCS and Copper Conductors	
5.1 Testing Setup	
5.2 Testing Results	
6.0 Limitations	
Appendix A Full Data Sets of Test Results	
Appendix B Peter Lindahl, Ph.D., CFEI Curriculum Vitae	
Appendix C Malima Wolf, Ph.D., P.E., CFEI Curriculum Vitae	

List of Figures

Figure 1.	Example configurations of IEC 62561-1: 2023 electrical impulse test setup diagrams. Annotations added by Exponent.	. 6
Figure 2.	Representative impulse current shape defined by the front time, time to half value, and peak current parameters.	. 7
Figure 3.	Example unipolar waveform recorded during testing. The waveshape of the impulses used approximately matched the $10/350 \ \mu s$ waveform	. 9
Figure 4.	Example oscillatory impulse waveform recorded during testing. The "envelope" of this waveform measured as approximately 20/450 µs	. 9
Figure 5.	Diagram of busbar testing setup. Dimensions are provided in millimeters. Annotations added by Exponent	11
Figure 6.	Example busbar and 4 AWG GEC test setup.	12
Figure 7.	Cross connection component test assembly diagram. All dimensions are provided in millimeters. Annotations added by Exponent	14
Figure 8.	Straight-connection (in-line) component test assembly diagram (top, Figure B.1 (B3)) and parallel connection component test assembly diagram (bottom, Figure 2)). The proper test setup of the in-line component matches the dimensions of the parallel component test setup. All dimensions are provided in millimeters. Annotations added by Exponent.	15
Figure 9.	Photograph of example cross-connector LPS assemblies prior to corrosion conditioning.	16
Figure 10.	Photograph of example two-bolt straight connector LPS assemblies prior to corrosion conditioning.	16
Figure 11.	Example cross connector assembly following the corrosion conditioning process	17
Figure 12.	Example contact resistance measurement measured from points on the conductors as close as possible to the connector.	19
Figure 13.	Lightning transient over-voltage measurement test setup.	24
Figure 14.	Example over-voltage measurement from a 4 AWG copper conductor subjected to a 20 kA peak 10/350 μ s waveform. (a) Provides the full measurement over 2 ms and (b) provides the measurement over the first 20 μ s.	26
Figure 15.	Example over-voltage measurement from a 4 AWG CCS conductor subjected to a 20 kA peak 10/350 μ s waveform. (a) Provides the full measurement over 2 ms and (b) provides the measurement over the first 20 μ s.	27

List of Tables

Table 1.	Lightning impulse parameters required for testing in accordance with IEC 62561-1:2023
Table 2.	Nominal torque applied during assembly of connectors and the post- testing boundaries for loosening torque
Table 3.	List of test samples along with applied impulse waveform19
Table A - 1.	List of busbar connector assemblies tested with a unipolar impulse waveform. The table provides the measured parameters of the applied impulse
Table A - 2.	List of busbar connector assemblies tested with the oscillatory impulse waveform. The table provides the measured parameters of the applied impulse
Table A - 3.	List of LPS cross connector and two-bolt straight connector assemblies tested with a unipolar impulse waveform. The table provides the measured parameters of the applied impulse
Table A - 4.	List of LPS cross connector and two-bolt straight connector assemblies tested with an oscillatory impulse waveform. The table provides the measured parameters of the applied impulse
Table A - 5.	Contact resistance measurements through the busbar connectors before and after application of the three 30 kA unipolar impulse waveforms
Table A - 6.	Contact resistance measurements through the busbar connectors before and after application of the three 66 kA oscillatory impulse waveforms
Table A - 7.	Contact resistance measurements through the LPS connectors before and after application of the three 30 kA unipolar impulse waveforms
Table A - 8.	Contact resistance measurements through the busbar connectors before and after application of the three 66 kA oscillatory impulse waveforms
Table A - 9.	Loosening torque values for the busbar samples subjected to the 30 kA unipolar impulse waveforms. The values in parentheses are the percent of the applied torque (25 in-lbs for 8 AWG and 35 in-lbs for 4 AWG)
Table A - 10.	Loosening torque values for the busbar samples subjected to the 66 kA oscillatory impulse waveforms. The values in parentheses are the percent of the applied torque (25 in-lbs for 8 AWG and 35 in-lbs for 4 AWG)
Table A - 11.	Loosening torque values for the LPS connector samples subjected to the 30 kA unipolar impulse waveforms. The values in parentheses are the percent of the applied torque (80 in-lbs)

Table A - 12.	Loosening torque values for the LPS connector samples subjected to the 100 kA oscillatory impulse waveforms. The values in parentheses are the percent of the applied torque (80 in-lbs)	. A-4
Table A - 13.	Transient voltage impulse peak values measured on a 8 AWG copper solid conductor wire.	. A-5
Table A - 14.	Transient voltage impulse peak values measured on a 8 AWG CCS solid conductor wire.	. A-5
Table A - 15.	Transient voltage impulse peak values measured on a 4 AWG copper solid conductor wire.	. A-5
Table A - 16.	Transient voltage impulse peak values measured on a 4 AWG CCS solid conductor wire.	. A - 6
Table A - 17.	Transient voltage impulse peak values measured on a 4/0 19 strand copper conductor	. A - 6
Table A - 18.	Transient voltage impulse peak values measured on a 4/0 19 strand CCS conductor	. A-6

Acronyms and Abbreviations

μΩ	microohms
A	ampere or amps
AC	alternating current
Al	aluminum
AWG	American Wire Gauge
CCS	copper-clad steel; also 40% CCS
	NOTE: When referencing the tests outlined in this report, CCS refers to copper-clad
	steel where the product is designed to have 40% of the conductivity of the same-
	sized copper conductor at 60 Hz.
Cu	copper
DC	direct current
EGC	equipment grounding conductor
GE	grounding electrode
GEC	grounding electrode conductor
Hz	hertz
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronics Engineers
J	Joules
kA	kiloamps
kHz	kilohertz
kJ	kilojoules
kV	kilovolts
mm	millimeter
ms	milliseconds
NEC	National Electrical Code (NFPA 70)
NFPA	National Fire Protection Association
UL	Underwriters Laboratories
V	voltage or volts
μs	microseconds
Ω	Ohms

1.0 Introduction

- 1. The National Fire Protection Association (NFPA) is a non-profit organization that publishes over 300 consensus codes and standards intended to minimize the possibility and effects of fire and other risks.
- NFPA 70: National Electrical Code (NEC) is a consensus standard produced by NFPA that is designed to govern electrical installations.¹ Article 250 of the NEC provides requirements related to grounding and bonding of electrical installations.
- 3. NFPA 780: Standard for the Installation of Lightning Protection Systems (NFPA 780) is a standard produced by NFPA to provide lightning protection system (LPS) installation requirements.²
- 4. 40% copper-clad steel (CCS)^{3,4} was recently proposed as a material for use as a grounding electrode conductor (GEC) in the NEC. It was also recently proposed as a material for use as an LPS down conductor in NFPA 780.⁵
- 5. To provide code setters insight into the performance of CCS in GEC and LPS applications, Copperweld Bimetallics LLC (Copperweld), retained Exponent, Inc. (Exponent) to develop and conduct testing programs to evaluate the lightning-conduction performance of CCS conductors when interfaced with typical GEC and LPS connection hardware. For this testing, Copperweld requested that Exponent also perform testing on equivalently sized copper conductors to provide reference for CCS conductor performance.

¹ NFPA 70: 2023. National Electrical Code.

² NFPA 780: 2023. Standard for the Installation of Lightning Protection Systems.

³ ASTM B910/B910M-07: 2018. Standard Specification for Annealed Copper-Clad Steel Wire.

⁴ Copper-clad steel is a composite material consisting of a steel core and an outer layer of copper metallurgically bonded together. 40% copper-clad steel as an electrical conductor has a nominal conductivity at 60 Hz of 40% that of an equivalently sized copper conductor.

⁵ Exponent understands that these proposals were submitted through the NFPA's public input process.

2.0 Executive Summary

6. Exponent conducted two testing programs to evaluate the lightning conduction performance of 40% copper-clad steel (CCS) conductors when used in grounding electrode conductor (GEC) and lightning protection system (LPS) down-conductor applications. All tests performed involving CCS conductors were also performed involving equivalently sized copper conductors to provide a performance reference.

2.1 Connector Testing with CCS and Copper Conductors

7. The first testing program utilized the IEC 62561-1:2023⁶ standard as a guide to evaluate the resiliency of CCS conductor terminations in standard connector components. In these tests, emulated lightning impulse currents were imparted on 90° connection points in GEC-style terminations and LPS-style conductor splice connections. The conduction of the emulated lightning impulse in this connection configuration puts electrical, thermal, and electromagnetic stresses on the conductor terminations.

2.1.1 Testing Overview

- 8. Tested assemblies included:
 - 8 AWG and 4 AWG solid CCS and solid copper conductors interfaced with equipotential termination busbars typical of use in 200 A electrical service panels,
 - 4/0 19-strand CCS and copper conductors interfaced with LPS cross connectors listed for Class I and Class II LPS installations, and
 - 4/0 19-strand CCS and copper conductors interfaced with LPS two-bolt straight ("in line") connectors listed for Class I and Class II LPS installations.
- 9. Samples of each assembly type were tested using nominally 30 kA unipolar emulated lightning impulse current waveforms. Additional samples involving busbars were tested

⁶ IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components.

using nominally 66 kA oscillatory waveforms, and additional samples involving LPS connectors were tested using nominally 100 kA oscillatory waveforms.

 Tested assemblies were evaluated based on their visual appearance (connector integrity), the extent of any conductor displacement, the contact resistance through the connector, and the magnitude of torque required to loosen the connector bolts.

2.1.2 Testing Results

- 11. None of the tested assemblies, involving either CCS or copper conductors, exhibited any visual signs of connector or conductor degradation in integrity. No cracks, deformation, or loose parts were observed.
- 12. None of the tested assemblies exhibited any movement in the conductors from their original termination points as a result of the applied emulated lightning impulses.
- 13. None of the tested assemblies exhibited significant increases in contact resistances as a result of the applied impulse currents, and all connections exhibited contact resistances well below the maximum contact resistance limit of 3 m Ω as set forth by the IEC 62561-1:2023 standard.
- 14. All busbar assemblies tested met the IEC 62561-1:2023 loosening torque requirement that states that the loosening torques must be greater than 25% and less than 150% of the torque required to tighten the busbar terminal bolts. This was true for both CCS and copper conductors.
- 15. Similarly, all LPS two-bolt straight connector assemblies tested met this loosening torque requirement. This was true for both CCS and copper conductors.
- 16. Of the LPS cross connector assemblies tested, two interfaced with copper conductors and one interfaced with CCS conductors exhibited bolt loosening torques lower than those required by the IEC 62561-1:2023 standard. It is important to note however that the LPS connectors used in testing are sold in the United States and thus subject to listing in accordance with UL 96 and not to the IEC 62561-1:2023 standard.
- 17. Thus, despite the failures exhibited by the assemblies involving LPS cross connectors, there was no indication that the CCS conductors contributed to these results.

2.2 Connector Testing with CCS and Copper Conductors

18. The second testing program subjected CCS and copper conductors to emulated lightning currents, and the resulting transient voltages were measured to characterize the over-voltages that may be generated on the conductors during lightning events.

2.2.1 Testing Overview

- 19. Tested samples included:
 - 8 AWG solid copper and solid CCS conductors,
 - 4 AWG solid copper and solid CCS conductors, and
 - 4/0 19-strand copper and CCS conductors.
- 20. Testing involved imparting nominally 1 kA, 5 kA, 10 kA, and 20 kA unipolar emulated lightning waveforms on straight sections of each conductor type and using high-impedance voltage probes to measure the differential transient voltage generated across an approximately three-foot section of conductor.

2.2.2 Testing Results

- 21. The peak differential voltages generated on CCS conductors were similar to those generated on equivalently sized copper conductors. This was true for all current magnitudes and across all conductor sizes. Additionally, the voltage peaks occurred during the fast rise-time of the lightning waveforms.
- 22. These results indicate that the presence of the steel core and the lower overall 60 Hz conductivity of the CCS conductors compared to the copper conductors did not have significant impacts on the magnitudes of the transient voltages. Instead, these voltages appear most affected by the inductance created by the conductor and circuit geometry.

3.1 Testing Programs

- 23. Exponent undertook two testing programs to evaluate the lightning conduction performance of 40% copper-clad steel (CCS) conductors and associated connectors when used as grounding electrode conductors (GECs) and lightning protection system (LPS) down-conductors. These tests were designed to evaluate this performance when using equivalently sized copper conductors as a reference.
- 24. The first testing program utilized the IEC 62561-1:2023⁷ standard as a guide for investigating the resiliency of CCS conductor terminations in standard connector components. In these tests, two conductors and one connector were configured to form a 90° connection point. Emulated lightning impulse currents were then imparted into one conductor, through the 90° connection point, and then out the other conductor. In addition to the electrical and thermal stresses this current imparted on the conductor termination points, the 90° geometry of the test also subjected electromechanical forces on the conductors and connectors due to the interaction of the generated magnetic fields and the conducted current. Diagrams of example setups showing the general testing configuration for various connector types are provided in Figure 1.
- 25. The testing performed during this investigation focused on the following connector types:
 - Equipotential termination busbars typical of use in 200 A electrical service panels,
 - LPS cross connectors listed for Class I and Class II LPS installations, and
 - LPS two-bolt straight (or "in line") connectors listed for Class I and Class II LPS installations.⁸

⁷ IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components.

⁸ Class I and Class II are defined in NFPA 780: 2023. Standard for the Installation of Lightning Protection Systems. §3.3.31.

26. The busbar connectors were tested in combination with both 8 AWG and 4 AWG solid CCS and solid copper conductors. The LPS cross connection connectors and the LPS straight two-bolt connectors were tested in combination with 4/0 19-strand CCS and 4/0 19-strand copper conductors.

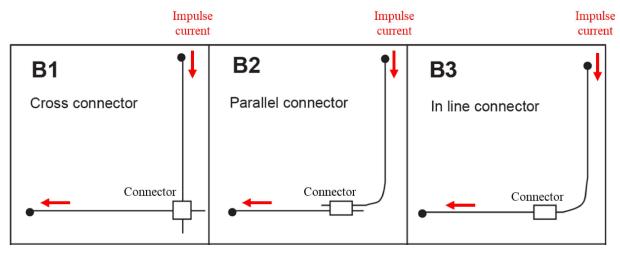


Figure 1. Example configurations of IEC 62561-1: 2023 electrical impulse test setup diagrams.⁹ Annotations added by Exponent.

3.2 Lightning Current Impulse Waveforms

- 27. Lightning flashes discharge electricity from cloud(s) to earth and consist of one or more lightning strokes. Short strokes are the components of lightning flashes that discharge impulse currents to earth. These impulse currents are characterized by extremely fast rise times and longer decay times as shown in Figure 2, reproduced here from IEC62305-1: Protection against lightning Part 1: General principles.
- 28. These waveforms are often defined by three parameters, the front time (T₁), the time to half value (T₂), and the peak current (I). The front time defines the time required for the waveform to increase to 90% of its peak value, while the half value defines the time it takes for the current to decay to half its peak value.

⁹ IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components. Annex B. Figure B.1.

29. The 10/350 μ s (front time of 10 μ s, time to half of 350 μ s) waveform is often used by various standards for evaluating the performance of various electrical and electronic systems intended to protect against the effects of lightning strikes.

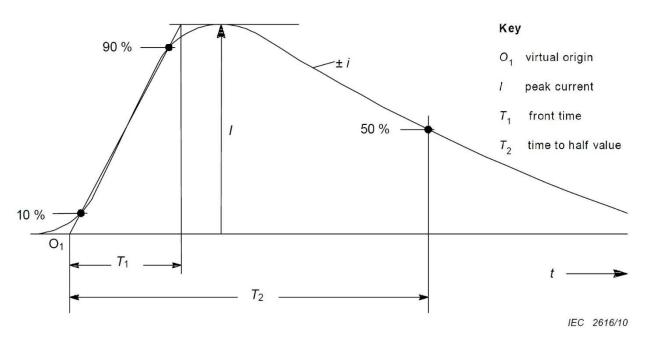


Figure 2. Representative impulse current shape defined by the front time, time to half value, and peak current parameters.¹⁰

- 30. IEC 62561-1:2023 defines the requirements for metallic connection components that form part of a lightning protection system (LPS). Table 1 in this standard, reproduced here as Table 1 of this report, specifies the peak current and specific energy required for testing components of Class H (heavy duty) and Class N (normal duty). The specific energy is the time integral of the square of the lightning impulse current.
- 31. While a specific waveform is not required, the informational note provided with Table 1 indicates that an exponentially decaying unipolar¹¹ waveform with a time to half value of 350 µs and corresponding peak current will fulfill the specific energy requirement.

¹⁰ IEC62305-1: Protection against lightning – Part 1: General principles. Annex A. Figure A.1.

¹¹ IEC 62561-1:2023 §6.6.1 states that "the impulse current shall show no reversal..." which Exponent interprets as requiring a unipolar waveform.

Classification	I _{imp}	W/R						
	kA	kJ/Ω						
	±10 %	+45 -10 %						
н	100	2 500						
N	50	625						
	NOTE The parameters specified in this Table 1 can typically be achieved by an exponentially decaying lightning impulse current having a time to half value in the range of 350 µs according to IEC 62305-1.							

Table 1.Lightning impulse parameters required for testing in accordance with IEC 62561-
1:2023.12

- 32. Historically, the 10/350 μ s was selected as a representative test waveform to emulate a high-energy lightning impulse waveform.¹³ For example, the Class H requirements of 100 kA and 2500 kJ/ Ω according to IEC 62305-1, correspond to the 95th percentile of lightning strikes.¹⁴
- 33. To perform our investigation, Exponent contracted with a third-party lightning test laboratory. This lab can produce unipolar 10/350 μs impulse waveforms with peak currents up to approximately 30 kA. An example waveform recorded during testing is provided in Figure 3. While this waveform does not meet the magnitudes specified under IEC 62561-1:2023 Table 1, the waveform peak current does approximately correspond to a median first positive lightning stroke, a rarer but generally more energetic lightning stroke, and it exceeds the median peak currents for first negative and subsequent negative strokes, the more frequent types of lightning strokes.¹⁵ Therefore, this 30 kA 10/350 μs unipolar waveform is representative of a typical lightning stroke and therefore useful for our evaluation.
- 34. The third-party laboratory does have the capability of producing an oscillatory 100 kA peak current with a time to half value that meets the requirements of IEC62561-1:2023, however, because this current oscillates positive and negative, it imparts a different electromagnetic force profile on the connector assembly than the unipolar waveform.

¹² Table 1 is reproduced from IEC 62561-1:2023, §6.6.1: General test conditions.

¹³ G. Clifford. Putting 10/350 Under the Microscope. Electrical Construction & Maintenance. November 2003.

¹⁴ IEC62305-1: Protection against lightning – Part 1: General principles. See Tables 3 and 5 regarding lightning protection level (LPL) maximum parameters and probabilities these parameters will exceed those of lightning strikes. Additionally, see Appendix A, Tables A.1, A.2, and Figure A.5.

¹⁵ IEC62305-1: Protection against lightning – Part 1: General principles. Annex A. Table A.1.

Its higher energy nature does still provide large electrical and thermal stresses on the connector assembly. An example of the 100 kA oscillatory waveform recorded during testing is provided in Figure 4.

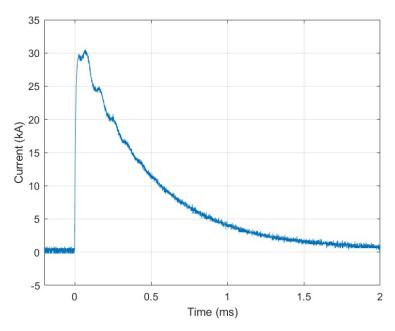


Figure 3. Example unipolar waveform recorded during testing. The waveshape of the impulses used approximately matched the 10/350 µs waveform.

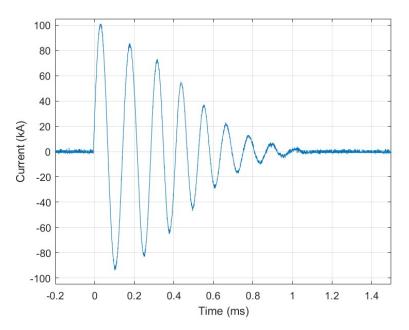
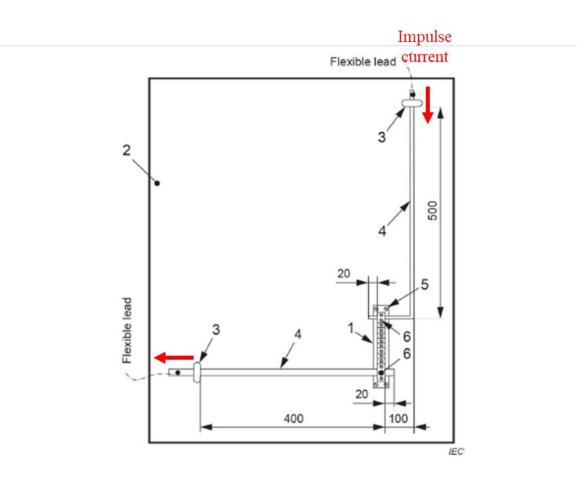


Figure 4. Example oscillatory impulse waveform recorded during testing. The "envelope" of this waveform measured as approximately 20/450 µs.


4.0 Connector Testing with CCS and Copper Conductors

4.1 Busbar Testing Setup

- 35. The busbar test setups were constructed using busbars intended for use in 200 A service panels. Samples were interfaced with 8 AWG solid CCS conductors, 8 AWG solid copper conductors, 4 AWG solid CCS conductors, or 4 AWG solid copper conductors. The busbars used in testing were listed for use with both sizes of conductor. These test setups were constructed following the arrangement for the testing of equipotential bonding bars in IEC 62561-1:2023.¹⁶ This arrangement diagram is reproduced here in Figure 5. All specified dimensions are in millimeters.
- 36. No corrosion conditioning of the busbar samples was required per IEC 62561-1:2023 as the busbar samples are intended for indoor installations.¹⁷
- 37. Figure 6 shows a completed busbar test setup with 4 AWG wiring.

¹⁶ IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components. §6.4.f.

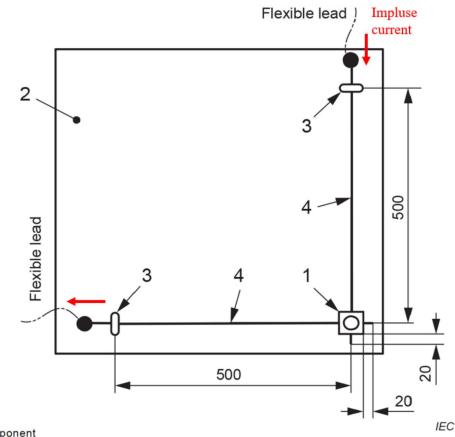
¹⁷ IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components. §6.5.

Key

- 1 Equipotential bonding bar
- 2 Plate made of insulating material
- 3 Rigid fastener
- 4 Conductor
- 5 Fixing points of equipotential bonding bar
- 6 Connection to be tested
- Figure 5. Diagram of busbar testing setup. Dimensions are provided in millimeters.¹⁸ Annotations added by Exponent.

¹⁸ IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components. §6.4.f. Figure 4.

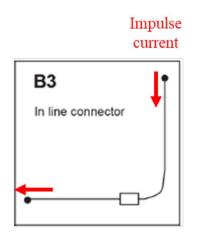
Figure 6. Example busbar and 4 AWG GEC test setup.

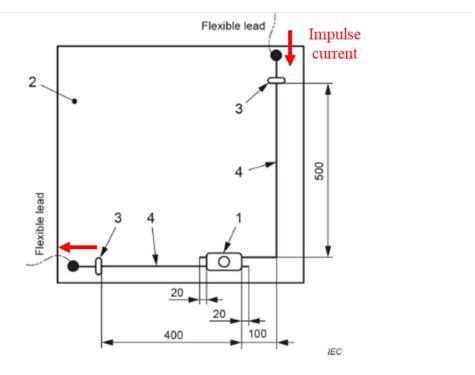

4.2 Lightning Protection System Connector Testing Setup

- 38. Two types of LPS connectors were used in testing:
 - Bronze two-bolt cross connectors, and
 - Brass two-bolt straight connectors.

- 39. Setups were constructed using 4/0 AWG, 19-strand conductors of either copper or CCS. Both the cross-connectors and straight connectors are listed for use in Class I and Class II LPS systems and can accommodate conductors up to 0.56" in diameter. The 4/0-19 strand conductors are approximately 0.53" in diameter and thus fit the connector size requirement. CCS is not a listed material for use as an LPS conductor, however the 4/0 19-strand CCS conductor does meet the strand diameter, weight, and area minimums for Class II conductors of copper as listed in UL 96.¹⁹
- 40. The cross connector setups were constructed following the arrangement for cross connection component assemblies as specified in IEC 62561-1:2023 6.4.f, reproduced here as Figure 7. All specified dimensions are in millimeters.
- 41. The straight connector setups were constructed following Figure B.1 (B3) and Figure 2 as specified in IEC 62561-1:2023 6.4 f. These figures are reproduced here as Figure 8. All specified dimensions are in millimeters.
- 42. IEC 62561-1:2023, requires LPS splice connector assemblies be corrosion conditioned prior to electrical impulse testing. The Lightning Protection System testing setups were aged and conditioned (as described in Annex D of IEC 62561-1:2023) using a salt mist treatment followed by a humid sulfurous atmosphere treatment.²⁰
- 43. Figure 9 and Figure 10 show examples of assembled cross and straight connectors with conductors, respectively, prior to the corrosion conditioning process. Figure 11 contains a photograph of an example completed assembly after the corrosion process.

¹⁹ UL 96: 2023, Lightning Protection Components. Table 21.1.


²⁰ See IEC 62561-1:2023, Annex D for further details.



Key

- 1 Cross-connection component
- 2 Plate made of insulating material
- 3 Rigid fastener
- 4 Conductor and metal installation
- Figure 7. Cross connection component test assembly diagram. All dimensions are provided in millimeters.²¹ Annotations added by Exponent.

²¹ IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components. §6.4.f. Figure 1.

Key

- 1 Parallel connection component
- 2 Plate made of insulating material
- 3 Rigid fastener
- 4 Conductor and metal installation
- Figure 8. Straight-connection (in-line) component test assembly diagram (top, Figure B.1 (B3)) and parallel connection component test assembly diagram (bottom, Figure 2)). The proper test setup of the in-line component matches the dimensions of the parallel component test setup. All dimensions are provided in millimeters.²² Annotations added by Exponent.

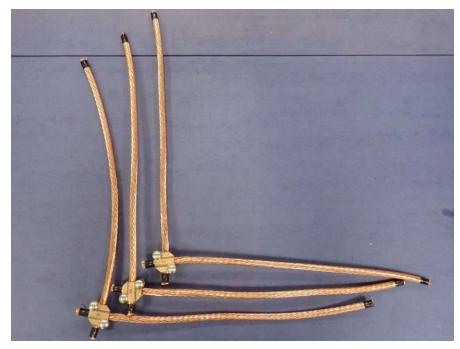


Figure 9. Photograph of example cross-connector LPS assemblies prior to corrosion conditioning.

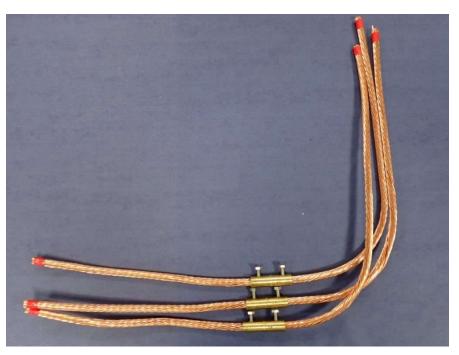


Figure 10. Photograph of example two-bolt straight connector LPS assemblies prior to corrosion conditioning.

²² IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components. §6.4.f. Figure 2.

Figure 11. Example cross connector assembly following the corrosion conditioning process.

4.3 Testing and Evaluation

44. Prior to testing, the contact resistance through each connector assembly was measured using a Raytech Micro Junior 2 microohm meter operated at the 10 A application setting. For the LPS connector assemblies that received the corrosion conditioning, the contact resistance was measured after the assembly process (but before the conditioning process) and after the conditioning process (but before the impulse testing). These measurements are not required by IEC 62561-1:2023, however they provide the ability to assess any changes in contact resistance as a result of the corrosion application or the impulse testing. For these measurements, the sense leads of the microohm meter were clamped to the conductors on either side of the connector and as close to the connector as possible as

prescribed by IEC 62561-1:2023.²³ Figure 12 shows a photograph of an example contact resistance measurement.

- 45. As dictated by IEC 62561-1:2023, each test assembly was stressed three times by the applied impulse current with the time interval between individual impulses sufficient to allow the assembly to cool down to approximately ambient temperature.²⁴
- 46. Following the three applications of impulse current, each test assembly was evaluated through four acceptance criteria as prescribed by IEC 62561-1:2023, for "non-permanent" connection components:
 - Connector Integrity A visual inspection was performed to identify any connector cracks, loose parts, or deformation, any of which would constitute a failed test.
 - Conductor Displacement The displacement of the conductors following testing was measured and recorded. Any displacement needs to be less than 17 mm after the completion of testing.
 - Contact Resistance A final contact resistance measurement was collected after testing. This measurement is to be equal or less than 3 m Ω .
 - Loosening Torque The torque required to loosen the bolts of the connector were recorded. This loosening torque is required to be great than 0.25 and less than 1.5 times the applied tightening torque.
- 47. The torque applied to each connector was based on the tightening torque provided by the connector manufacturers. These values and the loosening torque boundary values for each connector and conductor size are provided in Table 2.

	Conductor	Torque	Loosening Torque (in-Ibs)		
Connection Type	Size	Specification (in-lbs)	Lower Bound	Upper Bound	
200 A Busbar	8 AWG	25	6.25	37.5	
200 A Busbar	4 AWG	35	8.75	52.5	
Cross-Connector	4/0	80	20	120	
Straight Connector	4/0	80	20	120	

Table 2.Nominal torque applied during assembly of connectors and the post-testing
boundaries for loosening torque.

²³ IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components. §6.6.2.

²⁴ IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components. §6.6.1.

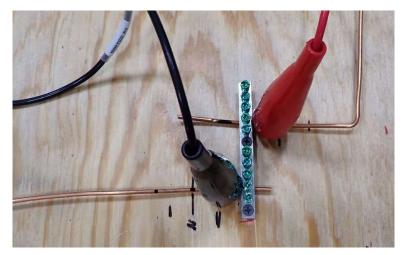


Figure 12. Example contact resistance measurement measured from points on the conductors as close as possible to the connector.

4.4 Testing Results

48. Table 3 provides a full list of samples tested along with the nominal impulse waveform applied to each sample. As described in IEC 62561-1:2023 6.6.1, each sample received three impulse waveforms. Each applied impulse waveform was recorded using a Pearson 1423 current monitor output to a Tektronix TDS3034C Oscilloscope, and the peak current and specific energy were calculated for each test. Appendix A, Table A - 1 through Table A - 4 provide these parameters for each impulse applied.

Sample Name	Connector Type	Conductor Material	Conductor Size	Nominal Waveform
8 AWG Cu 1	Busbar	Copper	8 AWG	30 kA 10/350 µs unipolar
8 AWG Cu 2	Busbar	Copper	8 AWG	66 kA 20/450 μs oscillatory
8 AWG CCS 1	Busbar	CCS	8 AWG	30 kA 10/350 µs unipolar
8 AWG CCS 2	Busbar	CCS	8 AWG	66 kA 20/450 µs oscillatory
4 AWG Cu 1	Busbar	Copper	4 AWG	30 kA 10/350µs unipolar
4 AWG Cu 2	Busbar	Copper	4 AWG	66 kA 20/450 μs oscillatory
4 AWG CCS 1	Busbar	CCS	4 AWG	30 kA 10/350µs unipolar
4 AWG CCS 2	Busbar	CCS	4 AWG	66 kA 20/450 µs oscillatory
C1	LPS Cross	Copper	4/0	30 kA 10/350µs unipolar
C2	LPS Cross	Copper	4/0	30 kA 10/350µs unipolar
C3	LPS Cross	Copper	4/0	100 kA 20/450 µs oscillatory
C4	LPS Straight	Copper	4/0	30 kA 10/350µs unipolar

 Table 3.
 List of test samples along with applied impulse waveform.

Sample Name	Connector Type	Conductor Material	Conductor Size	Nominal Waveform
C5	LPS Straight	Copper	4/0	30 kA 10/350µs unipolar
C6	LPS Straight	Copper	4/0	100 kA 20/450 µs oscillatory
S1	LPS Cross	CCS	4/0	30 kA 10/350µs unipolar
S2	LPS Cross	CCS	4/0	30 kA 10/350µs unipolar
S3	LPS Cross	CCS	4/0	100 kA 20/450 µs oscillatory
S4	LPS Straight	CCS	4/0	30 kA 10/350µs unipolar
S5	LPS Straight	CCS	4/0	30 kA 10/350µs unipolar
S6	LPS Straight	CCS	4/0	100 kA 20/450 µs oscillatory

4.5 Connector Integrity and Conductor Displacement

49. All samples were visually inspected and photographically documented after testing. None of the samples had any loose parts; no discoloration, cracking, warping, or any other deformation impairing normal use were identified. Further, none of the samples had any observable change in position.

4.6 Contact Resistance

- 50. All contact resistance values measured on connector samples post-testing were wellbelow the 3 m Ω requirement of IEC 62561-1:2023. For the busbar connectors, the largest post-test contact resistance measured was 241.7 $\mu\Omega$ for CCS conductors (Sample 8 AWG CCS 1) and 183.7 $\mu\Omega$ for copper conductors (Sample 8 AWG Cu 2). These measurements are both an order of magnitude lower than the requirement. The full set of contact resistance measurements are provided in Appendix A, Table A - 5 through Table A - 8.
- 51. Additionally, there was not an obvious increase in contact resistance measurements posttesting compared to pre-testing. This is true for both copper and CCS conductor samples. Some contact resistance measurements slightly increased, but most slightly decreased. These small variabilities in contact resistance values may simply be due to variability in the placements of the microohm meter probes pre- and post-testing.

- 52. For the LPS connectors, the largest post-test contact resistance measurement was 68.4 $\mu\Omega$ for CCS conductors (Sample S2) and 32.2 $\mu\Omega$ for copper conductors (Sample C5). Similar to the busbar connectors, there was not an obvious increase in contact resistance measurements following the conditioning process nor the testing process. Resistance measurements obtained after the corrosion conditioning were generally lower than those obtained after conditioning, and these resistance measurements did not significantly increase after impulse testing.
- 53. While the measured contact resistance values of conductors using CCS did tend to be larger than those using copper, this is expected as the measurement incorporates some resistance of the bulk conductor material. Despite this, the application of the corrosion processes and the emulated impulse lightning waveforms to the CCS samples did not generate obvious increases in the contact resistance.

4.7 Loosening Torque

- 54. All samples were loosened using calibrated digital torque wrenches set to the peak torque setting. Per IEC 62561-1:2023, "*In the case of connectors with more than one screw, only the loosening torque of the first screw is relevant to this test which shall be different each time*."²⁵ For the 200 A busbars and LPS straight connectors, the two conductors are connected independently, and loosening of each screw can be measured independently. For the LPS cross connectors, the tightness of the two bolts securing the connection is not independent, and thus, only the loosening torque for the first bolt loosened on each connector was recorded. The full set of loosening torque values are provided in Appendix A, Table A 9 through Table A 12.
- 55. All busbar assemblies met the IEC 62561-1:2023 loosening torque requirements for all conductor sizes, materials, and applied impulse waveforms. The torque required to loosen the connections made in these connectors ranged from 38% of the applied torque to 86% of the applied torque.

²⁵ IEC 62561-1:2023 Lightning protection system components (LPSC) – Part 1: Requirements for connection components. §6.6.2.d.

- 56. All two-bolt straight LPS connector assemblies also met the loosening torque requirements for all conductor sizes, materials, and applied impulse waveforms. The torque required to loosen these connectors ranged from 47% of the applied torque to 87% of the applied torque.
- 57. However, two of the cross connector samples interfaced with copper conductors and one cross connector sample interfaced with CCS conductors failed the loosening torque criteria. These samples had loosening torques less than 25% of the applied torque. Further, on average the measured loosening torque of the cross connectors interfaced with copper conductors was approximately 33% of the applied torque and that of the connectors interfaced CCS was approximately 29%. While these low values indicate that many of the cross connectors only exceeded the requirement by a small amount, because the connectors interfaced with CCS and copper conductors both exhibited similar average loosening torque values indicates that the loosening torque may not be strongly dependent on the conductor material.
- 58. It is also important to note that both the LPS straight-connectors and cross connectors are listed for use in the United States in accordance with UL 96, which does not require comparable testing. The authors of this report do not have any knowledge of any testing of these connectors to IEC 62561-1:2023 requirements, and the authors have no knowledge of any field-failures or other issues with these connectors.

5.1 Testing Setup

- 59. To compare over-voltages generated on equivalently sized CCS and copper conductors, we subjected nominally straight sections of CCS and copper conductors to 10/350 µs current impulses of varying peak currents and measured the voltage difference across a set length section of each conductor. For all tests, the length of the straight conductor was cut to approximately 58 inches and the differential voltage was measured across a 37-inch section of the straight piece. The straight length of conductor was placed horizontally approximately 2.5 inches above the copper plated table that served as the return path for the impulse current. An annotated photograph of the setup is provided in Figure 13.
- 60. One sample each of 8 AWG solid copper, 4 AWG solid copper, 4/0 19-strand copper conductors, and their equivalently sized CCS conductors were tested. Each test consisted of applying one or more 10/350 μs impulse at each of approximately 1 kA, 5 kA, and 10 kA peak currents and three or more 10/350 μs impulse at 20 kA.
- 61. The differential voltage (V+ minus V-) was measured using sense wires affixed to the conductor under test using split bolt connectors. These sense wires connected to high-impedance probes shielded in conduit with their outputs recorded using a Tektronix DPO 4034 oscilloscope.

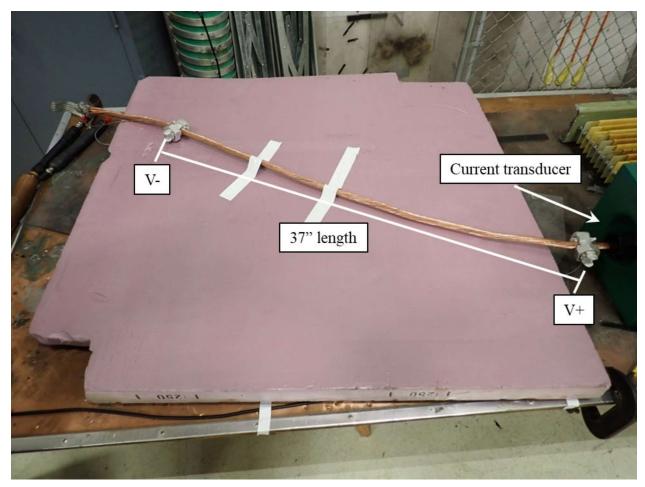


Figure 13. Lightning transient over-voltage measurement test setup.

5.2 Testing Results

- 62. Figure 14 and Figure 15 below provide examples of impulse current and the resulting differential voltage waveforms measured during over-voltage testing of a 4 AWG copper conductor and a 4 AWG CCS conductor, respectively. In these tests, the applied peak current was approximately 20 kA.
- 63. Subfigure (a) in each figure shows the full applied current impulse waveform on the bottom plot and the complete voltage response on the top plot. These figures show that the peak voltages generated occur during the front time of the current impulse, when the rate of change in the current (change in current divided by the change in time) is the highest. This is expected as the peak over-voltages during the fast rate of change in current are driven by the circuit inductance rather than resistance.

- 64. Subfigure (b) in each figure shows a shorter time portion of the waveform focused on just the front time of the impulse waveforms. Again, the impulse current is on the bottom plot and the measured voltage is on the top plot. Due to "ringing" imparted by the impulse current at the onset of discharge, the voltage measurement also contains ringing which disappears after a few microseconds. This ringing was filtered out in software by applying a low-pass filter²⁶ to the measurement resulting in the red line that approximately represents the measurement if the ringing was not present.
- 65. Comparing Figure 14 and Figure 15, the peak voltages observed with ringing are 6.1 kV for copper and 6.3 kV for CCS. With the ringing filtered out, these voltages are 3.2 kV for copper and 3.0 kV for CCS.
- 66. Appendix A, Table A 13 through Table A 18 provide these values for the full set of tests performed. The differential peak voltages measured were similar between equivalently sized copper and CCS conductors for all conductor sizes. For example, the average filtered transient peak voltage value in response to nominally 20 kA peak currents were:
 - 3.4 kV for 8 AWG CCS and 3.5 kV for 8 AWG copper,
 - 3.1 kV for 4 AWG CCS and 3.4 kV for 4 AWG copper, and
 - 2.8 kV for 4/0 CCS and 2.9 kV for 4/0 copper.
- 67. Thus, the presence of the steel core and the lower overall 60 Hz conductivity of the CCS conductors compared to the copper conductors did not appear to significantly affect the magnitudes of the transient voltages generated from emulated lightning waveforms. Instead, these voltages appear largely related to the inductance created by the conductor and circuit geometry.

 $^{^{26}}$ The filter was applied using MATLAB software and was designed as a zero-phase moving average filter with a 0.2 μs window.

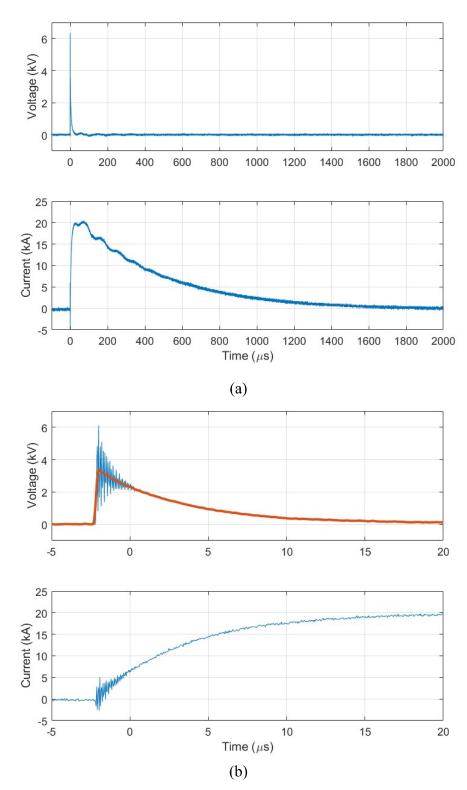


Figure 14. Example over-voltage measurement from a 4 AWG copper conductor subjected to a 20 kA peak 10/350 µs waveform. (a) Provides the full measurement over 2 ms and (b) provides the measurement over the first 20 µs.

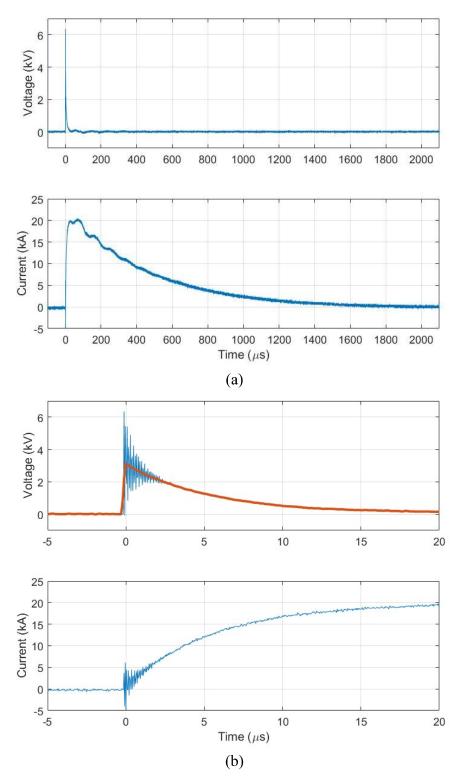


Figure 15. Example over-voltage measurement from a 4 AWG CCS conductor subjected to a 20 kA peak 10/350 µs waveform. (a) Provides the full measurement over 2 ms and (b) provides the measurement over the first 20 µs.

6.0 Limitations

- 68. This report includes details of a testing program to evaluate the lightning-conduction related performance of 40% CCS in applications for use as a grounding electrode conductor and a lightning protection system down-conductor. This work was conducted at the request of Copperweld Bimetallics LLC.
- 69. The material contained herein is presented to a reasonable degree of scientific and engineering certainty and may not adequately address the needs of any or all users of this report. Any re-use of this report, or any of its contents, is made at the sole risk of the user. No guarantee or warranty as to future relevance is expressed or implied.
- 70. Exponent reserves the right to supplement this report and to expand or modify its contents based on review of additional material as it becomes available and/or through any additional work or review of additional work performed by others.
- 71. In the testing described above, we have relied on materials and information provided by Copperweld Bimetallics LLC. We cannot verify the correctness of this input and rely on Copperweld Bimetallics LLC for accuracy.
- 72. Although Exponent has exercised usual and customary care in preparing this summary presentation, the responsibility for the design, manufacture, and quality of their products remains fully with Copperweld Bimetallics LLC.

Appendix A Full Data Sets of Test Results

Appendix A: Full Data Sets of Test Results

1. This appendix contains the full test results in tabular form for all samples tested.

Connector Testing Results Tables

Table A - 1.List of busbar connector assemblies tested with a unipolar impulse waveform.The table provides the measured parameters of the applied impulse.

	Impulse 1		Imp	Impulse 2		oulse 3
Sample Name	Peak Current (kA)	Specific Energy (kJ/Ω)	Peak Current (kA)	Specific Energy (kJ/Ω)	Peak Current (kA)	Specific Energy (kJ/Ω)
4 AWG Cu 1	30.0	244	30.0	248	29.8	248
4 AWG CCS 1	30.0	252	30.0	252	30.0	252
8 AWG Cu 1	30.0	252	30.0	252	30.0	252
8 AWG CCS 1	30.0	248	29.8	248	30.0	248

Table A - 2.List of busbar connector assemblies tested with the oscillatory impulse
waveform. The table provides the measured parameters of the applied impulse.

	Impulse 1		Imp	Impulse 2		oulse 3
Sample Name	Peak Current (kA)	Specific Energy (kJ/Ω)	Peak Current (kA)	Specific Energy (kJ/Ω)	Peak Current (kA)	Specific Energy (kJ/Ω)
4 AWG Cu 2	100	1640	64	900	66	860
4 AWG CCS 2	66	1000	66	1020	68	1004
8 AWG Cu 2	66	920	66	920	66	990
8 AWG CCS 2	66	830	64	820	65	800

Table A - 3.List of LPS cross connector and two-bolt straight connector assemblies tested
with a unipolar impulse waveform. The table provides the measured parameters
of the applied impulse.

	Imp	Impulse 1		oulse 2	Imp	oulse 3
Sample Name	Peak Current (kA)	Specific Energy (kJ/Ω)	Peak Current (kA)	Specific Energy (kJ/Ω)	Peak Current (kA)	Specific Energy (kJ/Ω)
C1	30	250	30	248	30	248
C2	30	248	30	248	30	248
S1	30	248	30	248	30	248
S2	30	248	30	248	29.8	248
C4	30	248	30	248	30	248

		Impulse 1		Impulse 2		mpulse 3
C5	30	248	30	248	30	248
S4	30	248	30	248	30	248
S5	30	248	30	248	30	248

Table A - 4.List of LPS cross connector and two-bolt straight connector assemblies tested
with an oscillatory impulse waveform. The table provides the measured
parameters of the applied impulse.

	Impulse 1		Imp	Impulse 2		oulse 3
Sample Name	Peak Current (kA)	Specific Energy (kJ/Ω)	Peak Current (kA)	Specific Energy (kJ/Ω)	Peak Current (kA)	Specific Energy (kJ/Ω)
C3	N/A ¹	N/A	96	2080	100	1700
S3	97	1840	98	2180	100	2140
C6	100	2160	100	1620	100	2120
S6	100	2080	100	1940	100	2080

Table A - 5.Contact resistance measurements through the busbar connectors before and
after application of the three 30 kA unipolar impulse waveforms.

			Contact Resistance (μΩ)		
Sample Name	Conductor Materials	Conductor Size	Pre-Test	Post-Test	
4 AWG Cu 1	Copper	4 AWG	131.9	153.8	
4 AWG CCS 1	CCS	4 AWG	139.7	143.8	
8 AWG Cu 1	Copper	8 AWG	160	122.8	
8 AWG CCS 1	CCS	8 AWG	222	241.7	

Table A - 6.Contact resistance measurements through the busbar connectors before and
after application of the three 66 kA oscillatory impulse waveforms.

			Supply to Return Conductor Resistance (μΩ)		
Sample Name	Conductor Materials	Conductor Size	Pre-Test	Post-Test	
4 AWG Cu 2	Copper	4 AWG	135.6	122.7	
4 AWG CCS 2	CCS	4 AWG	159.3	149.5	
8 AWG Cu 2	Copper	8 AWG	190	183.7	
8 AWG CCS 2	CCS	8 AWG	272.3	235.2	

¹ Data recording failed during this impulse.

				Supply to Return Conductor Resistance (μΩ)			
Sample Name	Conductor Materials	Conductor Size	Connector Type	Pre- Conditioning	Post- Conditioning	Post-Test	
C1	Copper	4/0	Cross	31.1	19.8	20.4	
C2	Copper	4/0	Cross	15.9	18.1	17.5	
S1	CCS	4/0	Cross	91.4	89.8	65.2	
S2	CCS	4/0	Cross	149	139.9	68.4	
C4	Copper	4/0	Straight	35.4	21.2	22.5	
C5	Copper	4/0	Straight	37.9	33.7	32.2	
S4	CCS	4/0	Straight	52	42.9	40.8	
S5	CCS	4/0	Straight	48.9	42.5	43.9	

 Table A - 7.
 Contact resistance measurements through the LPS connectors before and after application of the three 30 kA unipolar impulse waveforms.

Table A - 8.Contact resistance measurements through the busbar connectors before and
after application of the three 66 kA oscillatory impulse waveforms.

				Supply to Return Conductor Resistance (μΩ)		
Sample Name	Conductor Materials	Conductor Size	Connector Type	Pre- Conditioning	Post- Conditioning	Post- Test
C3	Copper	4/0	Cross	47.6	23	18.2
S3	CCS	4/0	Cross	129.4	111.3	61.6
C6	Copper	4/0	Straight	21.8	21.9	31.4
S6	CCS	4/0	Straight	73.4	45.6	54.9

Table A - 9. Loosening torque values for the busbar samples subjected to the 30 kA unipolar impulse waveforms. The values in parentheses are the percent of the applied torque (25 in-lbs for 8 AWG and 35 in-lbs for 4 AWG).

	Loosening Torque (in-Ibs)			e (in-lbs)
Sample Name	Conductor Materials	Conductor Size	Supply Terminal	Return Terminal
4 AWG Cu 1	Copper	4 AWG	30 (86%)	26 (76%)
4 AWG CCS 1	CCS	4 AWG	24 (69%)	24 (70%)
8 AWG Cu 1	Copper	8 AWG	15 (62%)	18 (73%)
8 AWG CCS 1	CCS	8 AWG	20 (79%)	17 (67%)

Table A - 10. Loosening torque values for the busbar samples subjected to the 66 kA oscillatory impulse waveforms. The values in parentheses are the percent of the applied torque (25 in-lbs for 8 AWG and 35 in-lbs for 4 AWG).

			Loosening Torque (in-Ibs)		
Sample Name	Conductor Materials	Conductor Size	Supply Terminal	Return Terminal	
4 AWG Cu 2	Copper	4 AWG	19 (55%)	17 (48%)	
4 AWG CCS 2	CCS	4 AWG	22 (64%)	22.75 (65%)	
8 AWG Cu 2	Copper	8 AWG	11 (43%)	9.567 (38%)	
8 AWG CCS 2	CCS	8 AWG	10 (40%)	13.12 (52%)	

Table A - 11. Loosening torque values for the LPS connector samples subjected to the 30 kA unipolar impulse waveforms. The values in parentheses are the percent of the applied torque (80 in-lbs).

				Loosening Torque (in-Ibs)	
Sample Name	Conductor Materials	Conductor Size	Connector Type	Supply Side or Outside Bolt	Return Side or Inside Bolt
C1	Copper	4/0	Cross	19 (24%)	N/A
C2	Copper	4/0	Cross	N/A	42 (53%)
S1	CCS	4/0	Cross	16 (20%)	N/A
S2	CCS	4/0	Cross	N/A	28 (35%)
C4	Copper	4/0	Straight	43 (54%)	45 (56%)
C5	Copper	4/0	Straight	37 (47%)	44 (55%)
S4	CCS	4/0	Straight	46 (58%)	55 (69%)
S5	CCS	4/0	Straight	70 (87%)	48 (60%)

Table A - 12. Loosening torque values for the LPS connector samples subjected to the 100 kA oscillatory impulse waveforms. The values in parentheses are the percent of the applied torque (80 in-lbs).

				Loosening Torque (in-Ibs)	
Sample Name	Conductor Materials	Conductor Size	Connector Type	Supply Side or Outside Bolt	Return Side or Inside Bolt
C3	Copper	4/0	Cross	18 (22%)	N/A
S3	CCS	4/0	Cross	27 (33%)	N/A
C6	Copper	4/0	Straight	42 (52%)	45 (56%)
S6	CCS	4/0	Straight	60 (75%)	62 (77%)

Conductor Material	Conductor Size	Current W	aveform	Voltage Response	
		Shape	Peak Current (kA)	Peak Voltage (kV)	Peak Voltage Filtered (kV)
Copper	8 AWG	10/350 unipolar	1.1	0.41	0.17
Copper	8 AWG	10/350 unipolar	5.3	2.0	0.80
Copper	8 AWG	10/350 unipolar	10.5	3.1	1.6
Copper	8 AWG	10/350 unipolar	21.0	6.5	3.4
Copper	8 AWG	10/350 unipolar	21.0	7.8	3.4
Copper	8 AWG	10/350 unipolar	21.0	5.4	3.4
Copper	8 AWG	10/350 unipolar	23.4	6.4	3.6

Table A - 13. Transient voltage impulse peak values measured on a 8 AWG copper solid conductor wire.

Table A - 14. Transient voltage impulse peak values measured on a 8 AWG CCS solid conductor wire.

Conductor	Conductor Size	Current Waveform		Voltage Response	
Material		Shape	Peak Current (kA)	Peak Voltage (kV)	Peak Voltage Filtered (kV)
CCS	8 AWG	10/350 unipolar	1.1	0.41	0.16
CCS	8 AWG	10/350 unipolar	5.2	1.6	0.78
CCS	8 AWG	10/350 unipolar	5.3	1.6	0.79
CCS	8 AWG	10/350 unipolar	10.3	3.8	1.6
CCS	8 AWG	10/350 unipolar	20.5	6.4	3.3
CCS	8 AWG	10/350 unipolar	20.5	7.5	3.4
CCS	8 AWG	10/350 unipolar	20.5	7.6	3.4
CCS	8 AWG	10/350 unipolar	20.3	6.3	3.4

Table A - 15. Transient voltage impulse peak values measured on a 4 AWG copper solid conductor wire.

Conductor	Conductor Size	Current Wa	veform	Voltage Response	
Material		Shape	Peak Current (kA)	Peak Voltage (kV)	Peak Voltage Filtered (kV)
Copper	4 AWG	10/350 unipolar	1.1	0.37	0.15
Copper	4 AWG	10/350 unipolar	5.3	1.6	0.78
Copper	4 AWG	10/350 unipolar	10.5	3.8	1.6
Copper	4 AWG	10/350 unipolar	20.7	7.3	3.4
Copper	4 AWG	10/350 unipolar	20.7	6.5	3.4
Copper	4 AWG	10/350 unipolar	20.7	6.1	3.4

Conductor Material	Conductor Size	Current W	aveform	Voltage Response	
		Shape	Peak Current (kA)	Peak Voltage (kV)	Peak Voltage Filtered (kV)
CCS	4 AWG	10/350 unipolar	1.1	0.36	0.14
CCS	4 AWG	10/350 unipolar	5.2	1.6	0.72
CCS	4 AWG	10/350 unipolar	10.5	3.6	1.5
CCS	4 AWG	10/350 unipolar	20.7	7.1	3.1
CCS	4 AWG	10/350 unipolar	20.7	6.8	3.1
CCS	4 AWG	10/350 unipolar	20.5	6.3	3.1

Table A - 16. Transient voltage impulse peak values measured on a 4 AWG CCS solid conductor wire.

Table A - 17. Transient voltage impulse peak values measured on a 4/0 19 strand copper conductor.

Conductor	Conductor Size	Current Wa	aveform	Voltage Response	
Material		Shape	Peak Current (kA)	Peak Voltage (kV)	Peak Voltage Filtered (kV)
Copper	4/0	10/350 unipolar	1.1	0.36	0.13
Copper	4/0	10/350 unipolar	5.3	1.7	0.69
Copper	4/0	10/350 unipolar	10.5	3.1	1.4
Copper	4/0	10/350 unipolar	20.5	4.8	2.9
Copper	4/0	10/350 unipolar	20.7	6.7	2.9
Copper	4/0	10/350 unipolar	20.7	6.8	2.9

Table A - 18. Transient voltage impulse peak values measured on a 4/0 19 strand CCS conductor.

Conductor	Conductor Size	Current Wa	aveform	Voltage Response	
Material		Shape	Peak Current (kA)	Peak Voltage (kV)	Peak Voltage Filtered (kV)
CCS	4/0	10/350 unipolar	1.1	0.34	0.13
CCS	4/0	10/350 unipolar	5.3	1.4	0.64
CCS	4/0	10/350 unipolar	10.5	2.6	1.3
CCS	4/0	10/350 unipolar	20.7	6.5	2.8
CCS	4/0	10/350 unipolar	20.9	6.4	2.8
CCS	4/0	10/350 unipolar	20.5	5.6	2.8

Appendix B Peter Lindahl, Ph.D., CFEI Curriculum Vitae

Engineering & Scientific Consulting

Peter Lindahl, Ph.D., CFEI

Senior Managing Engineer | Electrical Engineering and Computer Science Natick +1-508-652-8578 | plindahl@exponent.com

Professional Profile

Dr. Lindahl's education and training is in electrical engineering with expertise in power systems, sensors and instrumentation, electromechanical machinery (motors and generators), electrochemical systems (e.g. batteries, fuel cells, and their associated electronics), renewable and distributed energy systems, industrial controllers such as variable speed motor drives, and consumer appliances and electronics. His professional activities involve, amongst others, conducting complex investigations related to product safety, reliability, failures, and standards compliance; advising clients and providing engineering services on matters concerning intellectual property; and developing condition monitoring and fault detection and isolation techniques.

Prior to Exponent, Dr. Lindahl was a postdoctoral associate at the Massachusetts Institute of Technology. While there, he conducted research and oversaw graduate student projects related to smart grid power management and control, condition monitoring in electrical and mechanical systems, and smart building technology development including capacitive occupancy sensing and HVAC performance tracking via smart meter measurements. He received his PhD from Montana State University for his work devising sensing methods and power control management schemes for solid oxide fuel cell systems.

Throughout his career, Dr. Lindahl has provided technical and scientific services to clients in a variety of industries including aerospace, construction, electrical power, oil and gas, automotive and marine transportation, and defense including the U.S. Navy, Coast Guard, Army, and Air Force. He's co-authored over two dozen research articles in high-impact academic journals and conference proceedings. His research work has also been featured in news outlets and engineering society magazines including MIT News, the SNAME Marine Technology Magazine, and the IEEE Instrumentation & Measurement Magazine.

Academic Credentials & Professional Honors

Ph.D., Engineering, Montana State University, 2013

- M.S., Electrical Engineering, Montana State University, 2009
- B.S., Electrical Engineering, Penn State University, 2003

Research Affiliate, Research Laboratory of Electronics, Massachusetts Institute of Technology

Licenses and Certifications

Professional Engineer Electrical, California, #25012

Certified Fire and Explosion Investigator (CFEI)

Academic Appointments

MIT - Massachusetts Institute of Technology, Research Laboratory of Electronics (RLE), Research Affiliate/Research Scientist

Postdoctoral Associate, Research Laboratory of Electronics, Massachusetts Institute of Technology, 2014 - 2019

Communication Lab Advisor, Electrical Engineering & Computer Science Department, Massachusetts Institute of Technology, 2015 - 2018

Assistant Teaching Professor & Research Engineer, Electrical & Computer Engineering Department, Montana State University, 2013 - 2014

Ph.D. Research Assistant, Electrical & Computer Engineering Department, Montana State University, 2009 - 2013

M.S. Research Assistant, Electrical & Computer Engineering Department, Montana State University, 2006 - 2009

Undergraduate Summer Researcher, Department of Physics, University of Maryland, Baltimore County, 2000 - 2002

Prior Experience

Assistant Project Engineer, Cianbro Corporation, Baltimore, MD 2006

Field Engineer & Electrical Estimator, Cianbro Corporation, Baltimore, MD, 2005-2006

Professional Affiliations

Senior Member, Institute of Electrical and Electronics Engineers (IEEE)

Member, Tau Beta Pi Engineering Honors Society

Publications

D. Green, P. Lindahl and S. Leeb, "Three-Phase Electrical Measurement Representations for Nonintrusive Load Diagnostics," IEEE Open Journal of Instrumentation and Measurement, vol. 1, pp. 1-14, 2022, Art no. 3500514, doi: 10.1109/OJIM.2022.3203444.

D. Green, D. Quinn, S. Madden, P. Lindahl and S. Leeb, "Nonintrusive Measurements for Detecting Progressive Equipment Faults," IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-12, 2022, Art no. 3518112, doi: 10.1109/TIM.2022.3193178.

A. Kattamis, P. Lindahl. "The Smarter the Home, the More Expensive the Lightning-Caused Insurance Claim". Exponent Thought Leadership. May 2021.

M. Gutierrez, P. Lindahl, S. Leeb, "Constant Power Load Modeling for a Programmable Impedance

Control Strategy," IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 293-301, Jan. 2022, doi: 10.1109/TIE.2020.3048323.

E. Ponce, S. Leeb, P. Lindahl. "Know the Flow: Non-Contact Magnetic Flow Rate Sensing for Water Meters". IEEE Sensors Journal, vol. 21, no. 1, pp. 802-811, 1 Jan.1, 2021.

P. Lindahl, M. Ali, P. Armstrong, A. Aboulian, J. Donnal, L. Norford, S. Leeb. "Nonintrusive Load Monitoring of Variable Speed Drive Cooling Systems". IEEE Access, vol. 8, pp. 211451-211463, 2020.

S. Shabshab, P. Lindahl, S. Leeb, J. Nowocin. "Autonomous Demand Smoothing for Efficiency Improvements on Military Forward Operating Bases". IEEE Transactions on Power Delivery, vol. 35, no. 5, pp. 2243-2251, Oct. 2020.

D. Green, T. Kane, S. Kidwell, P. Lindahl, J. Donnal and S. Leeb. "NILM dashboard: Actionable feedback for condition-based maintenance". IEEE Instrumentation & Measurement Magazine, vol. 23, no. 5, pp. 3-10, Aug. 2020.

L. Huchel, J. Helsen, P. Lindahl, S. Leeb. "Diagnostics for Periodically Excited Actuators". IEEE Transactions on Instrumentation & Measurement, vol. 69, no. 7, pp. 4145-4153, July 2020.

J. Berger, D. Burnett, P. Lindahl, A. Kattamis, "Improving the Speed and Accuracy of Fire Investigations: How IoT and Connected Devices Can Help Determine Root Cause". Exponent Thought Leadership. June 2020.

S. Shabshab, P. Lindahl, J. Nowocin, J. Donnal, D. Blum, L. Norford, S. Leeb. "Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control". IEEE Transactions on Smart Grid. Vol. 11, no. 3, pp. 1917-1927, May 2020.

D. Green, S. Shaw, P. Lindahl, T. Kane, J. Donnal, S. Leeb. "A Multiscale Framework for Nonintrusive Load Identification". IEEE Transactions on Industrial Informatics. Vol. 16, no. 2, pp. 992-1002, Feb. 2020.

S. Kidwell, T. Kane, D. Green, J. Donnal, P. Lindahl, S. Leeb, H. Zeineldin, V. Khadkikar, M. El Moursi. "NILM Dashboard: Power System Monitoring for Condition-Based Maintenance". Naval Engineering Journal. Vol. 131, no. 4, pp. 73-81. Dec. 2019.

D. Green, P. Lindahl, S. Leeb, T. Kane, S. Kidwell, J. Donnal. "Dashboard: Nonintrusive Electromechanical Fault Detection and Diagnostics". IEEE AUTOTESTCON 2019. Aug. 2019.

S. Shabshab, P. Lindahl, J. Nowocin, S. Leeb. "Voltage Waveform Transient Identification for Autonomous Load Coordination". IEEE Access. Vol. 7, pp. 123128-123137. Aug. 2019.

S. Kidwell, T. Kane, D. Green, J. Donnal, P. Lindahl, S. Leeb. "NILM Dashboard: Power System Monitoring for Condition-Based Maintenance". American Society for Naval Engineers Technology, Systems & Ships. June 2019.

M. Gutierrez, P. Lindahl, A. Banerjee, S. Leeb. "An Energy Buffer for Controllable Input Impedance of Constant Power Loads". IEEE Transactions on Industrial Applications. Vol. 55, no. 3, pp. 2910-2921, May-June 2019.

S. Leeb, P. Lindahl, D. Green, T. Kane, J. Donnal, S. Kidwell. "Power as Predictor and Protector". Marine Technology. A publication of the Society of Naval Architects and Marine Engineers. April 2019.

C. Peeters, Q. Leclere, J. Antoni, P. Lindahl, J. Donnal, S. Leeb, J. Helsen. "Review and Comparison of Tacholess Instantaneous Speed Estimation Methods on Experimental Vibration Data". Mechanical Systems and Signal Processing. Vol. 129, pp. 407-436. April 2019.

T. Kane, D. Green, G. Bredariol, P. Lindahl, J. Donnal, S. Leeb. "Non-Intrusive Monitoring for Shipboard Log Generation". American Society for Naval Engineers Intelligent Ships Symposium. April 2019.

A. Aboulian, D. Green, J. Switzer, T. Kane, G. Bredariol, P. Lindahl, J. Donnal, S. Leeb. "NILM Dashboard: A Power System Monitor for Electromechanical Equipment Diagnostics". IEEE Transactions on Industrial Informatics. Vol. 15, no. 3, pp.1405-1414, Mar. 2019.

P. Lindahl, D. Green, G. Bredariol, A. Aboulian, J. Donnal, S. Leeb. "Shipboard Fault Detection Through Nonintrusive Load Monitoring: A Case Study". IEEE Sensors Journal. Vol. 18, no. 21, pp. 8986-8995, Nov. 2018.

S. Shabshab, J. Nowocin, P. Lindahl, S. Leeb. "Microgrid Modeling and Fuel Savings Opportunities Through Direct Load Control". IECON2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. Oct. 2018.

P. Lindahl, S. Leeb, S. Shaw. "Fuel Cell Stack Emulation for Cell and Hardware-in-the-Loop Studies". IEEE Transactions on Instrumentation & Measurement. Vol. 67, no. 9, pp. 2143-2152, Sept. 2018.

M. Gutierrez, P. Lindahl, A. Banerjee, S. Leeb. "Controlling the Input Impedance of Constant Power Loads". IEEE Applied Power Electronics Conference. Mar. 2018.

T. Kane, D. Green, A. Aboulian, G. Bredariol, J. Donnal, P. Lindahl, S. Leeb. "NILM: Smarter Shipboard Monitoring for the Modern Fleet". American Society for Naval Engineers Advanced Machinery Technology Symposium. Mar. 2018.

P. Lindahl, G. Bredariol, J. Donnal, S. Leeb. "Noncontact Electrical System Monitoring on a US Coast Guard Cutter". IEEE Instrumentation & Measurement Magazine. Vol. 20, no. 4, pp. 11-20, Aug. 2017.

J. Donnal, P. Lindahl, D. Lawrence, R. Zachar, S. Leeb. "Untangling Non-Contact Power Monitoring Puzzles". IEEE Sensors Journal. Vol. 17, no. 11, pp. 3542-3550, June 2017.

A. Hanson, P. Lindahl, S. Strasser, A. Takemura, D. Englund, J. Goldstein. "Technical Communication Instruction for Graduate Students: The Communication Lab vs. A Course". American Society for Engineering Education Annual Conference & Exposition. June 2017.

J. Nation, G. Bredariol, A. Aboulian, D. Green, K. Stevens, J. Donnal, P. Lindahl, S. Leeb. "Nonintrusive Monitoring for Shipboard Fault Detection". 2017 IEEE Sensors Applications Symposium. Mar. 2017.

J. Donnal, C. Schantz, J. Moon, P. Lindahl, S. Leeb. "Stethoscopes for Nonintrusive Monitoring". 2017 IEEE Sensors Applications Symposium. Mar. 2017.

G. Bredariol, K. Stevens, J. Nation, A. Aboulian, P. Lindahl, S. Leeb. "NILM: A Smarter Tactical Decision Aid". American Society of Naval Engineers Technology, Systems & Ships Day. Feb. 2017.

P. Lindahl, A. Avestruz, W. Thompson, E. George, B. Sennett, S. Leeb. "A Transmitter-Receiver System for Long-Range Capacitive Sensing Applications". IEEE Transactions on Instrumentation and Measurement. Vol. 65, no. 10, pp. 2412-2423, Oct. 2016.

P. Lindahl, G. Bredariol, J. Donnal, S. Leeb. "Non-contact Sensors and Nonintrusive Load Monitoring (NILM) Aboard the USCGC SPENCER". IEEE AUTOTESTCON 2016. Sept. 2016.

J. Moon, P. Lindahl, J. Donnal, R. Zachar, C. Schantz, W. Cotta, S. Leeb. "A Nonintrusive Magnetically Self-powered Vibration Sensor for Automated Condition Monitoring of Electromechanical Machines". IEEE AUTOTESTCON 2016. Sept. 2016.

R. Zachar, P. Lindahl, J. Donnal, W. Cotta, C. Schantz, S. Leeb. "Utilizing Spin-down Transients for

Vibration-Based Diagnostics of Resiliently Mounted Machines". IEEE Transactions on Instrumentation and Measurement. Vol. 65,no. 7,pp. 1641-1650. July 2016.

J. Cooley, P. Lindahl, C. Zimmerman, M. Cornachione, G. Jordan, S. Shaw, S. Leeb. "Multiconverter System Design for Fuel Cell Buffering and Diagnostics under UAV Load Profiles". IEEE Transactions on Power Electronics. Vol. 29, no. 6, pp. 3232-3244. June 2014.

P. Lindahl, M. Cornachione, J. Wold, X. Hu, S. Shaw. "Solid Oxide Fuel Cell Degradation, Recovery, and Control Via the Electrical Terminals". ASME Fuel Cell Science, Engineering, and Technology Conference. June 2014.

P. Lindahl, M. Cornachione, S. Shaw. "A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy". IEEE Transactions on Instrumentation and Measurement. Vol. 61, no. 12, pp. 3303-3311. Dec. 2012.

P. Lindahl, E. Moog, S. Shaw. "Simulation, Design, and Validation of a UAV SOFC Propulsion System". IEEE Transactions on Aerospace and Electronic Systems. Vol. 48, no. 3, pp. 2582-2593. July 2012.

S. Sofie, S. Shaw, P. Lindahl, L. Spangler. "Propulsion and Power Rapid Response R&D Support. Support Delivery Orders 0002 & 0041. Power-Dense, Solid Oxide Fuel Cell Systems: High-Performance, High-Power-Density Solid Oxide Fuel Cells, Materials and Load Control". Air Force Research Laboratory Propulsion Directorate. 2008-2010.

P. Lindahl, M. Cornachione, S. Shaw. "A Reference Based Fuel Cell Stack Simulator". ASME Fuel Cell Science, Engineering, and Technology Conference. July 2010.

P. Lindahl, E. Moog, S. Shaw. "Simulation, Design, and Validation of a UAV SOFC Propulsion System". IEEE Aerospace Conference. Mar. 2009.

L. Hayden, A. Sinyukov, M. Leahy, P. Lindahl, J. French, W. Herman, M. He, R. Twieg. "New Materials for Optical Rectification and Electro-optic Sampling of Ultra-short Pulses in the THz Regime". Journal of Polymer Science PartB: Polymer Physics. Vol. 41, pp. 2492-2500. Nov. 2003.

Presentations

S. Shabshab, J. Nowocin, P. Lindahl, S. Leeb. "Microgrid Modeling and Fuel Savings Opportunities Through Direct Load Control". Oral Presentation. IECON2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. Oct. 2018.

J. Nation, G. Bredariol, A. Aboulian, D. Green, K. Stevens, J. Donnal, P. Lindahl, S. Leeb. "Nonintrusive Monitoring for Shipboard Fault Detection". Oral Presentation. 2017 IEEE Sensors Applications Symposium. Mar. 2017.

J. Donnal, C. Schantz, J. Moon, P. Lindahl, S. Leeb. "Stethoscopes for Nonintrusive Monitoring". Oral Presentation. 2017 IEEE Sensors Applications Symposium. Mar. 2017.

P. Lindahl, A. Aboulian, J. Nowocin, S. Shabshab, P. Armstrong, S. Leeb. "HVAC Efficiency Tracking with Nonintrusive Load Monitoring". Poster Presentation. MIT Energy Initiative 2016 Annual Research Conference. Nov. 2016.

P. Lindahl, G. Bredariol, J. Donnal, S. Leeb. "Non-contact Sensors and Nonintrusive Load Monitoring (NILM) Aboard the USCGC SPENCER". Oral Presentation. IEEE AUTOTESTCON 2016. Sept. 2016.

J. Moon, P. Lindahl, J. Donnal, R. Zachar, C. Schantz, W. Cotta, S. Leeb. "A Nonintrusive Magnetically Self-Powered Vibration Sensor for Automated Condition Monitoring of Electromechanical Machines". Oral Presentation. IEEE AUTOTESTCON 2016. Sept. 2016.

P. Lindahl, M. Cornachione, J. Wold, X. Hu, S. Shaw. "Solid Oxide Fuel Cell Degradation, Recovery, and Control Via the Electrical Terminals". Oral Presentation. ASME Fuel Cell Science, Engineering, and Technology Conference. June 2014.

P. Lindahl, M. Cornachione, S. Shaw. "A Reference Based Fuel Cell Stack Simulator". Oral Presentation. ASME Fuel Cell Science, Engineering, and Technology Conference. July 2010.

P. Lindahl, E. Moog, S. Shaw. "Simulation, Design, and Validation of a UAV SOFC Propulsion System". Oral Presentation. IEEE Aerospace Conference. Mar. 2009.

Editorships & Editorial Review Boards

Technical Session Chair, 2017 IEEE Sensors Application Symposium

Peer Reviews

IEEE Transactions on Energy Conversion 2009–Present

IEEE Transactions on Instrumentation & Measurement 2010–Present

Energy Efficiency Oct. 2015–Present

IEEE Sensors Journal Jan. 2016–Present

IEEE Access March 2019–Present

Appendix C Malima Wolf, Ph.D., CFEI Curriculum Vitae

Exponent®

Malima Wolf, Ph.D., P.E., CFEI

Managing Engineer | Thermal Sciences Natick +1-508-652-8570 | mwolf@exponent.com

Professional Profile

Dr. Wolf specializes in heat transfer and thermodynamics. Her work at Exponent also includes investigating the origin and cause of fires and explosions.

She has conducted scene and laboratory inspections for incidents involving a variety of construction and consumer products, including water heaters, space heaters, gas piping, gasoline dispensing systems, and plumbing fittings. She has focused on incidents involving gas systems and gas appliances, including residential customer and distribution system incidents, and has worked with gas system models including Synergi.

Additionally, Dr. Wolf has broad experience in laboratory and field testing, including the design, construction, and instrumentation of customized experimental apparatus for project-specific problems. Examples include gasoline aging and gas can explosion testing. She also has extensive experience with polychlorinated biphenyl (PCB) -containing products including electrical equipment such as transformers and light ballasts.

Prior to joining Exponent, Dr. Wolf was a Senior Engineer at BlazeTech, Corp., focusing on heat transfer, fire, and safety related projects. She created analytical and numerical models for a variety of heat transfer and fluid projects including burn injury of human skin, thermal deflection, humid heat transfer, cavity formation, and composite degradation. Her experimental work there included the design and instrumentation of laboratory and field fire and heat transfer tests, and hyperspectral image analysis of material streams for separation. She designed and developed novel fire protection systems, including foaming fire suppression systems.

Dr. Wolf's academic work focused on energy use and environmental impact of manufacturing systems. As a researcher at Politecnico di Milano and ITIA-CNR and graduate student at MIT's Environmentally Benign Manufacturing Lab, she focused on the design of recycling systems as manufacturing systems, including performance analysis and facility design. She served as an environmental impact consultant on several research projects while at MIT, including tracking the environmental impact of waste after disposal and evaluating individual environmental impact based on personal lifestyle. Her research interests continue to include green manufacturing and the thermodynamics of materials systems including recycling systems. Also while at MIT, she designed testing apparatus and mechanical components including tooling for underwater robotics systems.

Academic Credentials & Professional Honors

Ph.D., Mechanical Engineering, Massachusetts Institute of Technology (MIT), 2011

M.S., Mechanical Engineering, Massachusetts Institute of Technology (MIT), 2006

B.S., Mathematics, Massachusetts Institute of Technology (MIT), 2004

B.S., Mechanical Engineering, Massachusetts Institute of Technology (MIT), 2003

Licenses and Certifications

Professional Engineer, Hawaii, #PE-20940

Professional Engineer Mechanical, Massachusetts, #52693

Professional Engineer, Oregon, #97257PE

Certified Fire and Explosion Investigator (CFEI)

PADI Certified Open Water Scuba Diver

Publications

Davies W, E Wikramanayake, M Wolf, A Hudgins. Transient Effects of Injecting Green Hydrogen into Natural Gas Pipelines. AIChE 10th International Congress on Sustainability Science & Engineering (ICOSSE2021), September 13-15, 2021.

Davies W, M Wolf, M Barry, S O'Hern, T Morse. The Effect of Valve Closure Time on Water Hammer. Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition (IMECE2021), November 1-5, 2021.

Ibarreta AF, Colella F, Wolf MI, Yen, M, O'Hern SC, Myers TJ. Modeling of explosion venting fireballs. Proceedings, Mary K O'Connor Process Safety Symposium, College Station, TX, 2019.

Morse TL, Colella F, Wolf MI, Barry MT. Space Heater Fires and Fire Investigation, Proceedings, International Symposium on Fire Investigation Science and Technology, Itasca, IL, 2018.

Ibarreta AF, Colella F, Wolf MI, Vickery J, O'Hern SC, Myers TJ. Measuring leak flow rates in fire and explosion investigations. Proceedings, International Symposium on Fire Investigation Science and Technology, Itasca, IL 2018.

Ibarreta AF, Colella F, Wolf MI, O'Hern SC, Myers TJ. Modeling of explosion venting fireballs. Proceedings, 13th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions (ISHPMIE), Kansas City, MO, 2018.

Wolf MI, Colledani M, Gershwin SB, Gutowski TG. A network flow model for the performance evaluation and design of material separation systems for recycling. IEEE Transactions on Automation Science and Engineering, 2013.

Phithakkitnukoon S, Wolf MI, Offenhuber D, Lee D, Biderman A, Ratti C. Tracking trash. IEEE Pervasive Computing, 2013.

Offenhuber D, Wolf MI, Ratti C. Trash Track - Active location sensing for evaluating e-waste transportation. Waste Management & Research, 2013.

Offenhuber D, Lee D, Wolf M, Phithakkitnukoon S, Biderman A, Ratti C. Putting matter in place: tradeoffs between recycling and distance in planning for waste disposal. Journal of the American Planning Association, 2012. JAPA Best Article of 2012

Boustani A, Girod L, Offenhuber D, Britter R, Wolf MI, Lee D, Miles S, Biderman A, Ratti C. Investigation of the waste-removal chain through pervasive computing. IBM Journal of Research and Development, 2011.

Presentations

Oakland County Association of Arson and Fire Investigators, Inc., "OCAAFII Quarterly Training: Recent Updates to NFPA 921, Spontaneous Combustion, and Residential Fuel Gas Explosions," November 17, 2020.

MIT 2.671 Measurement and Instrumentation guest lecture, "Measurement of Saturated Vapor Pressure of Gasoline," April 30, 2020.

Wolf MI, et al. Robust design of material separation systems for recycling. 10th Global Conference on Sustainable Manufacturing, Istanbul, Turkey, October 31-November 2, 2012.

Wolf MI, et al. Modeling and design of multi-step separation systems. International Symposium on Sustainable Systems and Technology, Washington, DC, May 16-19, 2010.

Corrosion Testing of 40% Copper-Clad Steel (CCS) **Conductors and Associated** Connectors

Exponent

Corrosion Testing of 40% Copper-Clad Steel (CCS) Conductors and Associated Connectors

Prepared For:

Copperweld Bimetallics, LLC. Brentwood, TN 37027 For Use and Publication in the NFPA Standards Setting Process

Prepared By:

Vir Nirankari, Ph.D., P.E. Managing Engineer, Materials and Corrosion Engineering

Noah Budiansky, Ph.D., P.E. Senior Managing Engineer, Materials and Corrosion Engineering

Exponent, Inc. 1075 Worcester St., Natick, MA 01760

August 27, 2024

© Exponent, Inc.

Table of Contents

Acrony	yms and Abbreviations	ii
1.0	Executive Summary	3
1.1	Overview	3
1.2	Test Objectives	3
1.3	Findings	4
2.0	Testing Overview and Results	5
2.1	Galvanic Corrosion Testing	5
2.	1.1 Testing Overview	5
2.	1.2 Testing Results	9
2.2	Salt Spray Testing 1	0
2.	2.1 Testing Overview	0
2.	2.2 Testing Results 1	3
3.0 Appen	Limitations	9
••		

Appendix B Noah Budiansky, Ph.D., P.E. Curriculum Vitae

Acronyms and Abbreviations

A Ag AgCl ASTM AWG CCS	ampere, or amps silver silver chloride ASTM International (formerly American Society for Testing and Materials) American Wire Gauge copper-clad steel
40% CCS	copper-clad steel conductors that are nominally 40% of the conductivity of the same-sized copper conductors at 60 Hz
CR	corrosion rate
Cu	copper
g	grams
in-lbs	inch-pounds
LPS	lightning protection system, or systems
М	molar, or moles per liter
mil	one-thousandth of an inch, or 0.001 inches
mm	millimeters
mpy	mils per year
NaCl	sodium chloride
NEC	National Electric Code
NFPA	National Fire Protection Association
wt	weight
μΩ	microohms

1.1 Overview

- Copper-clad steel (CCS, specifically 40% CCS)¹ was proposed as a material of use as a grounding electrode conductor (GEC) in the National Electric Code (NEC),² and as a down conductor for lightning protection system (LPS) in NFPA 780.³
- 2. At the request of Copperweld Bimetallics LLC, Exponent comparatively evaluated the corrosion resistance and reliability of both copper (Cu) and 40% CCS conductors when used in electrical connections.

1.2 Test Objectives

- The objective of this testing was to comparatively evaluate the corrosion resistance and reliability of both Cu and CCS conductors when used in electrical connections, particularly in environments prone to salt exposure.
- 4. More specifically, the testing described in this report includes evaluating galvanic corrosion susceptibility of combinations of Cu and CCS conductors (using ASTM G71 as a guide),⁴ and comparatively evaluating the reliability of Cu and CCS conductors used in electrical connections when subjected to an aggressive salt spray environment (through ASTM B117).⁵

In the context of this testing, 40% CCS refers to CCS conductors that are nominally 40% of the conductivity of the same-sized copper conductors at 60 Hz.
 For the purposes of this report, CCS shall be used interchangeably with 40% CCS.

² The NEC is also known as the National Fire Protection Association (NFPA) 70. A GEC is defined in the NEC as "[a] *conductor used to connect the system grounded conductor or the equipment to a grounding electrode or to a point on the grounding electrode system.*" NEC 2023, §100.

³ NFPA 780 is titled "Standard for the Installation of Lightning Protection Systems." Exponent understands that these proposals were submitted through the NFPA's public input process.

⁴ ASTM G71-81R24 is titled "Standard Guide for Conducting and Evaluating Galvanic Corrosion Tests in Electrolytes."

⁵ ASTM B117-19 is titled "Standard Practice for Operating Salt Spray (Fog) Apparatus."

1.3 Findings

- 5. The results from this study indicate that, in a simulated seawater environment:
 - 5.a. The corrosion rate of uncoupled Cu, CCS, and steel were calculated to be approximately 8.3 mpy, 2.9 mpy, and 7.7 mpy, respectively; and
 - 5.b. The magnitude of galvanic effects appears to be a small fraction for Cu-Cu, CCS-CCS, and CCS-Cu couples, especially when compared to the more pronounced galvanic effect when Cu or CCS is coupled with steel.
- 6. The results from this study indicate that, from the salt spray testing, the weight loss was not significantly different between Cu and CCS connector samples, the contact resistance for the Cu connector samples was lower than the CCS connector samples (both before and after testing), the overall change in the mean contact resistance was similar for both Cu and CCS, and the relative change in the contact resistance was lower for CCS compared to Cu.

2.0 Testing Overview and Results

2.1 Galvanic Corrosion Testing

2.1.1 Testing Overview

- 7. "Galvanic corrosion" is an electrochemical process where accelerated corrosion occurs when two metals with different electrochemical potentials are in electrical contact and exposed in close proximity to the same environment or electrolyte (i.e., in ionic contact). The metal with a more negative potential (i.e., anode) tends to lose electrons or experiences accelerated oxidation (corrosion), while the metal with a more positive potential (i.e., the corrosion rate is decreased).⁶
- 8. Galvanic corrosion testing measures the corrosion behavior of two materials in direct electrical contact in the same environment or electrolyte in close proximity to one another. The rate of corrosion is typically evaluated through weight loss measurements or by measuring the current between the two coupled materials. One standard typically used as a guide is ASTM Standard G71 (Standard Guide for Conducting and Evaluating Galvanic Corrosion Tests in Electrolytes).
- 9. To assess the effect of galvanic coupling, the corrosion rates of the galvanically coupled materials is compared with their uncoupled corrosion rates in the same environment.⁷
- 10. Test specimens were prepared from strands of 19-strand 4/0-AWG Cu and CCS conductors, along with a mild steel wire.⁸ The strands/wires were approximately 3 mm in diameter and were cleaned from the as-received condition (i.e., were not polished) with Alconox to remove light surface residues and oils used during manufacturing.
- 11. An electrical wire was attached to each specimen to provide electrical contacts to the metal samples for electrochemical measurements. All electrical connections were masked

⁶ Jones, D. *Principles and Prevention of Corrosion*, 2nd Ed., 1996. §§ 1.5.2, 6; pp. 11-13, 168-169.

⁷ ASM Handbook, Volume 13A, Corrosion Fundamentals, Testing, and Protection, 2003, PDF pp. 206-208.

⁸ Testing with steel was conducted only to illustrate the galvanic behavior of materials considered to be dissimilar.

with a silicone-based sealant to insulate them from the test electrolyte. In addition, the cut end of each wire sample was masked to prevent any exposure of the steel core (in the case of the CCS) to the test solution. The coupled material combinations tested were Cu-Cu, CCS-CCS, CCS-Cu, Cu-Steel, and CCS-Steel (see Figure 1 for a representative photograph).

Figure 1. Photograph showing the CCS (top) and Cu (bottom) strands coupled for CCS-Cu galvanic corrosion testing. The insulating masks are noted with the black arrows.

- 12. While ASTM G71 notes that the test solution "*should closely approximate the service environment*,"⁹ the test objective was to evaluate whether coupling (CCS and Cu) had the propensity to induce accelerated corrosion; thus, more severe conditions than the anticipated service environment were selected. The test environment was designed to evaluate whether the combination of CCS-Cu behaved similar to Cu-Cu / CCS-CCS couples.
 - 12.a. Testing under more severe conditions allows evaluation of the galvanic couple behavior under "worst-case" scenarios in a relatively short period of time.

⁹ ASTM G71-81R24, §5.1.1

- 12.b. Accordingly, results obtained from this testing should be interpreted with the explicit understanding that they represent performance under more severe conditions than is typical for these conductors.
- 13. Testing was conducted using 3.5 wt% sodium chloride (i.e., 0.6 M NaCl) solution. The test solution was sparged with air (to maintain a uniform oxygen concentration in the test solution) for a minimum of 1 hour prior to testing and continuously throughout the entire test duration. All testing was conducted at room temperature, which was measured to be between 19 °C and 22 °C. The pH of the solution was measured, but no pH range was specified. The pH was between approximately 6 and 7 pH units and was measured prior to and after each test.¹⁰ A photograph showing the test cell is provided in Figure 2.

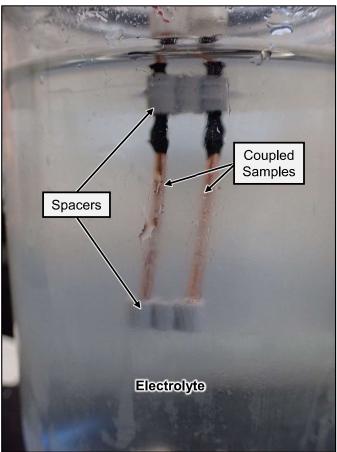


Figure 2. Photograph of a test cell for galvanic corrosion testing. The coupled samples were placed in an 0.6 M NaCl solution for 24 hours.

¹⁰ Exponent notes that, that in some instance the test finished during non-business hours and was left for an extended period of time before the pH was measured.

- 14. Electrochemical galvanic corrosion susceptibility was evaluated by measuring the galvanic couple between the two electrodes utilizing zero-resistance-ammeter mode in a potentiostat. Gamry potentiostats were used for all testing. Silver-silver chloride (Ag-AgCl) reference electrodes were used for all testing, and the potential was converted to a saturated calomel scale for comparison to the corrosion literature. It was assumed that all measured galvanic current between the two electrodes was due to galvanic corrosion.
- 15. The test was conducted for a 24-hour period, with measurements of galvanic current and potentials recorded at 30-second intervals throughout the test duration. The corrosion current was determined by calculating the mean current from the last 15 minutes of testing.
- 16. All samples were prepared to achieve an approximately 1:1 surface area ratio. However, due to slight differences in diameter and masking area, an exact 1:1 ratio could not be achieved.
- 17. Uncoupled corrosion currents (which is directly related to the corrosion rate) were measured using ASTM G102 and ASTM G61 as guides.¹¹ Potentiodynamic corrosion testing was conducted after 24 hours of exposure time to the electrolyte (the same time used for galvanic corrosion testing) to evaluate the corrosion behavior of the uncoupled material.¹²
- 18. All testing was conducted in triplicate with the exception of testing Cu-Steel and CCS-Steel couples (which was conducted with single tests to illustrate the galvanic behavior of materials that are considered to be dissimilar). The results are provided in the following section.

¹¹ ASTM G102 is titled "Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements." ASTM G61 is titled "Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys."

¹² The corrosion current was determined from the potentiodynamic curves using Tafel extrapolation technique, and the corrosion current was used to calculate the corrosion rate using Faraday's law. See ASTM G102 and ASTM G1 for further detail.

2.1.2 Testing Results

- 19. The coupled corrosion rate was calculated from the mean measured current from the last 15 minutes of the 24-hour exposure duration from each galvanic corrosion test. The mean of the three tests was calculated and is shown in Table 1.
 - 19.a. The mean coupled corrosion rate for CCS-Cu was 0.23 mils per year (mpy).¹³ The CCS acted as the anode in all of the tests conducted. Similarly, the mean coupled corrosion rate was 0.33 mpy and 0.17 mpy for Cu-Cu and CCS-CCS, respectively.
 - 19.b. In contrast, when Cu or CCS is coupled to steel, the steel becomes the anode and Cu or CCS becomes the cathode. The coupled corrosion rate was calculated to be 26.30 mpy and 19.07 mpy when steel is coupled to Cu or CCS, respectively.¹⁴
- 20. For comparison, the corrosion rate of each material when uncoupled was calculated to elucidate the contribution of coupled (i.e., galvanic) corrosion rate to the total corrosion rate of Cu, CCS, and steel in a simulated seawater environment (0.6 M NaCl solution). This corrosion rate was calculated after 24 hours of exposure (to mimic the duration of the galvanic corrosion testing). The corrosion rate of Cu, CCS, and steel were calculated to be 8.35 mpy, 2.92 mpy, and 7.66 mpy, respectively.
- 21. The ratio of the coupled corrosion rate to the total corrosion rate was calculated to determine the galvanic contribution to the total corrosion rate. As shown in Table 1, the contribution of galvanic coupling to the total corrosion rate for Cu-Cu and CCS-CSS couples was found to contribute up to approximately 5.4% of the total current. Additionally, CCS-Cu coupling contributes approximately 7.3% of the total current. While this value is higher than coupling like-materials, CCS-Cu coupling nevertheless contributes only a small fraction of the total corrosion rate.

¹³ A "mil" is one-thousandth of an inch, or 0.001 inches.

¹⁴ Exponent notes that these values were calculated from a single test and was conducted only to illustrate the behavior of dissimilar materials.

temperature.							
	Uncoupled CR (mpy) ¹⁵	Coupled CR (mpy)	Total CR (mpy)	Ratio of Coupled CR/Total CR (%)	Anode		
Cu-Cu	8.35	0.33	8.68	3.79	Cu		
CCS-CCS	2.92	0.17	3.09	5.36	CCS		
CCS-Cu	2.92	0.23	3.15	7.33	CCS		
Cu-Steel	7.66	26.30	33.95	77.45	Steel		
CCS-Steel	7.66	19.07	26.72	71.35	Steel		

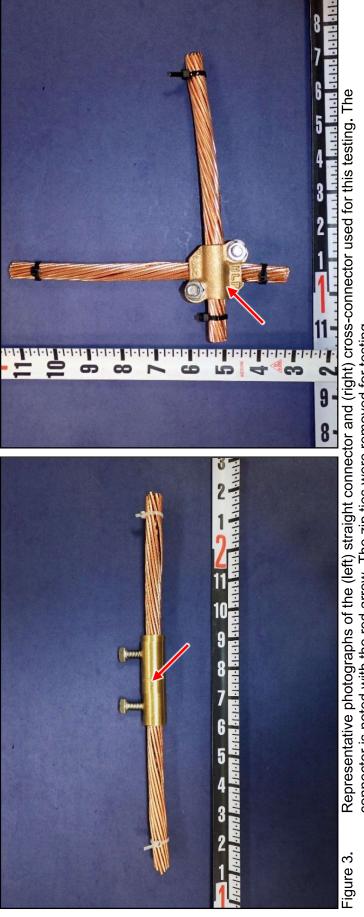
Table 1.Calculated mean corrosion rates (CRs) for uncoupled and coupled corrosion
testing in 0.6 M NaCl solution (designed to simulate seawater) at room
temperature.

- 21.a. This could be due to slight differences in composition, surface roughness, residual stresses/cold work, among others. Furthermore, as shown, even seemingly identical materials (i.e., Cu-Cu and CCS-CCS) can exhibit small galvanic effects due to subtle differences that can arise between samples.
- 21.b. For comparison, coupling contributes the majority of the corrosion when Cu/CCS is coupled to steel. Coupling contributes between approximately 71.4% and 77.5% of the total current for CCS-steel and Cu-steel, respectively.
- 21.c. Thus, the magnitude of the galvanic effects appears to be small fraction of the total corrosion of Cu-Cu, CCS-CCS, and CCS-Cu cases (with CCS-Cu being the highest), especially compared to the galvanic effect when Cu or CCS is coupled with steel.

2.2 Salt Spray Testing

2.2.1 Testing Overview

22. Salt spray testing (in accordance with the requirements of ASTM B117)¹⁶ was performed to evaluate the comparative corrosion resistance and the contact resistance of the electrical connection assembly under aggressive salt spray (such as long-term exposure to marine environments) in a compressed timeframe.


¹⁵ The uncoupled corrosion rate is the baseline corrosion rate of the anode in the galvanic couple.

¹⁶ ASTM B117-19, "Standard Practice for Operating Salt Spray (Fog) Apparatus."

- 23. While salt spray testing can provide insights into corrosion behavior, Exponent understands that this test simulates a more severe environment than these conductors are expected to encounter in service, and the test results should be interpreted with this in mind.
- 24. The samples tested consisted of 19 strand 4/0-AWG Cu and CCS conductors terminated onto both straight and cross-connectors. All connections joined similar materials (either Cu-Cu, or CCS-CCS) and was tested in triplicate. Additionally, unconnected control samples (consisting of Cu/CCS conductors and straight/cross-connectors) were also tested and assembled only after salt spray testing. Prior to testing, the as-received samples were cleaned with acetone to remove any surface residues. Representative photographs of the connector samples before testing are shown in Figure 3.

Straight Connector

Cross Connector

connector is noted with the red arrow. The zip ties were removed for testing.

- 25. The connections were terminated to the appropriate tightening torque (by using a calibrated torque wrench) of 80 in-lbs as per the manufacturer's instructions. Contact resistance measurements and sample weight was measured before and after testing.
- 26. Samples were placed in a salt spray chamber configured to maintain conditions as outlined in ASTM B117 (i.e., 5% NaCl solution).¹⁷ Samples were carefully spaced in the chamber to ensure both uniform exposure to the salt spray and to prevented dripping condensation.¹⁸
- 27. The samples were continuously exposed to salt spray for a duration of 200 hours, with the chamber operating uninterrupted during this period. Upon completion of the 200-hour exposure period, samples were carefully removed, rinsed, and dried for subsequent evaluation. The results are provided in the following section.

2.2.2 Testing Results

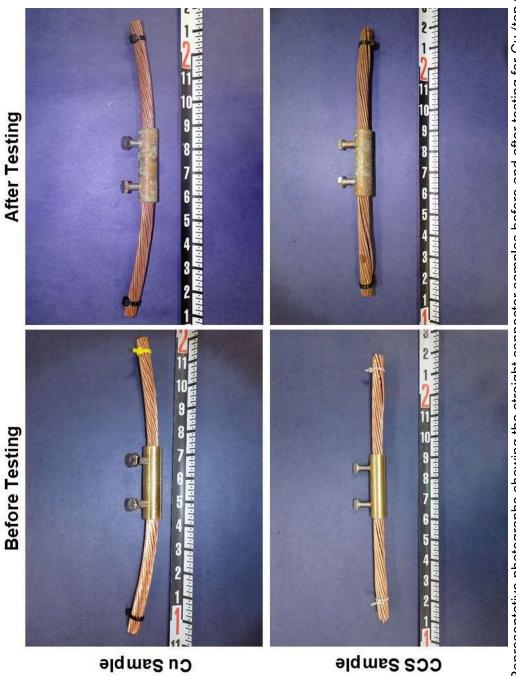
28. After completion of the salt spray testing, all samples exhibited evidence of visible corrosion. Representative photographs of the samples before and after testing are shown below in Figure 4, Figure 5, and Figure 6. Weight loss and contact resistance measurements are summarized below in Table 2 and Table 3.

¹⁷ ASTM B117-19, §§ 10.1-10.2.

¹⁸ Dripping condensation could result in non-uniform salt concentration and/or cross-contamination, which could lead to non-representative localized areas of accelerated corrosion.

Sample Type / ID		Sample Weight (g)			Contact Resistance (μΩ)		
		Before Testing	After Testing	Weight Loss	Before Testing	After Testing	Δ
Straight	CCS 1	414.4	410.9	3.5	46.6	58.1	11.5
Straight	CCS 2	407.5	405.5	2.0	42.1	55.2	13.1
Straight	CCS 3	414.8	412.5	2.3	53.2	62.1	8.9
Cross	CCS 1	518.8	517	1.8	68.1	63.9	-4.2
Cross	CCS 2	524.5	521.2	3.3	30.7	41.6	10.9
Cross	CCS 3	525.9	521.7	4.2	62.2	62.9	0.7
Straight	Cu 1	430.2	429.4	0.8	26.4	33.8	7.4
Straight	Cu 2	442.7	440.5	2.2	24.2	32.7	8.5
Straight	Cu 3	436	434.7	1.3	29.3	31.6	2.3
Cross	Cu 1	548	545.3	2.7	17.9	21.6	3.7
Cross	Cu 2	547.7	545.8	1.9	13.6	22.3	8.7
Cross	Cu 3	557.3	553.7	3.6	16.3	18.9	2.6

 Table 2.
 Weight Loss and Contact Resistance Measurements (Connector Samples)


 Table 3.
 Weight Loss and Contact Resistance Measurements (Control Samples)

		Samp	le Weight (g	Contact Resistance (μΩ)	
Sample Type / ID		Before Testing	After Testing	Weight Loss	After Testing and Assembly
Straight	CCS Ctrl	581.2	579.2	2.0	174.8
Cross	CCS Ctrl	592.3	591.7	0.6	95.9
Straight	Cu Ctrl	557.7	556.6	1.1	181.1
Cross	Cu Ctrl	588.8	586.8	2.0	53.9

29. The mean weight loss for the Cu connector samples was $2.1 \text{ g} \pm 1.0 \text{ g}$, while the mean weight loss for the CCS connector samples was $2.9 \text{ g} \pm 1.0 \text{ g}$. Thus, the overall weight loss was not significantly different between materials. Moreover, the weight loss for the control samples was minimal (ranging from approximately 0.6 g to 2.0 g).


¹⁹ The reported weight is the sum of the conductors and connector before assembling for contact resistance measurements.

- 30. The mean contact resistance for the Cu connector samples before and after testing was 21.3 $\mu\Omega \pm 6.2 \ \mu\Omega$ and 26.8 $\mu\Omega \pm 6.6 \ \mu\Omega$, respectively, while the mean contact resistance for the CCS connector samples before and after testing 50.5 $\mu\Omega \pm 13.7 \ \mu\Omega$ and 57.3 $\mu\Omega \pm 8.4 \ \mu\Omega$, respectively.
 - 30.a. As shown by the data, the mean contact resistance of Cu samples is lower than CCS samples, and both Cu and CCS experienced an increase in contact resistance following salt spray testing. The increase in contact resistance is similar for both materials, with a difference in the mean contact resistance of approximately 5.5 μ \Omega and 6.8 μ \Omega for Cu and CCS, respectively. Further, the relative change in contact resistance was lower for CCS, with the relative change being approximately 13.5% for CCS and approximately 26.0% for Cu.
 - 30.b. Moreover, the contact resistance for the control samples is notably higher than the connector samples, with the Cu and CCS straight connector samples showing similar contact resistance (approximately 174.8 $\mu\Omega$ and 181.1 $\mu\Omega$, respectively), and the Cu cross-connector sample having a lower contact resistance than CCS cross-connector sample (approximately 53.9 $\mu\Omega$ and 95.9 $\mu\Omega$, respectively). This suggests that the contact interfaces of the assembled samples were partially shielded from the salt spray.
- 31. Thus, the weight loss was not significantly different between Cu and CCS samples, the contact resistance for the Cu connectors was lower than the CCS (both before and after testing), the overall change in the mean contact resistance was similar for both Cu and CCS (at approximately 5.5 $\mu\Omega$ and 6.8 $\mu\Omega$, respectively), and the relative change in the contact resistance was lower for CCS compared to Cu (at approximately 13.5% and 26.0%, respectively).


Representative photographs showing the straight connector samples before and after testing for Cu (top row) and CCS (bottom row). The zip ties were removed for testing. Figure 4.

16

17

(top row), a CCS conductor (middle row), and the straight / cross-connectors (bottom row). Samples were assembled Representative photographs showing the unconnected control samples before and after testing for a Cu conductor after salt spray testing.

Figure 6.

18

- 32. This report includes results of work conducted at the request of Copperweld Bimetallics LLC.
- 33. The material contained herein is presented to a reasonable degree of scientific and engineering certainty and may not adequately address the needs of any or all users of this report. Any re-use of this report, or any of its contents, is made at the sole risk of the user. No guarantee or warranty as to future relevance is expressed or implied.
- 34. Exponent reserves the right to supplement this report and to expand or modify its contents based on review of additional material as it becomes available and/or through any additional work or review of additional work performed by others.
- 35. In the testing described above, we have relied on materials and information provided by Copperweld Bimetallics LLC. We cannot verify the correctness of this input and rely on Copperweld Bimetallics LLC for accuracy.
- 36. Although Exponent has exercised usual and customary care in preparing this summary presentation, the responsibility for the design, manufacture, and quality of their products remains fully with Copperweld Bimetallics LLC.

Appendix A Vir Nirankari, Ph.D., P.E. Curriculum Vitae

Exponent® Engineering & Scientific Consulting

Vir Nirankari, Ph.D., P.E.

Managing Engineer | Materials and Corrosion Engineering Natick +<u>1-508-652-85</u>66 | vnirankari@exponent.com

Professional Profile

Dr. Nirankari's areas of expertise include failure analysis, metallurgy, fracture, welding, finite element modeling and materials characterization. He has conducted research and failure analysis of metals and welds involving both experimental and computational approaches.

Dr. Nirankari has applied his expertise to a range of engineering fields, including automotive, aerospace, consumer electronics and utilities. He also has experience with mechanical testing techniques, fractography, metallurgical and microstructural analysis, non-destructive evaluation, microscopy and computational mechanics.

Dr. Nirankari has extensive experience performing mechanical testing as well as microstructural analysis via optical microscopy, scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). He is also skilled in computed tomography (CT). His computational expertise lies in use of finite element modeling. He has extensive experience with commercial finite element software (Abaqus) and computer aided design software (SolidWorks).

During his graduate study at the University of Michigan, Dr. Nirankari's research included the use of mechanical testing to understand the crack initiation and small crack propagation behavior of aluminum spot welds and finite element modeling to predict the weld lifetime. As an undergraduate, Dr. Nirankari's research focused on improving the efficacy of plasma sprayed thermal barrier coatings for turbine blades.

Academic Credentials & Professional Honors

Ph.D., Materials Science and Engineering, University of Michigan, Ann Arbor, 2017

B.S., Mechanical Engineering, Boston University, 2010

Licenses and Certifications

Professional Engineer Metallurgical, California, #2039

SOLIDWORKS Certificate in Mechanical Design

Prior Experience

Graduate Student Research Assistance, University of Michigan, 2011-2017

Professional Affiliations

American Welding Society (AWS) D10 Committee on Piping and Tubing:

AWS D10V Subcommittee on Tubular Steel Vehicle Structure

AWS D10 Committee on Piping and Tubing: AWS D10H Subcommittee on Aluminum Piping

AWS D8 Committee on Automotive Welding: AWS D8D Subcommittee on Automotive Resistance Spot Welding

International Organization for Standardization (ISO): ISO/TC 44/SC6, Resistance welding and allied mechanical joining

Publications

Nirankari V, McGann J, White K, Performance And Safety Implications Of Ultrasonic Spot Welding For Lithium-Ion Batteries: Best Practices And Case Study, International Materials Applications and Technology Conference, St Louis MO, September 14, 2021

Nirankari V, James B, Van Der Schjiff O, Grooving corrosion: differentiating weld defects from corrosion failure, Materials Science and Technology Conference, Columbus OH, October 17, 2018.

American Welding Society (AWS) Standard D10.10/D10.10M:2021 Recommended Practices for Local Heating of Welds in Piping and Tubing

Short Fatigue Crack Growth and Durability Modeling of Resistance Spot Welded 5754 and 6111, Nirankari V, PhD Thesis, University of Michigan, 2017.

Nirankari V, Li M, Allison J. Microstructural effects on small fatigue crack growth of resistance spot welded aluminum alloys 5754 and 6111. Oral presentation, The Minerals, Metals & Materials Society Annual Meeting, Nashville, TN, 2016.

Nirankari V, Li M, Allison J. Modeling small fatigue crack growth and applications to spot welded aluminum alloys 5754 and 6111. Poster presentation, The Minerals, Metals & Materials Society Annual Meeting, Nashville, TN, 2016.

Nirankari V, Li M, Allison J. Microstructural effects on small fatigue crack growth in resistance spot welded sheet 5754 and 6111 aluminum and durability modeling of eyebrow cracking in resistance spot welds. Oral presentation, Materials Science & Technology (MS&T), Columbus, OH, 2015.

Nirankari V, Li M, Allison J. Influence of microstructure on growth of small fatigue cracks in aluminum alloy 6111. Oral presentation, Materials Science & Technology (MS&T), Pittsburgh, PA, 2012.

Editorships & Editorial Review Boards

Journal of Failure Analysis and Prevention (Associate Editor)

Peer Reviews

International Journal of Fatigue

Journal of Failure Analysis and Prevention

Appendix B Noah Budiansky, Ph.D., P.E. Curriculum Vitae

Exponent® Engineering & Scientific Consulting

Noah Budiansky, Ph.D., P.E.

Senior Managing Engineer | Materials and Corrosion Engineering Natick +1-508-652-8516 | nbudiansky@exponent.com

Professional Profile

Dr. Budiansky's expertise is in metallurgy and corrosion science and engineering. He specializes in failure analysis, material degradation, failure prevention, material selection, material characterization, and laboratory testing in the areas of implantable medical devices, portable electronic devices and consumer appliances, gas pipelines and water distribution, chemical processing and food production, paints and coatings, mechanical fasteners, and building and structures.

Dr. Budiansky has conducted research and corrosion failure analyses involving uniform corrosion, localized corrosion, stress corrosion cracking, hydrogen embrittlement, fretting corrosion, formicary corrosion, graphitic corrosion, and galvanic corrosion.

Dr. Budiansky has extensive experience solving complex corrosion problems using AC and DC electrochemical techniques, accelerated exposure techniques (environmental exposure and accelerated environments), material characterization techniques (microscopy and elemental analysis), metallographic examination, fractography, on-site investigations, and failure analysis.

Academic Credentials & Professional Honors

Ph.D., Materials Science and Engineering, University of Virginia, 2007

M.S., Materials Science and Engineering, University of Virginia, 2003

B.S., Environmental Sciences, University of Massachusetts, Amherst, 1997

Marcel Pourbaix Second Place Prize for Best Poster in Corrosion Science "Material Parameters Associated With Cooperative Spreading Of Localized Corrosion on Heterogeneous Materials," CORROSION/06 Conference Student Poster Session, National Association of Corrosion Engineers, San Diego, CA, 2006

Electrochemical Society Corrosion Division Student Travel Grant for the 3rd International Symposium on Pits and Pores: Formation, Properties and Significance for Advanced Materials, The Electrochemical Society, Honolulu, HI, 2004

Marcel Pourbaix First Place Prize for Best Poster in Corrosion Science, "Origins of Persistent Interactions Among Localized Corrosion Sites Investigated Using Experimental Electrode Arrays," CORROSION/02 Conference Student Poster Session, National Association of Corrosion Engineers, Denver, CO, 2002

Licenses and Certifications

Professional Engineer, New York, #099471

NACE - Certified Coating Inspector Level 1 Certification

NACE Certified Corrosion Technician

Prior Experience

Senior Research Technician, W.R. Grace Construction Products Division, 1997-2000

Geotechnical Laboratory Technician, American Reclamation Inc./Materials Technology Center, 1995-1997

Professional Affiliations

ASM International

- Chairperson Central Massachusetts Chapter, 2013-2014
- Vice Chairperson Central Massachusetts Chapter, 2012-2013

Electrochemical Society (active member)

National Association of Corrosion Engineers (active member)

Patents

Patent 6,277,191: Air Entrainment with Polyoxyalkylene Copolymers for Concrete Treated With Oxyalkylene SRA, August 21, 2001

Patent 6,648,962: Micro-Granulose Particulates, November 18, 2003

Publications

Verghese PM, Budiansky ND, Ledwith P, Bauer D. Residue induced product failures - Microanalysis. Microscopy and Microanalysis 2016;22(S3): 1730-1731.

Budiansky ND, Dennies DP, Forman J, Wong D, Tucker J. Computed X-ray tomography of powder metallurgy product for rapid, quantitative size and shape distribution analysis. Microscopy and Microanalysis 2016;22(S3): 1756-1757.

Budiansky ND, Forman J, Van Der Schijff O. The Role of Computed X-ray Tomography in a Metallurgical Failure Analysis. Microscopy and Microanalysis, 2015: 21(S3): 445-446.

Snyder J, Engel A, White K, Budiansky N, Smith JM. Left atrial appendage occlusion device: Evaluation of surgical implant success and in vivo corrosion performance. Surgical Science, 2012; 3(1): 28-33.

Jain S, Budiansky N, Hudson J, and Scully J. Surface spreading of intergranular corrosion on stainless

steels. Corrosion Science , 2010; 52(2):873-885.

Persaud-Sharma D, Budiansky ND, McGoron A. Biocompatibility assessment of novel bioresorbable alloys Mg-Zn-Se and Mg-Zn-Cu for endovascular applications: In-Vitro Studies. Journal of Biometrics, Biomaterials & Tissue Engineering 2013; 17(25-43).

Persaud-Sharma D, Budiansky ND. In-vitro degradation behavior of ternary Mg-Zn-Se and Mg-Zn-Cu alloys as biomaterials. Journal of Biometrics, Biomaterials & Tissue Engineering 2013; 18(1):25-43.

Persaud-Sharma D, Budiansky ND, McGoron A. Mechanical properties and tensile failure analysis of novel bio-absorbable Mg-Zn-Cu and Mg-Zn-Se alloys for endovascular applications. Metals (Basel) 2013; 3(23-40).

Cong H, Bocher F, Budiansky ND, Hurley MF, Scully JR. Use of coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena. Journal of ASTM International 2007; 4(10).

Cong H, Budiansky ND, Scully JR. Use of coupled electrode arrays to elucidate copper pitting as a function of potable water chemistry. CORROSION/07, Paper #07392, Nashville, TN, 2007.

Budiansky ND, Bocher F, Cong H, Hurley MF, Scully JR. Use of coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena. CORROSION/06, Paper #06677, NACE, San Diego, CA, 2006.

Cooper KR, Smith M, Budiansky ND. Development of a multielectrode array impedance analyzer for corrosion science and sensors. CORROSION/06, Paper #06674, NACE, San Diego, CA, 2006.

Scully JR, Budiansky ND, Organ L, Mikhailov AS, Hudson JL. Cooperative spreading of pit sites as a new explanation for critical threshold potentials. Passivity-9, Elsevier B.V, Paris France, 2005.

Budiansky ND, Organ L, Hudson JL, Scully JR. Detection of interactions among localized pitting sites on stainless steel using spatial statistics. Journal of Electrochemical Society 2005; 152(4):B152.

Budiansky ND, Organ L, Mikhailov AS, Hudson JL, Scully JR. Cooperative spreading of pit sites as an additional explanation for critical thresholds. Proceedings, 3rd International Symposium on Pits and Pores: Formation, Properties and Significance for Advanced Materials, The Electrochemical Society, Honolulu, HI, 2004.

Punckt C, Bolsher M, Rotermund HH, Mikhailov AS, Organ L, Budiansky ND, Scully JR, Hudson JL. Sudden onset of pitting corrosion on stainless steel as a critical phenomenon. Science 2004; 305:1133-1136.

Budiansky ND, Hudson JL, Scully JR. Origins of persistent interactions among localized corrosion sites. Journal of the Electrochemical Society 2004; 151(4):B233.

Budiansky ND, Hudson JL, Scully JR. Origins of persistent interactions among localized corrosion sites. Critical factors in localized corrosion IV. Symposium in Honor of Hans Böhni, Virtanen S, Schmuki P, Frankel GS (eds), Electrochemical Society Proceedings, Vol. 2002-24, pp. 133, 2002.

Invited Talks and Lectures

Budiansky ND, Forman J, Koutsoukis T, Kreuzer S, Spray R. Characterization of Recylced Additive Manufacturing Product. TMS 2018, Phoenix, Az.

Budiansky ND, Van Der Schijff O. Are All Supervisory Gases the Same? - An Electrochemical Perspective. NACE 2018 Technical Committee Meeting TEG 159X, Phoenix, Az.

Budiansky ND, Forman J, Wong D, Tucker J, Dennies DP. Computed x-ray tomography of powder metallurgy product for rapid, quantitative size and shape distribution analysis. M&M 2016, Columbus, OH.

Verghese PM, Budiansky ND, Ledwith P, Bauer D. Residue induced product failures - Microanalysis. M&M2016, Columbus, OH.

Stern MC, Budiansky ND, Somandepalli V, Reza A, Myers TJ. Accidents during turnarounds, cleanings, and other infrequent operations. AIChE 2016 Spring Meeting & 12th Global Congress on Process Safety.

Budiansky ND, Van Der Schijff O, Forman J. The role of computed x-ray tomography in a metallurgical failure analysis. M&M 2015, Portland, OR.

Budiansky ND, Trenkle J, Verghese P. Evaluating the role of thread compounds and assembly in stress corrosion cracking of brass fittings. MS&T 2014.

Budiansky ND, Trenkle J, Verghese P. Detection of sub-surface corrosion by computed x-ray tomography. MS&T 2014.

Budiansky ND, Trenkle J, Verghese P. The fracture of brass gas line fittings: Cause or Consequence of Fire. MS&T 2013.

White K, Horn Q, Singh S, Spray R, Budiansky N. Thermal stability of lithium-ion cells and functions of chemistry, design and energy. Lithium Mobile Power, November 2010.

Budiansky ND, Bocher F, Cong H, Hurley MF, Scully JR. Use of coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena. Corrosion/06, National Association of Corrosion Engineers, Paper #06677, San Diego, CA, 2006.

Budiansky ND, Organ L, Mikhailov AS, Hudson JL, Scully JR. Cooperative spreading of pit sites as an additional explanation for critical thresholds. 3rd International Symposium on Pits and Pores: Formation, Properties and Significance for Advanced Materials, The Electrochemical Society. Honolulu, HI, October 3-8, 2004.

Budiansky ND, Organ L, Hudson J, Scully J. Cooperative interactions during localized corrosion processes: Experiments, analysis and modeling. DOE Contractor Meeting, Ohio State University, September 2003.

Budiansky ND, Hudson JL, Scully JR. Origins of persistent interactions amongst localized corrosion sites. W.R. Grace, Inc., MA, May 2003.

Budiansky ND, Hudson JL, Scully JR. Origins of persistent interactions among localized corrosion sites. Critical factors in localized corrosion IV symposium in honor of Hans Bohni, Electrochemical Society, Salt Lake City, UT, October 21, 2002.

Poster Sessions

Budiansky ND. Material parameters associated with cooperative spreading of localized corrosion on heterogeneous materials. CORROSION/06, National Association of Corrosion Engineers, San Diego, CA, 2006.

Budiansky ND Scully JR. Initiation and propagation of IGC by cooperative interactions on sensitized stainless steel. Gordon Research Conference on Aqueous Corrosion, Colby-Sawyer College, New London, NH, 2004.

Budiansky ND and Scully JR. Origins of persistent interactions among localized corrosion sites investigated using experimental electrode arrays. Gordon Research Conference on Aqueous Corrosion,

Colby-Sawyer College, New London, NH, 2002.

Budiansky ND. Origins of persistent interactions among localized corrosion sites investigated using experimental electrode arrays. National Association of Corrosion Engineers, Denver, CO, 2002.

Deposition & Trial Testimony

Brody v Simpson Development Corp. et al. United States District Court for the District of Vermont. State of Vermont. Civil Action No. 2:05-cv-293, October 2007.

The Deacons of First Baptist Church in Dorchester v Boston Water and Sewer Commission and P. Gioioso & Sons, Inc.. Commonwealth of Massachusetts. Civil Action No. 07-2974-B, 2011.

Whirlpool v ZIM. Chicago, IL. Deposition (10/21/2011) and Arbitration (11/14/2011).

New Bern v R.H. Shepard. Commonwealth of Massachusetts, Civil Action No. BRCV2008-00510-A. Deposition (11/2012).

Debra Harris and Barbara Stark v Nordyne, LLC. United States District Court in and For the Southern District of Florida Miami Division.Case No. 1:14-cv-21884-BB. Deposition (12/1/2015).

CORROSION ON BURIED COPPER CLAD STEEL

Cece Syarif Global Application Engineer

&

Anthony Hale

Manager, Utility Products, North America

All materials contained in this document are the intellectual property of Copperweld Bimetallics LLC, and protected by copyright laws. None of its content may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Copperweld Bimetallics LLC. For more information, contact <u>sales@copperweld.com</u>.

The results and conclusions obtained from studies done by Copperweld are only applicable to Copper Clad Steel manufactured by Copperweld. Due to proprietary process used to produce the wire, the findings cannot be superimposed on any other copper-clad steel conductor.

July 26, 2011

This paper compiles several studies and analysis regarding the corrosion performance of buried Copperweld® Copper-Clad-Steel (CCS) conductors. These range from the early 1900's with the invention of Copperweld® through the present day with studies performed by independent parties as well as Copperweld Company in-house testing. The purpose is to present the available information so that prospective users of Copperweld® CCS wire and strand can evaluate the corrosion resistance and expected performance within their specific application and area. Copperweld uses oxygen free copper in the manufacture of Copperweld® wire and strand. The copper surface of CCS is expected to oxidize and turn color ranging from green (patination) to brown and black the same as any solid copper wire or strand when exposed to environmental stimuli. Corrosion on exposed steel at the cut tip or end of the wire is also expected. The question to be answered is if the corrosion on either material or the interface between the copper and steel (galvanic reaction) will result in degradation of the wire as to make it unsuitable for use as a grounding conductor.

The oldest known underground corrosion study of bimetallic material was performed in the early 1900s¹. This study focused on the corrosion behavior of Copperweld® CCS underground rod as well as other materials such as Copper and galvanized steel ground rod. The National Bureau of Standards (NBS) conducted an extensive underground corrosion study that involves 36,500 specimens which include 333 varieties of ferrous, nonferrous, and protective coating materials buried in 128 test locations throughout U.S in 1910 - 1955.

The study summarizes the service life of a ground rod as following:

10 mils copper coating – acceptable for service life up to 40 years

13 mils copper coating – acceptable for service life up to 50 years

Similarly, the Naval Civil Engineering Laboratory in collaboration with the National Association of Corrosion Engineers conducted a 7-year program of testing metal rods for electrical grounding to determine the galvanic corrosion effect. The three metals tested were stainless clad steel, copper-bonded steel (CCS), and galvanized steel. The result on the ⁵/₈" CCS ground rod was as expected. The copper surface of the CCS was

virtually free of corrosion and the steel core has corroded at the tip approximately 2 inches down the length of the rod.

Copper-bonded ground rods and Copperweld® wire and strand since 1915. The corrosion behavior of a Copperweld® ground rod is similar to the corrosion on Copperweld® wire and strand conductor. Both materials consist of copper permanently bonded to a steel core. All Copperweld® 40% CCS has a copper thickness of 10% of the overall diameter. For example, Copperweld® 4THOUGHTTM has a configuration of 19 strands of 0.1055 inch wires. It means that each strand has a copper thickness of 10.55 mils. Based on the NBS study, 4THOUGHTTM will have at least a minimum service life of 40 years.

Copperweld has also conducted a 5-year study of buried bare 21% conductivity (copper thickness is 3% of the diameter) Copperweld® CCS in 10 different soil conditions in association with Southwest Research Institute². The study reported 100% surface oxidation and various degrees of deterioration of the steel core as expected after 5 years. The exposed steel on the tip of the wire rusted and formed "scab", as shown in Figure 1. The rust appeared to "seal-off" the un-oxidized material from the corrosive medium. The maximum depth of corrosion was 70% of the wire diameter.

Figure 1: Example of Underground Corrosion of Copper Clad Steel

Although the copper surface oxidation was heavy, the samples showed no signs of pits or holes in the copper cladding. The copper thickness of a severely oxidized 5-year sample showed no discernable difference when compared to an un-oxidized control sample that was not subjected to the corrosive environment. The mechanical and resistance testing

resulted in negligible differences between 5-year samples and the control samples. Thus, the oxidation had no discernable impact on the strength or electrical performance of the wire.

An accelerated corrosion study based on ASTM B117 was conducted on bare CCS and solid Copper wires to evaluate copper surface corrosion. The wires were exposed to salt fog spray for 504 hours. As a result, corrosion on the CCS copper surface showed no significant difference as compared to the corrosion of copper wire.

(a) Copper Clad Steel(b) CopperFigure 2: Patination of Copper Surface after 504 hours exposure to Salt Fog Spray

In February 2011, three separate sample strands of Copper Clad Steel were unearthed and cut out from a substation built in Louisville, KY. The conductors were 40% conductivity, Low Carbon Steel, Dead Soft Annealed, 7 No. 5 (231,613 circular mil) and were installed in 1962.

			Strand 1	Strand 2	Strand 3
Conductor Type		40% Low Carbon Annealed			
Conductor Size		7 No. 5			
Cross Section Area		in²	0.1819	0.1819	0.1819
Diameter of Single end		inch	0.1819	0.1819	0.1819
Diameter of Conductor		inch	0.5457	0.5457	0.5457
Copper Thickness	Min	inch	0.0142	0.0114	0.0134
	Max	inch	0.0213	0.0209	0.01975
% Concentricity			83.30%	77.30%	83.90%
Depth of corrosion	Min	inch	0.004	0.028	0.111
	Max	inch	0.781	0.859	0.484

The 1962 conductors were manufactured by Copperweld with a nominal copper thickness of 10% of its diameter. Figure 3 shows the copper thickness ranges from 11.4 - 21.3 mils and the concentricity of the conductor averaged at 81.5%. Current manufacturing improvements yield concentricity of copper thickness above 85%.

Figure 3: Copperweld® 40% LC DSA 7 No. 5 manufactured in 1962

Figure 4a shows no visible corrosion observed other than oxidation and patination on the copper surface. At the ends of the wires, the corrosion occurred in the form of steel rust. The maximum depth of the corrosion is 0.859 inch with an average of 0.382 inch, as shown in Figure 4b.

Figure 4a: There is no visible corrosion between the copper and steel on all wires obtained from the substation in Kentucky.

Figure 4b: Corrosion occurred at the ends of the wires. Maximum penetration depth is 0.859 inch.

From all the corrosion studies above, there have not been reported or observed any galvanic corrosion at the interface of copper and steel. The process of cladding for

Copperweld® ensures a metallurgical bond between the two metals. That metallurgical bond prevents any moisture from penetrating between the two metals precluding the corrosion process. Any propagation of corrosion on an area of exposed steel averages two times the diameter of the wire then stops. The corrosion rate of the copper surface is equivalent to that observed on standard solid copper wire and strand. Based on the results of these studies, it can be summarized that CCS can be expected to have a 50 plus year service life as buried grounding conductors.

REFERENCES:

- Rempe, Chris. 7 July 2003. "A Technical Report on the Service Life of Ground Rod Electrodes".
- 2. Fox, Dustin, Belado, Chris, and Brossia, Sean. 23 September 2009. "The Effect of Corrosion on Tracer Wire with a Copper Clad Steel Center Conductor".

(2) Perimeter Surfaces.

Bonding to perimeter surfaces shall be provided as specified in 680.26(B)(2)(a), 680.26(B)(2)(b), and 680.26(B)(2)(c). The perimeter surface shall include unpaved surfaces, concrete, masonry pavers, and other types of paving. The perimeter surface to be bonded shall extend 900 mm (3 ft) horizontally beyond the inside walls of the pool at a height between 900 mm (3 ft) above and 900 mm (3 ft) below the maximum water level. Perimeter surfaces separated from the pool by a permanent wall or building 1.5 m (5 ft) in height or more shall require equipotential bonding only on the pool side of the permanent wall or building.

For conductive pool shells where bonding to perimeter surfaces is required, bonding shall be attached to the pool structural reinforcing steel or copper conductor grid at a minimum of four points uniformly spaced around the perimeter of the pool. If the bonded perimeter surface does not surround the entire pool, bonding shall be attached to the pool reinforcing structural steel or copper <u>or 40% copper-clad steel</u> conductor grid at a minimum of four uniformly spaced points along the bonded perimeter surface.

For nonconductive pool shells, where bonding to the perimeter surfaces is required, bonding at four points shall not be required. The perimeter bonding shall be attached to the 8 AWG copper <u>or 40% copper-clad steel</u> equipotential bonding conductor and, if present, to any conductive support structure for the pool.

Informational Note: Because the perimeter surface can incorporate various types of materials at various locations and elevations above and below maximum water level, the perimeter surface required to be bonded might not surround the entire pool. The 8 AWG copper <u>or 40% copper-clad steel</u> equipotential bonding conductor can encircle the entire pool to facilitate connection of bonded parts.

(a) Conductive Paved Portions of Perimeter Surfaces. Conductive paved portions of perimeter surfaces shall be bonded to one or more of the following:

(2) Unencapsulated structural reinforcing steel in accordance with 680.26(B)(1)(a)

Copper

- (1) <u>A conductor grid made of copper or 40% copper-clad steel</u>
- (2) <u>Unencapsulated steel structural welded wire reinforcement bonded together by steel tie wires or the equivalent,</u> <u>fully embedded within the pavement unless pavement will not allow for embedding</u>

If structural reinforcing steel is absent or encapsulated in a nonconductive compound, or if embedding is not possible, unencapsulated welded wire steel reinforcement or a copper-conductor grid shall made with 8 AWG copper or 40% copper-clad steel shall be provided and secured directly under the paving not more than 150 mm (6 in.) below finished grade.

Where not fully embedded in concrete, <u>copper</u> the conductor grid and unencapsulated steel structural welded wire used for equipotential bonding shall be listed for corrosion resistance and mechanical performance. This listing requirement shall become effective January 1, 2029. The <u>copper</u> conductor grid or unencapsulated steel structural welded wire reinforcement shall also meet the following:

- Copper <u>The</u> conductor grid is constructed of 8 AWG solid bare copper <u>or 40% copper-clad steel</u> and arranged in accordance with 680.26(B)(1)(b)(3).
- (2) Structural steel welded wire reinforcement is minimum ASTM 6 × 6-W2.0 × W2.0 or minimum No. 3 rebar constructed in a 300 mm (12 in.) grid.
- (3) <u>Copper The</u> conductor grid and steel structural welded wire reinforcement follows the contour of the perimeter surface extending not less than 900 mm (3 ft) horizontally beyond the inside walls of the pool.

Informational Note No. 1: Performance of the equipotential bonding system at the perimeter surface is improved as the distance between the bonding means and finished grade is minimized, either by embedding within, or by direct contact with the underside of, the finished pavement.

Informational Note No. 2: See ASTM A615/A615M, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement; A1064/A1064M, Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete; A1022/A1022M, Standard Specification for Deformed and Plain Stainless Steel Wire and Welded Wire for Concrete Reinforcement; A1060A/A1060M, Standard Specification for Zinc-Coated (Galvanized) Steel Welded Wire Reinforcement, Plain and Deformed, for Concrete; and ACI Standard ACI 318, Building Code Requirements for Structural Concrete, for examples of standards currently used in the listing of reinforcing steel bars and steel welded wire reinforcement.

(c) Unpaved Portions of Perimeter Surfaces. Unpaved portions of perimeter surfaces shall be bonded with any of the following methods:

(4) <u>A</u>

copper

- (1) <u>conductor(s) shall meet the following:</u>
 - (5) <u>At least one minimum 8 AWG bare solid copper_or 40% copper-clad steel_conductor is provided, including</u> the 8 AWG copper_or 40% copper-clad steel_equipotential bonding conductor, if available.
 - (6) The conductor(s) follows the contour of the perimeter surface.
 - (7) The conductor(s) is 450 mm to 600 mm (18 in. to 24 in.) from the inside walls of the pool.
 - (8) <u>The conductor(s) is under the unpaved portion of the perimeter surface 100 mm to 150 mm (4 in. to 6 in.)</u> <u>below finished grade.</u>
 - (9) <u>The conductor(s) is installed only in perimeter surfaces not intended to have direct access to swimmers in the pool.</u>

(2) <u>A copper_or 40% copper-clad steel conductor grid or unencapsulated steel structural welded wire reinforcement</u> used for equipotential bonding of unpaved portions of perimeter surfaces shall meet the following:

(10) It is installed in accordance with 680.26(B)(2)(a).

(11) It is located within an unpaved surface(s) between 100 mm to 150 mm (4 in. to 6 in.) below finished grade.

(I) Nonconductive Perimeter Surfaces. Equipotential bonding shall not be required for nonconductive portions of perimeter surfaces that are separated from earth or raised on nonconducting supports. Equipotential bonding shall not be required for any perimeter surface that is electrically separated from the pool structure and raised on nonconductive supports above an equipotentially bonded surface.

Informational Note: Nonconductive materials include, but are not limited to, wood, plastic, wood-plastic composites, fiberglass, and fiberglass composites.

Statement of Problem and Substantiation for Public Comment

Please refer to Public Comment No. 292-NFPA 70-2024 Section No. 680.26(B)(1)

Related Item

• PI 2020

Submitter Information Verification

Submitter Full Name: Peter GraserOrganization:Copperweld Bimetallics, LLC.Affiliation:ABAStreet Address:-City:-State:-Zip:-Submittal Date:Sat Jul 27 17:18:08 EDT 2024Committee:NEC-P17

 arts specified in 680.26(B)(1) through 680.26(B)(7) shall be bonded together using one or more of the following Solid copper or 40% copper-clad steel conductors, as follows: Are insulated, covered, or bare, not smaller than 8 AWG Are not required to be extended or attached to remote panelboard enclosures, service equipment, or electrodes Are permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and 680.26(B)(2)(b) that are not contiguous Rigid metal conduit of brass or other identified corrosion-resistant metal Structural reinforcing steel Steel structural welded wire reinforcement (e.g., welded wire mesh, welded wire fabric) ections to bonded parts shall be made in accordance with 250.8 and 680.7(C).
Are insulated, covered, or bare, not smaller than 8 AWG Are not required to be extended or attached to remote panelboard enclosures, service equipment, or electrodes Are permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and 680.26(B)(2)(b) that are not contiguous Rigid metal conduit of brass or other identified corrosion-resistant metal Structural reinforcing steel Steel structural welded wire reinforcement (e.g., welded wire mesh, welded wire fabric)
Are not required to be extended or attached to remote panelboard enclosures, service equipment, or electrodes Are permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and 680.26(B)(2)(b) that are not contiguous Rigid metal conduit of brass or other identified corrosion-resistant metal Structural reinforcing steel
electrodes Are permitted to encircle the pool to facilitate bonding connections to portions of the perimeter covered in 680.26(B)(2)(a) and 680.26(B)(2)(b) that are not contiguous Rigid metal conduit of brass or other identified corrosion-resistant metal Structural reinforcing steel Steel structural welded wire reinforcement (e.g., welded wire mesh, welded wire fabric)
680.26(B)(2)(a) and 680.26(B)(2)(b) that are not contiguous Rigid metal conduit of brass or other identified corrosion-resistant metal Structural reinforcing steel Steel structural welded wire reinforcement (e.g., welded wire mesh, welded wire fabric)
Structural reinforcing steel Steel structural welded wire reinforcement (e.g., welded wire mesh, welded wire fabric)
ections to bonded parts shall be made in accordance with 250.8 and 680.7(C).
of Problem and Substantiation for Public Comment fer to Public Comment No. 292-NFPA 70-2024 Section No. 680.26(B)(1)
Related Item
nformation Verification
r Full Name: Peter Graser
tion: Copperweld Bimetallics, LLC.
n: ABA
dress:
I Date: Sat Jul 27 17:10:55 EDT 2024 ee: NEC-P17

Г

680.29 Portable Signs.

Portable electric signs shall not be placed within pools or within 1.5 m (5 ft) measured horizontally from the inside walls of a pool.

Statement of Problem and Substantiation for Public Comment

Delete this section and move to new 680.22(D). 680.22 Lighting, Receptacles and Equipment contains requirements for electrical receptacles and devices including luminaires, lighting outlets, ceiling-suspended fans, switching devices, other outlets, and other equipment, which are located in proximity to pools. FR 9129 added a similar provision for electric signs, which would be more appropriately included in the text of 680.22 under 2.1.4.1 of the Style Manual, as it is also electrical equipment in proximity to a pool. The revised language submitted simply moves the intact language of the new 680.29 and relocates as 680.22(D). See also accompanying Public Comment 22-NFPA 70-2024.

Related Public Comments for This Document

Related Comment

Public Comment No. 22-NFPA 70-2024 [New Section after 680.22(C)]

Related Item

• FR 9129-NFPA 70-2024

Submitter Information Verification

Submitter Full Name: E. P. HamiltonOrganization:E. P. Hamilton & amp; Associates, IAffiliation:selfStreet Address:City:State:Zip:Zip:Wed Jul 10 11:30:39 EDT 2024Committee:NEC-P17

Relationship

Move item from new 680.29 to new 680.22(D)

Public Com	ment No. 389-NFPA 70-2024 [Section No. 680.29]
680.29 - Porta	ble Signa-
	ic signs shall not be placed within pools or within 1.5 m (5 ft) measured horizontally from the inside
Statement of Prot	blem and Substantiation for Public Comment
	er is already addressed in 680.22, which applies to ALL equipment, not just portable electric signs. Placing violates 680.22(E).
Related	<u>d Item</u>
• FR 9129	
Submitter Informa	ation Verification
Submitter Full Na	ame: Ryan Jackson
Organization:	Self-employed
Street Address:	
City:	
State:	
Zip:	

Tue Jul 30 14:19:19 EDT 2024

NEC-P17

Submittal Date:

Committee:

Public Comment No. 694-NFPA 70-2024 [Section No. 680.32]

680.32 Ground-Fault Circuit-Interrupter (GFCI) and Special Purpose Ground-Fault Circuit-Interrupter (SPGFCI) Protection.

All electrical equipment, including power-supply cords, used with storable pools shall have GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable.

All receptacles located within 6.0 m (20 ft) of the inside walls of a storable pool, storable spa, or storable hot tub shall have GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable, if any of the following conditions exist:

- (1) If supplied by branch circuits rated 150 volts or less to ground and 60 amperes or less, single-phase
- (2) If supplied by branch circuits rated 150 volts or less to ground and 100 amperes or less, 3-phase
- (3) If supplied by branch circuits exceeding 150 volts to ground but not exceeding 480 volts phase-to-phase and 100 amperes or less

In determining these dimensions, the distance to be measured shall be the shortest path the supply cord of an appliance connected to the receptacle would follow without piercing a floor, wall, ceiling, doorway with hinged or sliding door, window opening, or other effective permanent barrier.

Additional Proposed Changes

File NameDescriptionApprovedCN 394.pdf

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 394 appeared in the First Draft Report on First Revision No. 9143.

The panel should consider revising the requirement here to point to the general rule in 680.5 (First Revision 9045) instead of repeating the details in this section. The Correlating Committee notes that the definition for SPGFCI in Article 100 has been revised.

Related Item

• First Revision No. 9143

Submitter Information Verification

Correlating Committee Note No. 394-NFPA 70-2024 [Section No. 680.32]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Fri May 10 12:14:57 EDT 2024

Committee Statement

CommitteeThe panel should consider revising the requirement here to point to the general rule in
680.5 (First Revision 9045) instead of repeating the details in this section. The
Correlating Committee notes that the definition for SPGFCI in Article 100 has been
revised.

First Revision No. 9143-NFPA 70-2024 [Section No. 680.32]

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

Public Comm	ent No. 820-NFPA 70-2024 [Section No. 680.32]		
680.32 Ground Protection.	-Fault Circuit-Interrupter (GFCI) and Special Purpose Ground-Fault Circuit-Interrupter (SPGFCI)		
	ipment, including power-supply cords, used with storable pools shall have GFCI protection 680.5(B) - or SPGFCI protection complying with 680.5 (C) , as applicable.		
have GFCI prote	ocated within 6.0 m (20 ft) of the inside walls of a storable pool, storable spa, or storable hot tub shall ection complying with 680.5(B) - or SPGFCI protection complying with 680.5 (C) , as applicable , if ving conditions exist:		
(1) If supplied t	by branch circuits rated 150 volts or less to ground and 60 amperes or less, single-phase		
(2) If supplied t	by branch circuits rated 150 volts or less to ground and 100 amperes or less, 3-phase		
(3) If supplied t	 (2) If supplied by branch circuits faced 150 volts to ground but not exceeding 480 volts phase-to-phase and 100 amperes or less 		
appliance conne	nese dimensions, the distance to be measured shall be the shortest path the supply cord of an acted to the receptacle would follow without piercing a floor, wall, ceiling, doorway with hinged or dow opening, or other effective permanent barrier.		
Statement of Probl	em and Substantiation for Public Comment		
This comment simp	lifies the text by removing unnecessary words.		
• FR 9143	ltem		
Submitter Informat	tion Verification		
Submitter Full Nan	ne: Ryan Jackson		
Organization:	Self-employed		
Street Address:			
City:			
State:			
Zip:			
Submittal Date:	Mon Aug 05 17:33:32 EDT 2024		
Committee:	NEC-P17		

Public Comment No. 277-NFPA 70-2024 [Section No. 680.42(B)]

(B) Bonding.

Bonding by metal-to-metal mounting on a common frame or base shall be permitted. The metal bands or hoops used to secure wooden staves shall not be required to be bonded as required in 680.26.

Equipotential bonding of perimeter surfaces in accordance with 680.26(B)(2) shall not be required to be provided for spas and hot tubs where all of the following conditions apply:

- (1) The spa or hot tub shall be listed, labeled, and identified as a self-contained spa for aboveground use.
- (2) The spa or hot tub shall not be identified as suitable only for indoor use.
- (3) The installation shall be in accordance with the manufacturer's instructions and shall be located on or above grade.
- (4) The top rim of the spa or hot tub shall be at least 710 mm <u>900 mm</u> (28 in <u>36 in</u> .) above <u>and 900 mm (36 in)</u> <u>below</u> all perimeter surfaces that are within 760 mm <u>900 mm</u> (30 in <u>36 in</u> .), measured horizontally from the spa or hot tub. The height of nonconductive external steps for entry to or exit from the self-contained spa shall not be used to reduce or increase this rim height measurement.

Informational Note: See ANSI/UL 1563, *Standard for Electric Spas, Equipment Assemblies, and Associated Equipment,* for information regarding listing requirements for self-contained spas and hot tubs.

Statement of Problem and Substantiation for Public Comment

The measurement in 680.42(B)(4) should align with the measurements in 680.26(B)(2). It doesn't make sense to require bonding for hot tubs where the top rim is less than 28 inches and refer back to 680.26 which says 36 inches.

Related Item

• 1st stage 680.26

Submitter Information Verification

 Submitter Full Name: MARK RHOTON

 Organization:
 Frederick County Government

 Affiliation:
 I'm the Chief Electrical Inspector Frederick County Maryland

 Street Address:
 I'm the Chief Electrical Inspector Frederick County Maryland

 Street Address:
 I'm the Chief Electrical Inspector Frederick County Maryland

 Street Address:
 I'm the Chief Electrical Inspector Frederick County Maryland

 Street Address:
 I'm the Chief Electrical Inspector Frederick County Maryland

 Street Address:
 I'm the Chief Electrical Inspector Frederick County Maryland

 Street Address:
 I'm the Chief Electrical Inspector Frederick County Maryland

 Street Address:
 I'm the Chief Electrical Inspector Frederick County Maryland

 State:
 I'm the Chief Electrical Inspector Frederick County Maryland

 State:
 I'm the Chief Electrical Inspector Frederick County Maryland

 State:
 I'm the Chief Electrical Inspector Frederick County Maryland

 State:
 I'm the Chief Electrical Inspector Frederick County Maryland

 State:
 I'm the Chief Electrical Inspector Frederick County Maryland

 State:
 I'm the Chief Electrical Inspector Frederick County Maryland

 State:
 I'm the Chief Electrical Inspector Frederick County Maryland

 Committee:
 Sat Jul

	Comment No. 695-NFPA 70-2024 [Section No. 680.43(A)(2)]
	round-Fault Circuit-Interrupter (GFCI) and Special Purpose Ground-Fault Circuit-Interrupter (SPGFCI) tion for Receptacles, General.
comply	eptacles located within 3.0 m (10 ft) of the inside walls of a spa or hot tub shall have GFCI protection ving with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable, if any of the following ons exist:
(1) If	supplied by branch circuits rated 150 volts or less to ground and 60 amperes or less, single-phase
(2) If	supplied by branch circuits rated 150 volts or less to ground and 100 amperes or less, 3-phase
	supplied by branch circuits exceeding 150 volts to ground but not exceeding 480 volts phase-to-phase and 0 amperes or less
	Proposed Changes
File Nam CN_395.p	
tatement o	of Problem and Substantiation for Public Comment
NOTE: The	e following CC Note No. 395 appeared in the First Draft Report on First Revision No. 9160.
680.5 (Firs	nould consider revising the requirement here to refer to the general rule in st Revision 9045) instead of repeating the details in this section. The Correlating e notes that the definition for SPGFCI in Article 100 has been
	Related Item
 First Rev 	ision No. 9160
ubmitter Ir	nformation Verification
Submitter	Full Name: CC Notes
Organizat	ion: NEC Correlating Committee
Street Add	dress:
City:	

State:Zip:Submittal Date:Fri Aug 02 11:27:22 EDT 2024Committee:NEC-P17

Correlating Committee Note No. 395-NFPA 70-2024 [Section No. 680.43(A)(2)]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Fri May 10 12:16:29 EDT 2024

Committee Statement

Committee Statement: CMP 17 should consider revising the requirement here to refer to the general rule in 680.5 (First Revision 9045) instead of repeating the details in this section. The Correlating Committee notes that the definition for SPGFCI in Article 100 has been revised.

First Revision No. 9160-NFPA 70-2024 [Section No. 680.43(A)(2)]

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

Public Comm	ent No. 821-NFPA 70-2024 [Section No. 680.43(A)(2)]
A	
	It Circuit-Interrupter (GFCI) and Special Purpose Ground-Fault Circuit-Interrupter (SPGFCI) eceptacles, General.
	ocated within 3.0 m (10 ft) of the inside walls of a spa or hot tub shall have GFCI protection 680.5(B) -or- <u>GFCI or</u> SPGFCI protection complying with 680.5(C) , as applicable, if any of the ons exist:
(1) If supplied t	by branch circuits rated 150 volts or less to ground and 60 amperes or less, single-phase
(2) If supplied t	by branch circuits rated 150 volts or less to ground and 100 amperes or less, 3-phase
(3) If supplied t 100 ampere	by branch circuits exceeding 150 volts to ground but not exceeding 480 volts phase-to-phase and ss or less
-	
tement of Probl	em and Substantiation for Public Comment
This simplifies the t	ext by removing unnecessary words.
Related	ltem
• FR 9160	
bmitter Informat	ion Verification
Submitter Full Nar	ne: Ryan Jackson
Organization:	Self-employed
Street Address:	
City:	
State:	
Zip:	
Submittal Date: Committee:	Mon Aug 05 17:38:02 EDT 2024 NEC-P17

Public Comment No. 145-NFPA 70-2024	[Section No.	680.45(C)]
-------------------------------------	--------------	------------

(C) Heaters.

Heaters used with permanently installed immersion pools shall comply with either 680.45(C)(1) or 680.45(C)(2).

(1) Permanently Installed Heaters — Hard Wired Permanently Connected

Permanently installed heaters rated 120 volts through 250 volts nominal that are built-in or permanently attached as an integral part of permanently installed immersion pools shall meet <u>comply with</u> the following:

- (1) Heaters shall be <u>Be</u> identified for swimming pool and spa use.
- (2) Heaters shall be grounded and bonded.

Heaters shall have

- (3) Be connected to an EGC.
- (4) <u>Have</u> GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable.

(2) Permanently Installed Heaters - Cord- and Plug-Connected.

Permanently installed immersion heaters rated nominal 120 volts, 20 amperes or less, or nominal 250 volts, 30 amperes or less, single-phase, shallcomply with the following:

(1) - Heaters shall be <u>Be</u> permitted to be cord- and plug-connected.

- (2) -Heaters shall meet Meet the following:
 - a. The cord shall not be shorter than 1.83 m (6 ft) and not longer than 4.6 m (15 ft).

b. If GFCI is provided as an integral part of the cord assembly, it shall be located at the attachment plug or in the power-supply cord within 300 mm (12 in) of the attachment plug.

- c. Heaters shall have <u>Have</u> GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable.
- d. Heaters shall be <u>Be</u> provided with means for grounding all non-current-carrying metal parts.

(3) Storable and Portable Heaters.

Cord-connected storable or portable heaters rated 120 volts nominal and 20 amperes or less, or 250 volts nominal and 30 amperes or less, single-phase, used with but not permanently installed or attached as an integral part of permanently installed immersion pools, shall meet comply with the following:

(a) -Heaters shall be Be identified for swimming pool and spa use.

(b) - Heaters shall be <u>Be</u> cord- and plug-connected with a cord not shorter than 1.83 m (6 ft) and not longer than 4.6 m (15 ft).

(c) - Heaters shall have GFCI protection complying with <u>Have GFCI protection in accordance with</u> 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable.

(d) If GFCI is provided as an integral part of the cord assembly, it shall be located at the attachment plug or in the power-supply cord within 300 mm (12 in.) of the attachment plug.

Additional Proposed Changes

File Name 680.45C re-write.docx Description 680.45(C) revisions <u>Approved</u>

Statement of Problem and Substantiation for Public Comment

This PC proposes the following:

(1) The title of (C)(1) is revised to "permanently connected" to correlate with many other locations in the Code where "permanently connected" is used: 551.46(A)(2), 552.44(A), 422.31, 210.50(B), 210.6(B), 220.82(B), 393.10.

(2) At various locations "meet the following" is changed to "comply with the following" to comply with the NEC Style Manual and correlate with (C)(2).

(3) (C)(1)(2) is revised from "grounded and boned" to "connected to an EGC" to correlate the language with Article 250 and other sections in Article 680.

(4) The list items are revised to delete redundant language as the parent language already mentions heaters and the mandatory "shall" requirement.

(5) The parent language at (C)(3) is revised to delete the unnecessary and possibly confusing term "used with but" for clarity.

NOTE: A word doc with track changes is attached to this PC

Related Item

• FR 9247

Submitter Information Verification

Submitter Full Name: Vincent Della CroceOrganization:SiemensStreet Address:-City:-State:-Zip:-Submittal Date:Mon Jul 22 11:52:27 EDT 2024Committee:NEC-P17

(C) Heaters.

Heaters used with permanently installed immersion pools shall comply with either 680.45(C)(1) or 680.45(C)(2).

(1) Permanently Installed Heaters — Hard Wired Permanently Connected.

Permanently installed heaters rated 120 volts through 250 volts nominal that are built-in or permanently attached as an integral part of permanently installed immersion pools shall meet comply with the following:

- (1) Heaters shall bBe identified for swimming pool and spa use.
- (2) Heaters shall bBe grounded and bonded connected to an EGC.
- (3) Heaters shall hHave GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable.

(2) Permanently Installed Heaters — Cord- and Plug-Connected.

Permanently installed immersion heaters rated nominal 120 volts, 20 amperes or less, or nominal 250 volts, 30 amperes or less, single-phase, shall_comply with the following:

- (1) Heaters shall bBe permitted to be cord- and plug-connected.
- (2) Heaters shall mMeet the following:
- (a) The cord shall not be shorter than 1.83 m (6 ft) and not longer than 4.6 m (15 ft).
- (b) If GFCI is provided as an integral part of the cord assembly, it shall be located at the attachment plug or in the power-supply cord within 300 mm (12 in) of the attachment plug.
- (c) <u>Heaters shall hH</u>ave GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable.
- (d) Heaters shall be provided with means for grounding all non-current-carrying metal parts.

(3) Storable and Portable Heaters.

Cord-connected storable or portable heaters rated 120 volts nominal and 20 amperes or less, or 250 volts nominal and 30 amperes or less, single-phase, used with but not permanently installed or attached as an integral part of permanently installed immersion pools, shall <u>meet comply with the</u> following:

- (a) Heaters shall bBe identified for swimming pool and spa use.
- (b) Heaters shall be cord- and plug-connected with a cord not shorter than 1.83 m (6 ft) and not longer than 4.6 m (15 ft).
- (c) Heaters shall h∐ave GFCI protection complying in accordance with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable.
- (d) If GFCI is provided as an integral part of the cord assembly, it shall be located at the attachment plug or in the power-supply cord within 300 mm (12 in.) of the attachment plug.

Commented [DCV(USES1]: Revised to correlate with many other locations in the Code where "permanently connected" is used: 551.46(A)(2), 552.44(A), 422.31, 210.50(B), 210.6(B), 220.82(B), 393.10

Commented [DCV(USES2]: Revised to comply with the NEC Style Manual and correlate with (C)(2)

Commented [DCV(USES3]: Revise to delete redundant language. The parent language already mentions heaters and the mandatory "shall"

Commented [DCV(USES4]: Revised to correlate the language with Article 250 and other sections in Article 680

Commented [DCV(USES5]: Revise to delete redundant language. The parent language already mentions heaters and the mandatory "shall"

Commented [DCV(USES6]: Revised to delete unnecessary and possibly confusing language

Commented [DCV(USES8]: Revise to delete redundant language. The parent language already mentions heaters and the mandatory "shall"

Commented [DCV(USES9]: Revised to comply with the NEC Style Manual

Public Comment No. 691-NFPA 70-2024 [Section No. 680.45(C)]

(C) Heaters.

Heaters used with permanently installed immersion pools shall comply with either 680.45(C)(1) or 680.45(C)(2).

(1) Permanently Installed Heaters — Hard Wired.

Permanently installed heaters rated 120 volts through 250 volts nominal that are built-in or permanently attached as an integral part of permanently installed immersion pools shall meet the following:

- (1) Heaters shall be identified for swimming pool and spa use.
- (2) Heaters shall be grounded and bonded.
- (3) Heaters shall have GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable.
- (2) Permanently Installed Heaters Cord- and Plug-Connected.

Permanently installed immersion heaters rated nominal 120 volts, 20 amperes or less, or nominal 250 volts, 30 amperes or less, single-phase, shallcomply with the following:

- (1) Heaters shall be permitted to be cord- and plug-connected.
- (2) Heaters shall meet the following:
 - a. The cord shall not be shorter than 1.83 m (6 ft) and not longer than 4.6 m (15 ft).
 - b. If GFCI is provided as an integral part of the cord assembly, it shall be located at the attachment plug or in the power-supply cord within 300 mm (12 in) of the attachment plug.
 - c. Heaters shall have GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable.
 - d. Heaters shall be provided with means for grounding all non-current-carrying metal parts.

(3) Storable and Portable Heaters.

Cord-connected storable or portable heaters rated 120 volts nominal and 20 amperes or less, or 250 volts nominal and 30 amperes or less, single-phase, used with but not permanently installed or attached as an integral part of permanently installed immersion pools, shall meet the following:

(a) Heaters shall be identified for swimming pool and spa use.

(b) Heaters shall be cord- and plug-connected with a cord not shorter than 1.83 m (6 ft) and not longer than 4.6 m (15 ft).

(c) Heaters shall have GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable.

(d) If GFCI is provided as an integral part of the cord assembly, it shall be located at the attachment plug or in the power-supply cord within 300 mm (12 in.) of the attachment plug.

Additional Proposed Changes

File Name Description Approved

CN_396.pdf

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 396 appeared in the First Draft Report on First Revision No. 9247.

CMP 17 should consider revising the charging language to describe under what conditions a storable or portable heater described in 680.45(C)(3) could be applied.

Related Item

First Revision No. 9247

Submitter Information Verification

Submitter Full Name: CC NotesOrganization:NEC Correlating CommitteeStreet Address:Image: City:State:Image: City:Zip:Image: City: City:

Correlating Committee Note No. 396-NFPA 70-2024 [Section No. 680.45(C)]

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Fri May 10 12:19:08 EDT 2024

Committee Statement

CommitteeCMP 17 should consider revising the charging language to describe under whatStatement:conditions a storable or portable heater described in 680.45(C)(3) could be applied.

FR-9247-NFPA 70-2024

Ballot Results

- This item has passed ballot
 - 12 Eligible Voters
 - 1 Not Returned
 - 11 Affirmative All
 - 0 Affirmative with Comments
 - 0 Negative with Comments
 - 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

Public Comment No. 833-NFPA 70-2024 [Section No. 680.45(C)]

(C) Heaters.

Heaters <u>Permanently installed heaters</u> used with permanently installed immersion pools shall comply with either 680.45(C)(1) or 680.45(C)(2). <u>Storable and portable heaters shall comply with 680.45(C)(3)</u>.

(1) Permanently Installed Heaters - Hard Wired Other Than Cord-and-Plug-Connected .

Permanently installed heaters rated 120 volts through 250 volts nominal that are built-in or permanently attached as an integral part of permanently installed immersion pools shall meet <u>comply with</u> the following:

- (1) Heaters shall be identified for swimming pool and spa use.
- (2) Heaters shall be grounded and bonded connected to an equipment grounding conductor.
- (3) Heaters shall have GFCI protection complying with 680.5(B) The outlet shall be provided with GFCI or SPGFCI protection- complying-, as applicable, in accordance with 680.5(C), as applicable.
- (2) Permanently Installed Heaters Cord- and Plug-Connected.

Permanently installed immersion heaters rated nominal 120 volts, 20 amperes or less, or nominal 250 volts, 30 amperes or less, single-phase, shallcomply shall comply with the following:

- (1) Heaters shall be permitted to be cord- and plug-connected.
- Heaters shall meet the following:
- (2) The cord shall not be shorter than 1.83 m (6 ft) and not longer than 4.6 m (15 ft).
- (3) If

GFCI

- (4) GFCI protection is provided as an integral part of the cord assembly, it shall be located at the attachment plug or in the power-supply cord within 300 mm (12 in) of the attachment plug. Heaters shall have GFCI protection complying with 680.5(B)
- neaters shall have Gr Gr protection complying with 660.5(b)
- (5) The outlet shall be provided with GFCI or SPGFCI protection complying
- (6) , as applicable, in accordance with 680.5
- (C), as applicable
- (7) .
- (8) Heaters shall be provided with means for

grounding

(9) connecting- all- normally- non-current-carrying metal parts- to an equipment grounding conductor -

(3) Storable and Portable Heaters.

Cord-<u>and-plug-</u> connected storable or portable heaters rated 120 volts nominal and 20 amperes or less, or 250 volts nominal and 30 amperes or less, single-phase, used with but <u>that are</u> not permanently installed or attached as an integral part of permanently installed immersion pools, shall <u>meet-comply with</u> the following: (1) <u>Heaters shall be identified for swimming pool and spa use</u>.

Heaters shall be cord- andplug-connected with a cord

(2) The cord shall not shorter than 1.83 m (6 ft) and not longer than 4.6 m (15 ft).

Heaters shall have GFCI protection complying with 680.5(B) or SPCFCI protection complying

(3) The outlet shall be provided with GFCI or SPGFCI protection, as applicable, in accordance with 680.5.

(

C), as applicable.

4) If GFCI protection is provided as an integral part of the cord assembly, it shall be located at the attachment plug or in the power-supply cord within 300 mm (12 in.) of the attachment plug.

Statement of Problem and Substantiation for Public Comment

These revisions are editorial in nature and are made for consistency with other code sections and to utilize proper terminology.

Related Item

• FR 9247

Submitter Information Verification

Submitter Full Name: Ryan JacksonOrganization:Self-employedStreet Address:City:State:State:Zip:Tue Aug 06 11:20:11 EDT 2024Committee:NEC-P17

Public Comm	ent No. 690-NFPA 70-2024 [Section No. 680.58]		
	I-Fault Circuit-Interrupter (GFCI) and Special Purpose Ground-Fault Circuit-Interrupter (SPGFCI) djacent Receptacle Outlets.		
	All receptacles located within 6.0 m (20 ft) of a fountain edge shall have GFCI protection complying with 680.5(B) or SPGFCI protection complying with 680.5(C), as applicable, if any of the following conditions exist:		
(1) If supplied I	(1) If supplied by branch circuits rated 150 volts or less to ground, and 60 amperes or less, single-phase		
(2) If supplied I	by branch circuits rated 150 volts or less to ground and 100 amperes or less, 3-phase		
	 (3) If supplied by branch circuits exceeding 150 volts to ground but not exceeding 480 volts phase-to-phase and 100 amperes or less 		
Additional Propose	ed Changes		
CN_397.pdf	escription <u>Approved</u> em and Substantiation for Public Comment		
	g CC Note No. 397 appeared in the First Draft Report on First Revision No. 9181.		
Revision 9045) inste	sider revising the requirement here to refer to the general rule in 680.5 (First ead of repeating the details in this section. The Correlating at the definition for SPGFCI in Article 100 has been revised.		
	Related Item		
 First Revision No. 	9181		
Submitter Informat	Submitter Information Verification		
Submitter Full Nan	ne: CC Notes		
Organization:	NEC Correlating Committee		
Street Address:			
City:			
State:			
Zip:			
Submittal Date:	Fri Aug 02 11:20:56 EDT 2024		
Committee:	NEC-P17		

Submitter Information Verification

Committee: NEC-AAC

Submittal Date: Fri May 10 12:20:06 EDT 2024

Committee Statement and Meeting Notes

CommitteeCMP 17 should consider revising the requirement here to refer to the general rule in 680.5Statement:(First Revision 9045) instead of repeating the details in this section. The Correlating
Committee notes that the definition for SPGFCI in Article 100 has been revised.

First Revision No. 9181-NFPA 70-2024 [Section No. 680.58]

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S.

Bowmer, Trevor N.

Hickman, Palmer L.

Holub, Richard A.

Jackson, Peter D.

Kendall, David H.

Manche, Alan

Osborne, Robert D.

Porter, Christine T.

Schultheis, Timothy James

Williams, David A.

Public Comme	nt No. 834-NFPA 70-2024 [Section No. 680.58]
	ault Circuit-Interrupter (GFCI) and Special Purpose Ground-Fault Circuit-Interrupter (SPGFCI) acent Receptacle Outlets.
	ated within 6.0 m (20 ft) of a fountain edge shall have GFCI protection complying with 680.5(B) - or n- complying <u>,</u> as applicable. in accordance with 680.5 (C) , as applicable, if any of the following
(1) If supplied by	branch circuits rated 150 volts or less to ground, and 60 amperes or less, single-phase
(2) If supplied by	branch circuits rated 150 volts or less to ground and 100 amperes or less, 3-phase
(3) If supplied by 100 amperes	branch circuits exceeding 150 volts to ground but not exceeding 480 volts phase-to-phase and or less
-	
Statement of Problem	m and Substantiation for Public Comment
Simplification of the te	ext.
Related Ite	<u>em</u>
• FR 9181 •	
Submitter Information	on Verification
Submitter Full Name	: Ryan Jackson
Organization:	Self-employed
Street Address:	
City:	
State:	
Zip:	Tue Aux 00 44-50-00 EDT 0004
Submittal Date: Committee:	Tue Aug 06 11:59:00 EDT 2024 NEC-P17

Public Comment No. 143-NFPA 70-2024 [Section No. 680.71]
680.71 Branch Circuit.
Hydromassage bathtubs and their associated electrical components shall be on an individual <u>supplied by a minimum</u> <u>of one individual</u> branch circuit(s).
Statement of Problem and Substantiation for Public Comment
This PC proposes to revise the requirement to recognize that more than one individual branch circuit can supply a hydromassage bathtub, which is permitted by their product standard. UL 1795 for Hydromassage Bathtubs permits up to 3 sources of supply to feed a hydromassage tub and its equipment, and the instructions are required to specify when more than one supply is required.
Related Item
• FR 9190
Submitter Information Verification
Submitter Full Name: Vincent Della Croce
Organization: Siemens
Street Address:
City:
State:
Zip:

Submittal Date:Mon Jul 22 11:05:02 EDT 2024Committee:NEC-P17

Γ

Public Comment No. 835-NFPA 70-2024 [Section No. 680.71]
680.71 Branch Circuit.
Hydromassage Branch circuits supplying hydromassage bathtubs and their associated electrical components shall be on an individual branch circuit(s) serve no other loads.
Statement of Problem and Substantiation for Public Comment
An individual branch circuit cannot serve multiple loads, so how does it serve the hydromassage tub AND it associated electrical components? If the intent is that the circuit not serve any loads that are not related to the tub, the language I submitted should be accepted. Similar requirements can be found throughout the code when this prediciment comes up, such as 760.41(B) for fire alarms.
Related Item
• FR 9190
Submitter Information Verification

Submitter Full Name: Ryan Jackson			
Organization:	Self-employed		
Street Address:			
City:			
State:			
Zip:			
Submittal Date:	Tue Aug 06 12:03:19 EDT 2024		
Committee:	NEC-P17		

Public Comment No. 687-NFPA 70-2024 [Section No. 680.75]

680.75 GFCI Protection.

(A) General.

Hydromassage bathtubs and their associated electrical components shall be protected by a readily accessible GFCI.

(B) Receptacles.

All 125-volt, single-phase receptacles not exceeding 30 amperes and located within 1.83 m (6 ft) measured horizontally of the inside walls of a hydromassage tub shall be GFCI protected.

Additional Proposed Changes

File Name Description Approved

CN_390.pdf

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 390 appeared in the First Draft Report on First Revision No. 9190.

The Correlating Committee directs CMP 17 to identify the specific modifications to the requirements of 210.8 made in this requirement. If there are no modifications to the general requirement in Chapter 2, it is not necessary to restate the requirement in accordance with NEC Style Manual Section 4.1.1.

Related Item

• First Revision No. 9190

Submitter Information Verification

Committee: NEC-AAC Submittal Date: Fri May 10 11:40:56 EDT 2024

Committee Statement and Meeting Notes

Committee Statement: The Correlating Committee directs CMP 17 to identify the specific modifications to the requirements of 210.8 made in this requirement. If there are no modifications to the general requirement in Chapter 2, it is not necessary to restate the requirement in accordance with NEC Style Manual Section 4.1.1.

First Revision No. 9190-NFPA 70-2024 [Detail]

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

Add new part VI and renumber existing Part VI to Part VII and renumber sections.

Part VI Conductive Pavement Heating Systems

426.60 General . Except as modified in this Part, conductive pavement heating systems shall comply with Parts I, II and VII of Article 426 and the following additional requirements.

426.62 Listing . A conductive pavement heating system shall be listed as a conductive pavement heating system.

426.64 Engineered Design . The engineering design shall comply with all the following.

(A) Site Specific Design . Conductive pavement heating systems shall be designed and specified for specific installation site applications within the limits of the listing and manufacturer's installation instructions.

(B) Professional Engineer Required . The design engineer shall be a licensed professional electrical engineer retained by the system owner or installer.

(C) Documentation . Documentation of the engineered design of the conductive pavement heating system shall be stamped and provided to the Authority Having Jurisdiction. The design specifications, installation instructions, mixture specifications, and required conductivity test report requirements shall be provided to the Authority Having Jurisdiction.

(D) Additional Design Information . Additional stamped independent engineering reports detailing compliance of the design with applicable electrical standards and industry practice shall be provided upon request of the Authority Having Jurisdiction.

(E) Conformance Documentation . Conformance documentation shall include details of conformance of the design with the applicable parts of Article 426.

426.66 Installation. _ The conductive pavement heating system shall be installed in accordance with the following.

(A) Engineering Supervision . Conductive pavement heating systems shall be installed under design engineering supervision and in accordance with the manufacturer's instructions.

(B) Documentation . The engineer shall provide documentation of the testing of the conductive pavement mixture, and commissioning of the system to the Authority Having Jurisdiction.

(C) Specifications . Conductive pavement heating systems shall be installed in accordance with the installation instructions and conductive pavement mixture specifications.

<u>426. 68 Overtemperature Protection</u> <u>. The conductive pavement system shall have monitoring for surface temperatures and have overtemperature protection set not greater than 15 ° C (60 ° F). An overtemperature condition shall cause the power to the electrodes to be deenergized.</u>

426.70 Conductive Pavement Heating System

(A) Electrode Encasement . Embedded electrodes shall be encased by not less than 50 mm (2 in.) of conductive pavement on all sides of the electrode.

(B) Support and Securement . Electrodes and supply conductors within the conductive pavement shall be supported and secured in place by nonmetallic frames or spreaders or other approved means while the conductive pavement is installed.

(C) Expansion and Contraction . Electrodes and supply conductors shall not be installed where they bridge expansion joints unless provisions are made for expansion, contraction or other movement.

(<u>D) Flexural Capability</u>. Where installed on flexible structures, the electrodes and associated equipment shall have a flexural capability that is compatible with the movement of the structure.

426.72 Electrode Power Supply. The operating voltage of the conductive pavement system electrodes shall not exceed 30 volts ac or 60 volts dc.

<u>426.74 Ungrounded System. The power supply to the electrodes shall be an ungrounded system from an isolation transformer.</u>

426.76- Wiring Methods

<u>A) Electrode Supply Conductors</u>. The power supply conductors shall comply with the following requirements:

(1) The power supply conductors to the electrodes encased for any part in the conductive pavement shall be type USE-2 copper.

(2) The electrode power supply conductors shall have not less than 300 mm (12 in.) provided within junction boxes.

(3) The power supply conductors from the control panel to a junction box shall be permitted to be any type suitable for a wet location. These conductors shall be protected from exposure to direct contact with the conductive pavement material.

(4) The power supply conductors shall be directly buried or shall be installed in nonmetallic raceway(s) suitable for the temperature and environment.

(B) Sensor and Control Conductors. Sensor and control conductors shall be installed in accordance with the following:

(1) Nonmetallic raceways suitable for the temperature and environment shall be used for all sensor and control conductors installed in the conductive pavement.

(2) Sensor and control conductors installed above the conductive pavement shall be installed in nonmetallic raceways for any penetration through the conductive pavement.

(3) Ferrous and nonferrous metal raceways, boxes, fittings, supports, and support hardware shall be permitted to be installed above the conductive pavement in areas subject to severe corrosive influences, where made of material suitable for the condition, or where provided with corrosion protection identified as suitable for the condition.

(4) Metal raceways installed above the conductive pavement shall not have any contact with the conductive pavement.

(C) Other Electrical Equipment . Electrical equipment, other than electrode supply conductors and sensor and control conductors, installed above the conductive pavement, such as area lighting, shall be installed in accordance with the following:

(1) All penetrations through the conductive pavement shall be nonmetallic raceways suitable for the temperature and environment

(2) Ferrous and nonferrous metal raceways, boxes, fittings, supports, and support hardware shall be permitted to be installed above the conductive pavement in areas subject to severe corrosive influences, where made of material suitable for the condition, or where provided with corrosion protection identified as suitable for the condition.

(3)Metal raceways installed above the conductive pavement shall not have any contact with the conductive pavement.

426.78 Electrical Connection.

(A) Electrode Connections . Electrical connections to the electrodes within the conductive pavement shall comply with one of the following:

(1) Be connected by exothermic welding

(2) Be of the irreversible crimp-type terminal complying with the following:

(a) Connectors shall be listed for direct burial or concrete encasement.

(b) Connectors shall be installed with stainless steel bolts, washers and nuts.

(B) Circuit Connections . Splices and terminations, other than at the electrode end, shall be installed in a box or fitting in accordance with 110.14 and 300.15.

<u>426.80 GFCI Protection . GFCI protection shall be provided for all 125-volt 15- and 20-amp single phase</u> <u>branch circuits supplying equipment installed on the conductive pavement.</u>

426.82 Conductive Pavement Material Testing . The conductive pavement material mixture and testing shall comply with the following:

(A) Have a wet resistance test conducted on the conductive pavement as it is installed, and the test report shall be provided to the Authority Having Jurisdiction.

(B) The wet resistance test results shall be within the specified limits of the engineering design.

(C) Final approval for the installation shall not be granted until all material test reports have been provided and reviewed.

426.84 Equipment Mounting . Structures or equipment mounted onto the conductive pavement surface shall be mounted with nonmetallic anchors into the conductive pavement surface. No metallic anchors or penetrations shall be permitted in the conductive pavement.

Sections Part VI., 426.50, 426.51

Part VI <u>VII</u>. Control and Protection

426.50 <u>90</u> Disconnecting Means.

(A) Disconnection.		1
All fixed outdoor deicing and snow-melting equipment shall be provided conductors. Where readily accertise circuit switch or circuit breaker shall be permitted to serve as the dischall be the indicating type and be lockable open in accordance with	essible to the user of the equipment, the branch- sconnecting means. The disconnecting means	
(B) Cord-and-Plug-Connected Equipment.		
The factory-installed attachment plug of cord-and-plug-connected e 150 volts or less to ground shall be permitted to be the disconnection		
426. 51 <u>92</u> Controllers.		
(A) Temperature Controller with "Off" Position.		
Temperature-controlled switching devices that indicate an "off" pos ungrounded conductors when the control device is in the "off" posit serve as disconnecting means unless they are lockable open in ac	ion. These devices shall not be permitted to	
(B) Temperature Controller Without "Off" Position.		
Temperature-controlled switching devices that do not have an "off" ungrounded conductors. These devices shall not be permitted to see		
(C) Remote Temperature Controller.		
Remote-controlled temperature-actuated devices shall not be requ These devices shall not be permitted to serve as disconnecting me		
(D) Combined Switching Devices.		
Switching devices consisting of combined temperature-actuated de serve both as the controller and disconnecting means shall comply		
(1) Open all ungrounded conductors when manually placed in the	e "off" position	
(2) Be so designed that the circuit cannot be energized automatic the "off" position	cally if the device has been manually placed in	
(3) Be lockable open in accordance with 110.25		
Iditional Proposed Changes		
File Name	Description	Approved
PC_1735_Doc_Part_VI_Conductive_Pavement_Heating_Systems.do	Clean word file of proposed changes due to Terra issues with text changes.	
Conductive_Concrete_an_Electrifying_Ideapdf	Conductive Concrete article downloaded from Internet. URL https://engineering.unl.edu/faculty/cv/V50I06P46.pdf	
atement of Problem and Substantiation for Public Comm	nent	
Introduction		
The development of a conductive concrete heating system continues for Construction and Environmental Engineering with several pilot installat additional research, laboratory testing and pilot site installations have to voltage, 30 volts ac or less, power supply. This ongoing research require well as changes to the carbon fiber content in the concrete mix.	tions. Since the first draft meetings in January 2024, been installed to find the optimal design with a low	
Testing in concert with UL of existing pilot installations set up for 208, 1 voltage and resultant body current exceeded acceptable safe values a or feet were in contact with the surface. This along with the panel com to the lower voltage.	nd present potential shock hazards where bare hands	
Recent testing of a sample slab operating with a 24-volt RMS supply n which should be the maximum value, found surface voltages to be app for both solid (undamaged) and where deep cuts in the concrete, to the	roximately 16 volts RMS. The same result was found	
The Need for NEC Requirements		

The Need for NEC Requirements

The present NEC requirements do not address this new technology. Because this technology is very different than present systems covered by Article 426 a new Part VI was proposed along with other changes specific to the conductive pavement applications. The text in the public comment has revised what was proposed to include only requirements relative to the electrical system and address the panel input and continued research activities.

As this effort to provide NEC requirements has been underway, information has become available that some engineering companies are designing heated pavement systems for applications in cold weather areas with supply voltages to the

electrodes of 480 volts. Without some requirements from the NEC, it is very difficult for jurisdictions to deal with these potentially unsafe installations.

National Need

A quick survey of other state and federal agencies has determined interest in this technology as well as integration into similar research projects these states are already undertaking. Some of those agencies or states expressing specific interest include:

Federal Aviation Administration State of Alaska DOT State of California DOT State of Iowa DOT (lead on the present project with Iowa State University) State of Missouri DOT State of New Jersey DOT (similar project underway with Rowan University) State of New York DOT State of New York DOT State of Texas DOT State of Nebraska Department of Road (pilot project, see attached article) and Kansas City, Nebraska (similar project for bus stop with University of Nebraska – Lincoln) This topic has also been a topic of presentations for several years at the American Association of State Highway and Transportation Officials (AASHTO) meeting with representation for all 50 states and US territories.

Proposed NEC Sections Technical Discussion

A new definition for Conductive Pavement Heating System has been proposed in a separate comment, PC 1733, to be added in Article 100 for this new technology. This comment recommended the definition to be under the purview of CMP-17 and applicable to Article 426 only.

The scope of Article 426 has been modified in a separate comment, PC 1734, to accommodate this technology and provide coverage for this system in the scope of Article 426.

No changes are proposed to Parts II through V of Article 426 as these parts are specific with different concepts and unrelated technologies. Due to the unique nature of this technology, it was determined a whole new part is needed, therefore the creation of the new Part VI and renumbering of the existing Part VI to Part VII. This is consistent with other parts in Article 426 that address specific types of equipment or systems.

New Part VI

The new part is recommended to become Part VI and the existing Part VI to be renumbered to Part VII with applicable renumbering of the two remaining affected sections. This public comment includes the applicable section numbering changes to the new Part VII, as revised by the panel in the first draft, and verified renumbering in cross references. No other changes in Part VII are intended from this comment.

A general requirement is included to clarify which previous parts of Article 426 are to be included for installations of conductive pavement heating systems. One item to note from Part II is 426.13 which requires signage alerting anyone approaching the conductive pavement that there is this system present. Some designs being considered include a light, to supplement this sign, signifying the system is energized and operating when illuminated.

The first draft established a general listing requirement for snow melting and deicing equipment in 426.2. To ensure this technology is properly covered by listing, an additional requirement is put in to require this system to be "listed as a conductive pavement heating system". This is to ensure certain equipment listings, such as the main control panel, are not confused as covering the entire system.

The lowa Department of Transportation has engaged UL Solutions in a preliminary investigation toward developing the listing requirements, and that project is ongoing. The UL project is being conducted in parallel and coordinated with the proposed changes to the NEC as this Code cycle progresses. Part of the UL efforts will be ensuring the listing requirements align with these code requirements.

The following key elements are included in the new requirements in Part VI

Each system will be unique to a site and will be required to be designed and specification from a registered professional engineer. Similar requirements for these kinds of unique systems are already included elsewhere in code.

The installation will require oversight by the design engineer with some documentation requirements being made available to the Authority Having Jurisdiction. This is similar to existing NEC requirements found in 371.14 and 691.6. Having the design professional for the custom design of each system with the standardized specification and listing by a recognized testing laboratory provides the Authority Having Jurisdiction with a solid body of information to assist in the approval of the installation. This aspect was strongly recommended by the AHJs that are part of the lowa DOT team working on this project.

There are clear documentation requirements for the initial design through the final commissioning to be provided to the Authority Having Jurisdiction for review and approval. The manufacturer's instructions, which will be part of the listing, and the specifications for the pavement batch mixing are required for the AHJ to evaluate conformance of the installation. One of these reports would be the "wet" and "cured" testing results for the resistance or conductivity of the conductive pavement materials.

The primary hazards identified are potential shock and thermal burn hazards. The shock hazard is being mitigated by now requiring the supply voltage not exceed 30 volts RMS or 60 Volts dc. The power supply is also required to be an isolation transformer and the system to be ungrounded. This will address concerns for stray currents through the earth or effects on other facilities. These requirements are consistent with other NEC requirements. Since the system is now low voltage from an isolation transformer and to be an ungrounded system, only GFCI protection for 125 volt 15- and 20-amp branch circuits supplying equipment installed on the conductive pavement is required.

The other hazard is from a surface becoming excessively hot. The level of heat required is only to melt snow or prevent icing, which is at a temperature of about 40°F per the research completed. The temperature limits set in the proposed requirements are 15°C or 60°F which are well below the 50°C or 122°F allowed in many UL standards for contact without burns.

Installation requirements have been revised to include a minimum electrode encasement in the conductive pavement. Installation also includes wiring methods addressing the power supply to the electrodes, wiring to control and sensor equipment embedded in or in support of the system, and wiring methods for other electrical equipment that may be installed on the conductive pavement. Requirements are established for the proper connection devices of the supply conductors to the electrodes and for the mounting of any equipment to structures onto the conductive pavement.

No special grounding and bonding are required under the revised requirements and all the requirements from Article 250 would apply as provided through 90.3.

Related Public Comments for This Document

Related Comment

Relationship

Public Comment No. 1733-NFPA 70-2024 [New Definition after Definition: Concealed Knob-and-Tube <u>Wi...]</u> Public Comment No. 1734-NFPA 70-2024 [Section No. 426.1]

Related Item

• PI 4168 and CI 8998

Submitter Information Verification

Submitter Full Name: Charles Mello

Organization:Cdcmello Consulting LlcAffiliation:State of Iowa Department of TransportationStreet Address:City:State:Zip:Submittal Date:Mon Aug 26 20:11:24 EDT 2024Committee:NEC-P17

Attachment to Public Comment No. 1735

See following link for article titled "Conductive Concrete – an Electrifying Idea"

https://engineering.unl.edu/faculty/cv/V50I06P46.pdf

Part VI Conductive Pavement Heating Systems

426.60 General. Except as modified in this Part, conductive pavement heating systems shall comply with Parts I, II and VII of Article 426 and the following additional requirements.

426.62 Listing. A conductive pavement heating system shall be listed as a conductive pavement heating system.

426.64 Engineered Design. The engineering design shall comply with all the following.

(A) Site Specific Design. Conductive pavement heating systems shall be designed and specified for specific installation site applications within the limits of the listing and manufacturer's installation instructions.

(B) Professional Engineer Required. The design engineer shall be a licensed professional electrical engineer retained by the system owner or installer.

(C) Documentation. Documentation of the engineered design of the conductive pavement heating system shall be stamped and provided to the Authority Having Jurisdiction. The design specifications, installation instructions, mixture specifications, and required conductivity test report requirements shall be provided to the Authority Having Jurisdiction.

(D) Additional Design Information. Additional stamped independent engineering reports detailing compliance of the design with applicable electrical standards and industry practice shall be provided upon request of the Authority Having Jurisdiction.

(E) Conformance Documentation. Conformance documentation shall include details of conformance of the design with the applicable parts of Article 426.

426.66 Installation. The conductive pavement heating system shall be installed in accordance with the following.

(A) Engineering Supervision. Conductive pavement heating systems shall be installed under design engineering supervision and in accordance with the manufacturer's instructions.

(B) Documentation. The engineer shall provide documentation of the testing of the conductive pavement mixture, and commissioning of the system to the Authority Having Jurisdiction.

(C) Specifications. Conductive pavement heating systems shall be installed in accordance with the installation instructions and conductive pavement mixture specifications.

426. 68 Overtemperature Protection. The conductive pavement system shall have monitoring for surface temperatures and have overtemperature protection set not greater than 15°C (60°F). An overtemperature condition shall cause the power to the electrodes to be deenergized.

426.70 Conductive Pavement Heating System

(A) Electrode Encasement. Embedded electrodes shall be encased by not less than 50 mm (2 in.) of conductive pavement on all sides of the electrode.

(B) Support and Securement. Electrodes and supply conductors within the conductive pavement shall be supported and secured in place by nonmetallic frames or spreaders or other approved means while the conductive pavement is installed.

(C) Expansion and Contraction. Electrodes and supply conductors shall not be installed where they bridge expansion joints unless provisions are made for expansion, contraction or other movement.

(D) Flexural Capability. Where installed on flexible structures, the electrodes and associated equipment shall have a flexural capability that is compatible with the movement of the structure.

426.72 Electrode Power Supply. The operating voltage of the conductive pavement system electrodes shall not exceed 30 volts ac or 60 volts dc.

426.74 Ungrounded System. The power supply to the electrodes shall be an ungrounded system from an isolation transformer.

426.76- Wiring Methods

A) Electrode Supply Conductors. The power supply conductors shall comply with the following requirements:

(1) The power supply conductors to the electrodes encased for any part in the conductive pavement shall be type USE-2 copper.

(2) The electrode power supply conductors shall have not less than 300 mm (12 in.) provided within junction boxes.

(3) The power supply conductors from the control panel to a junction box shall be permitted to be any type suitable for a wet location. These conductors shall be protected from exposure to direct contact with the conductive pavement material.

(4) The power supply conductors shall be directly buried or shall be installed in nonmetallic raceway(s) suitable for the temperature and environment.

(B) Sensor and Control Conductors. Sensor and control conductors shall be installed in accordance with the following:

(1) Nonmetallic raceways suitable for the temperature and environment shall be used for all sensor and control conductors installed in the conductive pavement.

(2) Sensor and control conductors installed above the conductive pavement shall be installed in nonmetallic raceways for any penetration through the conductive pavement.

(3) Ferrous and nonferrous metal raceways, boxes, fittings, supports, and support hardware shall be permitted to be installed above the conductive pavement in areas subject to severe corrosive influences, where made of material suitable for the condition, or where provided with corrosion protection identified as suitable for the condition.

(4) Metal raceways installed above the conductive pavement shall not have any contact with the conductive pavement.

(C) Other Electrical Equipment. Electrical equipment, other than electrode supply conductors and sensor and control conductors, installed above the conductive pavement, such as area lighting, shall be installed in accordance with the following:

(1) All penetrations through the conductive pavement shall be nonmetallic raceways suitable for the temperature and environment

(2) Ferrous and nonferrous metal raceways, boxes, fittings, supports, and support hardware shall be permitted to be installed above the conductive pavement in areas subject to severe corrosive influences, where made of material suitable for the condition, or where provided with corrosion protection identified as suitable for the condition.

(3)Metal raceways installed above the conductive pavement shall not have any contact with the conductive pavement.

426.78 Electrical Connection.

(A) Electrode Connections. Electrical connections to the electrodes within the conductive pavement shall comply with one of the following:

(1) Be connected by exothermic welding

(2) Be of the irreversible crimp-type terminal complying with the following:

(a) Connectors shall be listed for direct burial or concrete encasement.

(b) Connectors shall be installed with stainless steel bolts, washers and nuts.

(B) Circuit Connections. Splices and terminations, other than at the electrode end, shall be installed in a box or fitting in accordance with 110.14 and 300.15.

426.80 GFCI Protection. GFCI protection shall be provided for all 125-volt 15- and 20amp single phase branch circuits supplying equipment installed on the conductive pavement.

426.82 Conductive Pavement Material Testing. The conductive pavement material mixture and testing shall comply with the following:

(A) Have a wet resistance test conducted on the conductive pavement as it is installed, and the test report shall be provided to the Authority Having Jurisdiction.

(B) The wet resistance test results shall be within the specified limits of the engineering design.

(C) Final approval for the installation shall not be granted until all material test reports have been provided and reviewed.

426.84 Equipment Mounting. Structures or equipment mounted onto the conductive pavement surface shall be mounted with nonmetallic anchors into the conductive pavement surface. No metallic anchors or penetrations shall be permitted in the conductive pavement.

Part ¥I <u>VII</u>. Control and Protection

426.5090 Disconnecting Means.

(A) Disconnection. All fixed outdoor deicing and snow-melting equipment shall be provided with a means for simultaneous disconnection from all ungrounded conductors. Where readily accessible to the user of the equipment, the branch-circuit switch or circuit breaker shall be permitted to serve as the disconnecting means. The disconnecting means shall be the indicating type and be lockable open in accordance with 110.25.

(B) Cord-and-Plug-Connected Equipment. The factory-installed attachment plug of cord-and-plug-connected equipment rated 20 amperes or less and 150 volts or less to ground shall be permitted to be the disconnecting means.

426.5192 Controllers.

(A) Temperature Controller with "Off" Position. Temperature-controlled switching devices that indicate an "off" position and that interrupt line current shall open all ungrounded conductors when the control device is in the "off" position. These devices shall not be permitted to serve as the disconnecting means unless they are lockable open in accordance with 110.25.

(B) Temperature Controller Without "Off" Position. Temperature controlled switching devices that do not have an "off" position shall not be required to open all ungrounded conductors. These devices shall not be permitted to serve as disconnecting means.

(C) Remote Temperature Controller. Remote controlled temperature-actuated devices shall not be required to meet the requirements of 426.5192(A). These devices shall not be permitted to serve as disconnecting means.

(D) Combined Switching Devices. Switching devices consisting of combined temperature-actuated devices and manually controlled switches that serve both as the controller and the disconnecting means shall comply with all of the following conditions:

(1) Open all ungrounded conductors when manually placed in the "off" position

(2) Be so designed that the circuit cannot be energized automatically if the device has been manually placed in the "off" position

Substantiation

Introduction

The development of a conductive concrete heating system continues from the Iowa State University Department of Civil, Construction and Environmental Engineering with several pilot installations. Since the first draft meetings in January 2024, additional research, laboratory testing and pilot site installations have been installed to find the optimal design with a low voltage, 30 volts ac or less, power supply. This ongoing research required new configurations for the electrode spacing as well as changes to the carbon fiber content in the concrete mix.

Testing in concert with UL of existing pilot installations set up for 208, 120, and 240 volts determined that the wet surface voltage and resultant body current exceeded acceptable safe values and present potential shock hazards where bare hands or feet were in contact with the surface. This along with the panel committee input statement determined the design change to the lower voltage.

Recent testing of a sample slab operating with a 24-volt RMS supply measured with the test point right above the electrodes, which should be the maximum value, found surface voltages to be approximately 16 volts RMS. The same result was found for both solid (undamaged) and where deep cuts in the concrete, to the electrode depth, has been made to simulate cracks.

The Need for NEC Requirements

The present NEC requirements do not address this new technology. Because this technology is very different than present systems covered by Article 426 a new Part VI was proposed along with other changes specific to the conductive pavement applications. The text in the public comment has revised what was proposed to include only requirements relative to the electrical system and address the panel input and continued research activities.

As this effort to provide NEC requirements has been underway, information has become available that some engineering companies are designing heated pavement systems for applications in cold weather areas with supply voltages to the electrodes of 480 volts. Without some requirements from the NEC, it is very difficult for jurisdictions to deal with these potentially unsafe installations.

National Need

A quick survey of other state and federal agencies has determined interest in this technology as well as integration into similar research projects these states are already undertaking. Some of those agencies or states expressing specific interest include:

Federal Aviation Administration State of Alaska DOT State of California DOT State of Iowa DOT (lead on the present project with Iowa State University) State of Missouri DOT State of New Jersey DOT (similar project underway with Rowan University) State of New York DOT State of Texas DOT State of Texas DOT

State of Nebraska Department of Road (pilot project, see attached article) and Kansas City, Nebraska (similar project for bus stop with University of Nebraska – Lincoln, see attached article)

This topic has also been a topic of presentations for several years at the American Association of State Highway and Transportation Officials (AASHTO) meeting with representation for all 50 states and US territories.

Proposed NEC Sections Technical Discussion

A new definition for Conductive Pavement Heating System has been proposed in a separate comment, PC 1733, to be added in Article 100 for this new technology. This comment recommended the definition to be under the purview of CMP-17 and applicable to Article 426 only.

The scope of Article 426 has been modified in a separate comment, PC 1734, to accommodate this technology and provide coverage for this system in the scope of Article 426.

No changes are proposed to Parts II through V of Article 426 as these parts are specific with different concepts and unrelated technologies. Due to the unique nature of this technology, it was determined a whole new part is needed, therefore the creation of the new Part VI and renumbering of the existing Part VI to Part VII. This is consistent with other parts in Article 426 that address specific types of equipment or systems.

New Part VI

The new part is recommended to become Part VI and the existing Part VI to be renumbered to Part VII with applicable renumbering of the two remaining affected sections. This public comment includes the applicable section numbering changes to the new Part VII, as revised by the panel in the first draft, and verified renumbering in cross references. No other changes in Part VII are intended from this comment.

A general requirement is included to clarify which previous parts of Article 426 are to be included for installations of conductive pavement heating systems. One item to note from Part II is 426.13 which requires signage alerting anyone approaching the conductive pavement that there is this system present. Some designs being considered include a light, to supplement this sign, signifying the system is energized and operating when illuminated.

The first draft established a general listing requirement for snow melting and deicing equipment in 426.2. To ensure this technology is properly covered by listing, an additional requirement is put in to require this system to be "listed as a conductive pavement heating system". This is to ensure certain equipment listings, such as the main control panel, are not confused as covering the entire system.

The Iowa Department of Transportation has engaged UL Solutions in a preliminary investigation toward developing the listing requirements, and that project is ongoing. The UL project is being conducted in parallel and coordinated with the proposed changes to the NEC as this Code cycle progresses. Part of the UL efforts will be ensuring the listing requirements align with these code requirements.

The following key elements are included in the new requirements in Part VI

Each system will be unique to a site and will be required to be designed and specification from a registered professional engineer. Similar requirements for these kinds of unique systems are already included elsewhere in code.

The installation will require oversight by the design engineer with some documentation requirements being made available to the Authority Having Jurisdiction. This is similar to existing NEC requirements found in 371.14 and 691.6. Having the design professional for the custom design of each system with the standardized specification and listing by a recognized testing laboratory provides the Authority Having Jurisdiction with a solid body of information to assist in the approval of the installation. This aspect was strongly recommended by the AHJs that are part of the lowa DOT team working on this project.

There are clear documentation requirements for the initial design through the final commissioning to be provided to the Authority Having Jurisdiction for review and approval. The manufacturer's instructions, which will be part of the listing, and the specifications for the pavement batch mixing are required for the AHJ to evaluate conformance of the installation. One of these reports would be the "wet" and "cured" testing results for the resistance or conductivity of the conductive pavement materials.

The primary hazards identified are potential shock and thermal burn hazards. The shock hazard is being mitigated by now requiring the supply voltage not exceed 30 volts RMS or 60 Volts dc. The power supply is also required to be an isolation transformer and the system to be ungrounded. This will address concerns for stray currents through the earth or effects on other facilities. These requirements are consistent with other NEC requirements. Since the system is now low voltage from an isolation transformer

and to be an ungrounded system, only GFCI protection for 125 volt 15- and 20-amp branch circuits supplying equipment installed on the conductive pavement is required.

The other hazard is from a surface becoming excessively hot. The level of heat required is only to melt snow or prevent icing, which is at a temperature of about 40°F per the research completed. The temperature limits set in the proposed requirements are 15°C or 60°F which are well below the 50°C or 122°F allowed in many UL standards for contact without burns.

Installation requirements have been revised to include a minimum electrode encasement in the conductive pavement. Installation also includes wiring methods addressing the power supply to the electrodes, wiring to control and sensor equipment embedded in or in support of the system, and wiring methods for other electrical equipment that may be installed on the conductive pavement. Requirements are established for the proper connection devices of the supply conductors to the electrodes and for the mounting of any equipment to structures onto the conductive pavement.

No special grounding and bonding are required under the revised requirements and all the requirements from Article 250 would apply as provided through 90.3.

CMP 1 has deleted the definition for "In Sight From", and the requirements that were part of that definition are now located in 110.29. This global Correlating Committee Note directs all CMP's to review occurrences of the phrase "in sight from", "within sight from", and "within sight" and consider whether references to 110.29 or 110.39 should be included.

Additional Proposed Changes

File Name	Description	<u>Approved</u>
CN_26.pdf	NEC_CN26	\checkmark

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 26 appeared in the First Draft Report on First Revision No. 9187.

CMP 1 has deleted the definition for "In Sight From", and the requirements that were part of that definition are now located in 110.29. This global Correlating Committee Note directs all CMP's to review occurrences of the phrase "in sight from", "within sight from", and "within sight" and consider whether references to 110.29 or 110.39 should be included.

Related Item

• First Revision No. 9187

Submitter Information Verification

Submitter Full Name: CC Notes		
Organization:	NEC Correlating Committee	
Street Address:		
City:		
State:		
Zip:		
Submittal Date:	Mon Jul 29 17:05:29 EDT 2024	
Committee:	NEC-P01	

- Copyright Assignment -

I, CC Notes, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am CC Notes, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature

Committee: NEC-AAC Submittal Date: Tue May 07 14:23:07 EDT 2024

Committee Statement and Meeting Notes

Committee Statement: CMP 1 has deleted the definition for "In Sight From", and the requirements that were part of that definition are now located in 110.29. This global Correlating Committee Note directs all CMP's to review occurrences of the phrase "in sight from", "within sight from", and "within sight" and consider whether references to 110.29 or 110.39 should be included.

First Revision No. 9187-NFPA 70-2024 [Section No. 225.41]

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

The Correlating Committee directs all Code-Making Panels to verify cross-references to Article 200 are accurate due to the renumbering of the article.

Additional Proposed Changes

<u>File Name</u>	Description	<u>Approved</u>
CN 84.pdf		\checkmark

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 84 appeared in the First Draft Report.

The Correlating Committee directs all Code-Making Panels to verify cross-references to Article 200 are accurate due to the renumbering of the article.

Related Item

Correlating Committee Note No. 84

Submitter Information Verification

Submitter Full Name:	CC Notes
Organization:	NEC Correlating Committee
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Tue Jul 30 17:35:49 EDT 2024
Committee:	NEC-P05

- Copyright Assignment -

I, CC Notes, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am CC Notes, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature

Committee: NEC-AAC Submittal Date: Wed May 08 08:49:53 EDT 2024

Committee Statement

CommitteeThe Correlating Committee directs all Code-Making Panels to verify cross-Statement:references to Article 200 are accurate due to the renumbering of the article.

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

- Ayer, Lawrence S.
- Bowmer, Trevor N.
- Hickman, Palmer L.
- Holub, Richard A.
- Jackson, Peter D.
- Kendall, David H.
- Manche, Alan
- Osborne, Robert D.
- Porter, Christine T.
- Schultheis, Timothy James
- Williams, David A.

The Correlating Committee directs the CMPs to review the revision of the title of Article406 (Wiring Devices) and the new definition for the term "wiring device" in Article 100 forcorrelation of existing terminology using the newly define term in their articles.

Additional Proposed Changes

File Name	Description	<u>Approved</u>
CN_157.pdf		\checkmark

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 157 appeared in the First Draft Report on First Revision No. 7965.

The Correlating Committee directs the CMPs to review the revision of the title of Article 406 (Wiring Devices) and the new definition for the term "wiring device" in Article 100 for correlation of existing terminology using the newly define term in their articles.

Related Item

First Revision No. 7965

Submitter Information Verification

Submitter Full Name:	CC Notes
Organization:	NEC Correlating Committee
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Tue Jul 30 22:29:14 EDT 2024
Committee:	NEC-P18

- Copyright Assignment

I, CC Notes, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am CC Notes, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature

Committee: NEC-AAC

Submittal Date: Thu May 09 08:59:03 EDT 2024

Committee Statement and Meeting Notes

Committee Statement: The Correlating Committee directs the CMPs to review the revision of the title of Article 406 (Wiring Devices) and the new definition for the term "wiring device" in Article 100 for correlation of existing terminology using the newly define term in their articles.

First Revision No. 7965-NFPA 70-2024 [New Definition after Definition: Wireways, Nonmetallic. (No...]

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S.

Bowmer, Trevor N.

- Hickman, Palmer L.
- Holub, Richard A.
- Jackson, Peter D.
- Kendall, David H.

Manche, Alan

Osborne, Robert D.

Porter, Christine T.

Schultheis, Timothy James

Williams, David A.

Public Comment No. 527 Assigned to CMP- 2, Referred to CMPs 1 - 18

The CMPs are directed to review references to Article 220 in the articles under their purview and make necessary revisions based on Article 220 being relocated to Article120.

Additional Proposed Changes

File Name	Description	<u>Approved</u>
CN 212.pdf		\checkmark

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 212 appeared in the First Draft Report.

The CMPs are directed to review references to Article 220 in the articles under their purview and make necessary revisions based on Article 220 being relocated to Article 120.

Related Item

Correlating Committee Note No. 212

Submitter Information Verification

Submitter Full Name	: CC Notes
Organization:	NEC Correlating Committee
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Tue Jul 30 23:08:41 EDT 2024
Committee:	NEC-P02

- Copyright Assignment

I, CC Notes, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am CC Notes, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature

Committee: NEC-AAC Submittal Date: Thu May 09 11:53:08 EDT 2024

Committee Statement and Meeting Notes

Committee The CMPs are directed to review references to Article 220 in the articles under their purview and make necessary revisions based on Article 220 being relocated to Article 120.

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James Williams, David A.

The Correlating Committee directs the CMPs to review all references to requirements in Chapters 7 & 8 for accuracy in light of the relocation of requirements occurring in the First Draft.

Additional Proposed Changes

File NameDescriptionApprovedCN 401.pdf√

Statement of Problem and Substantiation for Public Comment

NOTE: The following CC Note No. 401 appeared in the First Draft Report.

The Correlating Committee directs the CMPs to review all references to requirements in Chapters 7 & 8 for accuracy in light of the relocation of requirements occurring in the First Draft.

Related Item

Correlating Committee Note No. 401

Submitter Information Verification

Submitter Full Name: CC Notes		
Organization:	NEC Correlating Committee	
Street Address:		
City:		
State:		
Zip:		
Submittal Date:	Tue Jul 30 23:39:04 EDT 2024	
Committee:	NEC-P03	

- Copyright Assignment -

I, CC Notes, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am CC Notes, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature

Committee: NEC-AAC Submittal Date: Fri May 10 12:35:51 EDT 2024

Committee Statement

CommitteeThe Correlating Committee directs the CMPs to review all references toStatement:requirements in Chapters 7 & 8 for accuracy in light of the relocation of requirements
occurring in the First Draft.

Ballot Results

This item has passed ballot

- 12 Eligible Voters
- 1 Not Returned
- 11 Affirmative All
- 0 Affirmative with Comments
- 0 Negative with Comments
- 0 Abstention

Not Returned

McDaniel, Roger D.

Affirmative All

Ayer, Lawrence S. Bowmer, Trevor N. Hickman, Palmer L. Holub, Richard A. Jackson, Peter D. Kendall, David H. Manche, Alan Osborne, Robert D. Porter, Christine T. Schultheis, Timothy James

Williams, David A.

Public Comment No. 649-NFPA 70-2024 [Global Input]

Delete the words, "to be installed" everywhere they appear in the First Draft.

Statement of Problem and Substantiation for Public Comment

The term "to be installed" is always redundant. 90.2(C) says, "This code covers the installation and removal of electrical conductors, equipment, and raceways...". Every requirement of the NEC is about installation or removal (and requirements about removal are a very small minority). "Shall be permitted" and "shall not be permitted," as applied to equipment, mean that the subject equipment either is or is not allowed to be installed.

The new First Draft restrictions on reconditioned equipment seem to have overlooked the scope and purpose of the NEC. Adding the superfluous term "to be installed" also does not conform to 3.1.1, 3.1.2, and 3.5.1.1 of the NEC Style Manual.

Related Item

Submitter Information Verification

Submitter Full Name: William FiskeOrganization:Intertek Testing ServicesStreet Address:Intertek Testing ServicesCity:State:State:Fri Aug 02 09:19:44 EDT 2024Committee:NEC-P01

- Copyright Assignment

I, William Fiske, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am William Fiske, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature