

o Reconditioning requirements in Section 240.88 and 240.102 that are specific to overcurrent devices rated over 1000 volts are relocated to Section 245.15

- o Section 490.21 is relocated to Section 245.21.
- o Sections 240.100 and 240.101 are relocated to Sections 245.26 and 245.27, respectively.
- o Sections 242.40 242-56 are relocated to Sections 245.42 245.56.
- o Scope of 242 is revised to address only Overvoltage Protection rated not more than 1000 volts.
- o Over 1000 Volt Equipment Articles (490 and 399) are relocated from Table 242.3 to new Table 245.40

o Article 242 is restructured to only have one Part to cover all Overvoltage Protection not more than 1000 volts.

• Article 490 has been renumbered to become Article 495 and remains "Equipment over 1000 Volts, Nominal"

- Article 495 now consists of 10 parts:
- o Parts I –V are existing 490 text relocated and renumbered to "New" Article 495

o Part VI consists of relocated materials from Article 430 Part XI "Over 1000 Volts, Nominal," with Sections 430.221 - 430.227 relocated to Sections 495.80 - 495.86

The over 1000 Volts portions of tables 430.249 and 430.250, including notes, have also been relocated o Part VI.

o Part VII contains the requirements from Article 450 regarding Transformers, Over 1000 Volts, including requirements for liquid-filled transformers. While liquid-filled transformers (including "less-flammable," "non-flammable," "askarel-insulated") may be used in any installation, they are more common in installations over 1000 volts. While these requirements are relocated to Article 495, a new section 450.23 notes that the requirements in Part VII of 495 apply.

o Part VIII contains requirements from Article 450 Part III, Transformer Vaults. While transformer vaults may be used in any installation, they are more common in installations over 1000 volts. While these requirements are relocated to Article 495, a new section 450.40 notes that the requirements in Part VIII of 495 apply.

o Part IX contains the Requirements from Article 460 Part II, Capacitors, Over 1000 volts, nominal, (previously numbered 460.24 - 460.28).

o Part X contains the requirements from Article 470 (Resistors and Reactors), Part II Over 1000 volts, Nominal (previously numbered 470.18 - 470.20).

Note: There are other Public Inputs being submitted that address restructuring, and these are identified as "Companion Public Inputs". Other Article or Section references may be impacted due restructuring activities by those companion Public Inputs; however, changes to references outside of Articles 240, 242, and Chapter 4 are not shown in this Public Input.

Related Public Inputs for This Document

Related Input

Public Input No. 3765-NFPA 70-2020 [New Section after 250.194(B)]

Public Input No. 3772-NFPA 70-2020 [New Section after 110.79]

Public Input No. 3815-NFPA 70-2020 [New Section after 200.11]

Public Input No. 3819-NFPA 70-2020 [Global Input]

Public Input No. 3827-NFPA 70-2020 [Global Input]

Public Input No. 3838-NFPA 70-2020 [Section No. 690.31(A)]

Public Input No. 3846-NFPA 70-2020 [Section No. 694.30(A)]

Public Input No. 3849-NFPA 70-2020 [New Part after IV.]

Submitter Information Verification

Submitter Full Name: Robert Osborne

Relationship

Companion Public Input (Article 255)

Companion Public Input (Article 115)

Companion Public Input (Article 205)

Companion Public Input (Article 235)

Companion Public Input (Article 305)

Companion Public Input (Section 690.31(A))

Companion Public Input (Section 694.30(A))

Companion Public Input (Section 706.30)

Organizatio Street Addro City: State: Zip:	
Submittal D Committee:	ate: Wed Sep 09 11:28:25 EDT 2020 NEC-P09
Committee S	atement
	<u>FR-7941-NFPA 70-2020</u> CMP-9 provides text for a revised Article 495 based on the actions and substantiation of the Medium Voltage Task Group.
	The text of this FR is based on NEC 2020 text. CMP-9 acknowledges that changes made to Article 490 would need to be incorporated into Article 495. Article 495 as proposed would essentially replace Article 490.
	Below is a summary of the changes that result in a new Article 495:
	• Article 490 has been renumbered to become Article 495 and remains "Equipment over 1000 Volts, Nominal" Article 495 now includes flexible cords and flexible cables from Article 400 that are rated 2000 Volts and greater.
	Article 495 now consists of 10 parts:
	• Parts I –V are existing 490 text relocated and renumbered to "New" Article 495
	• Part VI consists of relocated materials from Article 430 Part XI "Over 1000 Volts, Nominal," with Sections 430.221 - 430.227 relocated to Sections 495.80 - 495.86. The over 1000 Volts portions of tables 430.249 and 430.250, including notes, have also been relocated o Part VI.
	• Part VII contains the requirements from Article 450 regarding Transformers, Over 1000 Volts, including requirements for liquid-filled transformers. While liquid-filled transformers (including "less flammable," "non-flammable," "askarel-insulated") may be used in any installation, they are more common in installations over 1000 volts. While these requirements are relocated to Article 495, a new section 450.23 notes that the requirements in Part VII of 495 apply.
	• Part VIII contains requirements from Article 450 Part III, Transformer Vaults. While transformer vaults may be used in any installation, they are more common in installations over 1000 volts. While these requirements are relocated to Article 495, a new section 450.40 notes that the requirements in Part VIII of 495 apply.
	• Changes to Article 450 will be necessary when requirements are relocated. The attached document shows how these changes will impact Article 450 (based on the 2020 Code text).
	• Part IX contains the Requirements from Article 460 Part II, Capacitors, Over 1000 volts, nominal, (previously numbered 460.24 - 460.28).
	• Part X contains the requirements from Article 470 (Resistors and Reactors), Part II Over 1000 volts, Nominal (previously numbered 470.18 - 470.20).
	Below is a summary of the revisions (unrelated to PI-3728) to Article 495 that must be considered in the PC Stage:

• Informational Notes - Revised to comply with Clause 3.1.3.1 of the NEC Style Manual.

• 490.2 - In accordance with 2.2.2 of the NEC Style Manual, the definition for "High Voltage" is relocated to Article 100.

• Table 495.24 ("Note") and Section 495.48(A)(12) - Article 242 (new to the 2020 Code) covers "surge equipment"; however, the title of the Article is "Overvoltage Protection", as that is a more generic term. This revision aligns this text with the title of Article 242, and also includes the term "surge" as this has historically been used to describe this equipment. The use of the generic term "overvoltage protection" allows for a broader application of products that provide this protection.

• 495.37 - Requirements in sections 490.36 and 490.37 address different equipment, but have the same requirement. Since "Equipment", as defined in Article 100 is a generic term, it covers all items identified in both sections. Rather than repeat the same requirement twice, they are combined into a single section (now 495.37), and a reference to the section in Article 250 that covers equipment grounding is added.

• 495.49 - The Technical committee has eliminated the statement to remove previously installed labels, as this is a general requirement contained in Chapter 1. As stated in clause 4.1.2 of the NEC Style Manual, general requirements contained in Chapter 1 shall not be repeated in other Articles of the document.

• 495.51(B) - Section 4.1.4 of the 2020 NEC® Style Manual prohibits references to an entire articles, with the exception of Article 100. The intent here is to point to the bonding and grounding parts that would apply in Article 250, which is Part X since this is "high voltage equipment", and requirements for portable equipment appear in Part X.

• 495.56 - Section 4.1.4 of the 2020 NEC® Style Manual prohibits references to an entire articles, with the exception of Article 100. The intent here is to point to the bonding and grounding parts that would apply in Article 250, which are Parts V, VI, and X since this is "high voltage equipment". The structure of this section is reordered for consistency, with "Part" occurring prior to "Article".

• Part V - The use of larger resistance type boilers is becoming more prevalent as users move to de-carbonization and away from fossil fuels for heating. Other standards are referencing the NEC for evaluation and resistance type boilers operating over 1000V are not addressed in Article 490. Part V already addresses "Electrode-Type Boilers", and rather than create a new "Part VI" that has identical requirements, Part V is revised to refer to "Boilers" more generically. The existing requirements for "Electrode-Type Boilers" would apply equally to other types of Boilers, including "Resistance-Type Boilers". Changes are made throughout Part V to refer generically to "Boilers".

Substantiation:

This Public Input is submitted on behalf of a Correlating Committee Long-Range Planning Task Group consisting of Robert Osborne (Chair), Paul Barnhart, Lou Grahor, David Temple, Donny Cook, Dean Hunter, Mike Querry, Roger McDaniel, Dave Burns, Rod Belisle, and Kevin Rogers. This Public Input, along with other companion Public Inputs, was developed with the goal of improving usability and providing a platform to increase the focus on requirements associated with Medium or High Voltage.

Installations, including campus-wide distribution systems, microgrids, alternative energy installations, etc., are covered by the Scope of the NEC®; however, requirements for conductors, equipment, and raceways used in applications operating in systems rated over 1000 volts are treated as an "after-thought" in how they are arranged in the document and covered by Technical Committees. In many cases, the "over 1000 volts" requirements exist in a dedicated "Part" within the Article – such is the case with existing Article 300. In other cases, similar products are handled in two separate Articles, such as with "switchgear", with equipment rated 1000 volts and below addressed in Article 408, and equipment rated over 1000 volts addressed in Article 490. In addition to these two approaches, there are Articles where the "over 1000 volts" is intermingled with the "under 1000 volt" requirements, such as the case with Article 225. In many of these cases, the information for over 1000 volts is very limited (for example, Article 240 has only 3 Sections in the Part dedicated to requirements for over 1000 volts).

This Task Group's initial task was to establish a demarcation for what can be referred to as Medium or High Voltage. The recommendation has been to establish this threshold as being equipment rated over 1000 Vac, 1500 Vdc. It is believed that levels below these voltages can be addressed with existing requirements for systems rated 1000 V ac max, and 1500 V dc, as this has been established as a upper limit for photovoltaic applications within Article 690, with requirements noting that those systems are not required to comply with Parts II and III of Article 490.

Using these limits, the Task Group then set out to identify a structure to better align requirements, improve consistency in approach, improve usability, and create the opportunity for Code Making Panels to have an increased focus on higher voltage applications.

All changes to Articles 240 and 242, along with Chapter 4, are being submitted as a Global Input, and below is a summary of those changes:

- Overcurrent Protection requirements in Part IX of Article 240 (Overcurrent Protection over 1000 Volts, Nominal), and Overvoltage Protection requirements in Part III of Article 242 (Surge Arresters, Over 1000 Volts) are relocated to a new Article 245, "Overcurrent and Overvoltage Protection for Systems Rated Over 1000 VAC, 1500 VDC. In addition, requirements from Article 490 that are specific to overcurrent protection are relocated to the new Article 245. A summary of the relocated Sections is noted below:
 - Reconditioning requirements in Section 240.88 and 240.102 that are specific to overcurrent devices rated over 1000 volts are relocated to Section 245.15
 - Section 490.21 is relocated to Section 245.21.
 - Sections 240.100 and 240.101 are relocated to Sections 245.26 and 245.27, respectively.
 - Sections 242.40 242-56 are relocated to Sections 245.42 245.56.
 - Scope of 242 is revised to address only Overvoltage Protection rated not more than 1000 volts.
 - Over 1000 Volt Equipment Articles (490 and 399) are relocated from Table 242.3 to new Table 245.40
 - Article 242 is restructured to only have one Part to cover all Overvoltage Protection not more than 1000 volts.
- Article 490 has been renumbered to become Article 495 and remains "Equipment over 1000 Volts, Nominal"
- Article 495 now consists of 10 parts:
 - Parts I –V are existing 490 text relocated and renumbered to "New" Article 495
 - Part VI consists of relocated materials from Article 430 Part XI "Over 1000 Volts, Nominal," with Sections 430.221 - 430.227 relocated to Sections 495.80 - 495.86
 - The over 1000 Volts portions of tables 430.249 and 430.250, including notes, have also been relocated o Part VI.
 - Part VII contains the requirements from Article 450 regarding Transformers, Over 1000 Volts, including requirements for liquid-filled transformers. While liquid-filled transformers (including "less-

flammable," "non-flammable," "askarel-insulated") may be used in any installation, they are more common in installations over 1000 volts. While these requirements are relocated to Article 495, a new section 450.23 notes that the requirements in Part VII of 495 apply.

- Part VIII contains requirements from Article 450 Part III, Transformer Vaults. While transformer vaults may be used in any installation, they are more common in installations over 1000 volts. While these requirements are relocated to Article 495, a new section 450.40 notes that the requirements in Part VIII of 495 apply.
- Part IX contains the Requirements from Article 460 Part II, Capacitors, Over 1000 volts, nominal,(previously numbered 460.24 460.28).
- Part X contains the requirements from Article 470 (Resistors and Reactors), Part II Over 1000 volts, Nominal (previously numbered 470.18 470.20).

Note: There are other Public Inputs being submitted that address restructuring, and these are identified as "Companion Public Inputs". Other Article or Section references may be impacted due restructuring activities by those companion Public Inputs; however, changes to references outside of Articles 240, 242, and Chapter 4 are not shown in this Public Input.

Revisions to Article 240:

240.88 Reconditioned Equipment.

Reconditioned equipment shall be listed as "reconditioned" and the original listing mark removed.

(A) Circuit Breakers.

The use of reconditioned circuit breakers shall comply with (1) through and (23):

- (1) Molded-case circuit breakers shall not be permitted to be reconditioned.
- (2) Low-and medium-voltage power circuit breakers shall be permitted to be reconditioned.

(3) High-voltage circuit breakers shall be permitted to be reconditioned.

(B) Components.

The use of reconditioned trip units, protective relays, and current transformers shall comply with (1) and (2):

- (1) Low-voltage power circuit breaker electronic trip units shall not be permitted to be reconditioned.
- (2) Electromechanical protective relays and current transformers shall be permitted to be reconditioned.

Part IX. Overcurrent Protection over 1000 Volts, Nominal

240.100 Feeders and Branch Circuits.

(A) Location and Type of Protection.

Feeder and branch circuit conductors shall have overcurrent protection in each ungrounded conductor located at the point where the conductor receives its supply or at an alternative location in the circuit when designed under engineering supervision that includes but is not limited to considering the appropriate fault studies and timecurrent coordination analysis of the protective devices and the conductor damage curves. The overcurrent protection shall be permitted to be provided by either 240.100(A)(1) or (A)(2).

(1) Overcurrent Relays and Current Transformers.

Circuit breakers used for overcurrent protection of 3 phase circuits shall have a minimum of three overcurrent relay elements operated from three current transformers. The separate overcurrent relay elements (or protective functions) shall be permitted to be part of a single electronic protective relay unit.

On 3 phase, 3 wire circuits, an overcurrent relay element in the residual circuit of the current transformers shall be permitted to replace one of the phase relay elements.

An overcurrent relay element, operated from a current transformer that links all phases of a 3-phase, 3-wire circuit, shall be permitted to replace the residual relay element and one of the phase-conductor current transformers. Where the neutral conductor is not regrounded on the load side of the circuit as permitted in 250.184(B), the current transformer shall be permitted to link all 3-phase conductors and the grounded circuit conductor (neutral).

(2) Fuses.

A fuse shall be connected in series with each ungrounded conductor.

(B) Protective Devices.

The protective device(s) shall be capable of detecting and interrupting all values of current that can occur at their location in excess of their trip setting or melting point.

(C) Conductor Protection.

The operating time of the protective device, the available short circuit current, and the conductor used shall be coordinated to prevent damaging or dangerous temperatures in conductors or conductor insulation under short-circuit conditions.

240.101 Additional Requirements for Feeders.

(A) Rating or Setting of Overcurrent Protective Devices.

The continuous ampere rating of a fuse shall not exceed three times the ampacity of the conductors. The long-time trip element setting of a breaker or the minimum trip setting of an electronically actuated fuse shall not exceed six times the ampacity of the conductor. For fire pumps, conductors shall be permitted to be protected for overcurrent in accordance with 695.4(B)(2).

(B) Feeder Taps.

Conductors tapped to a feeder shall be permitted to be protected by the feeder overcurrent device where that overcurrent device also protects the tap conductor.

240.102 Reconditioned Equipment.

Medium voltage fuseholders and medium voltage nonrenewable fuses shall not be permitted to be reconditioned.

Revisions to Article 242:

ARTICLE 242 Overvoltage Protection

Part I. General

242.1 Scope. This article provides the general requirements, installation requirements, and connection requirements for overvoltage protection and overvoltage protective devices. Part II covers surge protective devices (SPDs) permanently installed on premises wiring systems of not more than 1000 volts, nominal, while Part III covers surge arresters permanently installed on premises wiring systems over 1000 volts, nominal.

Informational Note <u>No. 1</u>: Article 24<u>5</u>² covers surge arresters permanently installed on premises wiring systems over 1000 volts, nominal combines and replaces Articles 280 and 285 in *NFPA 70*-2017.

Informational Note No. 2: Surge arresters 1000 volts or less are also known as Type 1 surge protective devices (SPDs).

242.3 Other Articles. Equipment shall be protected against overvoltage in accordance with the article in this *Code* that covers the type of equipment or location specified in Table 242.3.

Table 242.3 Other Articles

Equipment	Article
_Class I locations	501
Class II locations	502
Community antenna television and radio distribution systems	820
Critical operations power systems	708
Elevators, dumbwaiters, escalators, moving walks, platform lifts, and stairway chairlifts	620
Emergency systems	700
Equipment over 1000 volts, nominal	490
Fire pumps	695
Industrial machinery	670
Information technology equipment	645
Modular data centers	646
Outdoor overhead conductors over 1000 volts	399
Radio and television equipment	810
Receptacles, cord connectors, and attachment plugs (caps)	406
Wind electric systems	694

Part II. Surge Protective Devices (SPDs), 1000 Volts or Less

Informational Note: Surge arresters 1000 volts or less are also known as Type 1 SPDs.

242.6 Uses Not Permitted. An SPD device shall not be installed in the following:

(1) Circuits over 1000 volts

(2) On ungrounded systems, impedance grounded systems, or corner grounded delta systems unless listed specifically for use on these systems

(3) Where the rating of the SPD is less than the maximum continuous phase-to-ground voltage at the power frequency available at the point of application

242.8 Listing. An SPD shall be a listed device.

242.10 Short-Circuit Current Rating. The SPD shall be marked with a short-circuit current rating and shall not be installed at a point on the system where the available fault current is in excess of that rating. This marking requirement shall not apply to receptacles.

242.12 Type 1 SPDs. Type 1 SPDs shall be installed in accordance with 242.12(A) and (B).

(A) Installation. Type 1 SPDs shall be permitted to be connected in accordance with one of the following:

(1) To the supply side of the service disconnect as permitted in 230.82(4)

(2) As specified in 242.14

(B) At the Service. When installed at services, Type 1 SPDs shall be connected to one of the following:

(1) Grounded service conductor

(2) Grounding electrode conductor

(3) Grounding electrode for the service

(4) Equipment grounding terminal in the service equipment

242.14 Type 2 SPDs. Type 2 SPDs shall be installed in accordance with 242.14(A) through (C).

(A) Service-Supplied Building or Structure. Type 2 SPDs shall be connected anywhere on the load side of a service disconnect overcurrent device required in 230.91 unless installed in accordance with 230.82(8).

(B) Feeder-Supplied Building or Structure.

Type 2 SPDs shall be connected at the building or structure anywhere on the load side of the first overcurrent device at the building or structure.

(C) Separately Derived System.

The SPD shall be connected on the load side of the first overcurrent device in a separately derived system.

242.16 Type 3 SPDs. Type 3 SPDs shall be permitted to be installed on the load side of branch-circuit overcurrent protection up to the equipment served. If included in the manufacturer's instructions, the Type 3 SPD connection shall be a minimum 10 m (30 ft) of conductor distance from the service or separately derived system disconnect.

242.18 Type 4 and Other Component Type SPDs. Type 4 component assemblies and other component type SPDs shall only be installed by the equipment manufacturer.

242.20 Number Required. Where used at a point on a circuit, the SPD shall be connected to each ungrounded conductor.

242.22 Location. SPDs shall be permitted to be located indoors or outdoors and shall be made inaccessible to unqualified persons unless listed for installation in accessible locations.

242.24 Routing of Connections. The conductors used to connect the SPD to the line or bus and to ground shall not be any longer than necessary and shall avoid unnecessary bends.

242.26 Connection. Where an SPD device is installed, it shall comply with 242.12, 242.14, 242.16, 242.28. and 242.30.

242.28 Conductor Size. Line and grounding conductors shall not be smaller than 14 AWG copper or 12 AWG aluminum.

242.30 Connection Between Conductors. An SPD shall be permitted to be connected between any two conductors — ungrounded conductor(s), grounded conductor, equipment grounding conductor, or grounding electrode conductor. The grounded conductor and the equipment grounding conductor shall be interconnected only by the normal operation of the SPD during a surge.

242.32 Grounding Electrode Conductor Connections and Enclosures. Except as indicated in this article, SPD grounding connections shall be made as specified in Article 250, Part III. Grounding electrode conductors installed in metal enclosures shall comply with 250.64(E).

Part III. Surge Arresters, Over 1000 Volts

242.40 Uses Not Permitted.

A surge arrester shall not be installed where the rating of the surge arrester is less than the maximum continuous phase-to-ground voltage at the power frequency available at the point of application.

242.42 Surge Arrester Selection.

The surge arresters shall comply with 242.42(A) and (B).

(A) Rating.

The rating of a surge arrester shall be equal to or greater than the maximum continuous operating voltage available at the point of application.

(1) Solidly Grounded Systems.

The maximum continuous operating voltage shall be the phase-to-ground voltage of the system.

(2) Impedance or Ungrounded System.

The maximum continuous operating voltage shall be the phase-to-phase voltage of the system.

(B) Silicon Carbide Types.

The rating of a silicon carbide-type surge arrester shall be not less than 125 percent of the rating specified in 242.42(A).

Informational Note No. 1: For further information on surge arresters, see IEEE C62.11 2012, Standard for Metal-Oxide Surge Arresters for Alternating Current Power Circuits (>1 kV), and IEEE C62.22 2009, Guide for the Application of Metal-Oxide Surge Arresters for Alternating Current Systems.

Informational Note No. 2: The selection of a properly rated metal oxide arrester is based on considerations of maximum continuous operating voltage and the magnitude and duration of overvoltages at the arrester location as affected by phase to ground faults, system grounding techniques, switching surges, and other causes. See the manufacturer's application rules for selection of the specific arrester to be used at a particular location.

242.44 Number Required.

Where used at a point on a circuit, a surge arrester shall be connected to each ungrounded conductor. A single installation of such surge arresters shall be permitted to protect a number of interconnected circuits if no circuit is exposed to surges while disconnected from the surge arresters.

242.46 Location.

Surge arresters shall be permitted to be located indoors or outdoors. Surge arresters shall be made inaccessible to unqualified persons unless listed for installation in accessible locations.

242.48 Routing of Surge Arrester Equipment Grounding Conductors.

The conductor used to connect the surge arrester to line, bus, or equipment and to an equipment grounding conductor or grounding electrode connection point as provided in 242.50 shall not be any longer than necessary and shall avoid unnecessary bends.

242.50 Connection.

The arrester shall be connected to one of the following:

- (1) Grounded service conductor
- (2) Grounding electrode conductor
- (3) Grounding electrode for the service
- (4) Equipment grounding terminal in the service equipment

242.52 Surge Arrester Conductors.

The conductor between the surge arrester and the line, and the surge arrester and the grounding connection, shall not be smaller than 6 AWG copper or aluminum.

242.54 Interconnections.

The surge arrester protecting a transformer that supplies a secondary distribution system shall be interconnected as specified in 242.54(A), (B), or (C).

(A) Metal Interconnections.

A metal interconnection shall be made to the secondary grounded circuit conductor or the secondary circuit grounding electrode conductor, if, in addition to the direct grounding connection at the surge arrester, the connection complies with 242.54(A)(1) or (A)(2).

(1) Additional Grounding Connection.

The grounded conductor of the secondary has a grounding connection elsewhere to a continuous metal underground water piping system. In urban water pipe areas where there are at least four water pipe connections on the neutral conductor and not fewer than four such connections in each mile of neutral conductor, the metal interconnection shall be permitted to be made to the secondary neutral conductor with omission of the direct grounding connection at the surge arrester.

(2) Multigrounded Neutral System Connection.

The grounded conductor of the secondary system is part of a multigrounded neutral system or static wire of which the primary neutral conductor or static wire has at least four grounding connections in each 1.6 km (1 mile) of line in addition to a grounding connection at each service.

(B) Through Spark Gap or Device.

Where the surge arrester grounding electrode conductor is not connected as in 242.54(A), or where the secondary is not grounded as in 242.54(A) but is otherwise grounded as in 250.52, an interconnection shall be made through a spark gap or listed device as required by 242.54(B)(1) or (B)(2).

(1) Ungrounded or Unigrounded Primary System.

For ungrounded or unigrounded primary systems, the spark gap for a listed device shall have a 60 Hz breakdown voltage of at least twice the primary circuit voltage but not necessarily more than 10 kV, and there shall be at least one other ground on the grounded conductor of the secondary that is not less than 6.0 m (20 ft) distant from the surge-arrester grounding electrode.

(2) Multigrounded Neutral Primary System.

For multigrounded neutral primary systems, the spark gap or listed device shall have a 60-Hz breakdown of not more than 3 kV, and there shall be at least one other ground on the grounded conductor of the secondary that is not less than 6.0 m (20 ft) distant from the surge-arrester grounding electrode.

(C) By Special Permission.

An interconnection of the surge-arrester ground and the secondary neutral conductor, other than as provided in 242.54(A) or (B), shall be permitted to be made only by special permission.

242.56 Grounding Electrode Conductor Connections and Enclosures.

Except as indicated in this article, surge arrester grounding electrode conductor connections shall be made as specified in Article 250, Parts III and X. Grounding electrode conductors installed in metal enclosures shall comply with 250.64(E).

Proposed new Article 245:

Article 245 Overcurrent and Overvoltage Protection for Systems Rated Over 1000 VAC, 1500 VDC

Part I. General and Scope

245.1 Scope.

This article covers requirements for the installation of overcurrent protection of circuits and related electrical equipment and over and overvoltage protection (surge arresters) permanently installed on premises wiring systems over 1000 VAC, 1500 VDC, nominal.

245.15 Reconditioned Equipment.

Reconditioned equipment shall be listed as "reconditioned" and the original listing mark removed.

(A) Medium and high-voltage circuit breakers shall be permitted to be reconditioned

(B) Electromechanical protective relays and current transformers shall be permitted to be reconditioned

(C) Medium-voltage fuseholders and medium-voltage nonrenewable fuses shall not be permitted to be reconditioned.

Part II. Overcurrent Protection

245.21 Circuit Interrupting Devices

(A) Circuit Breakers

(1) Location.

(a) Circuit breakers installed indoors shall be mounted either in metal-enclosed units or fire-resistant cellmounted units, or they shall be permitted to be open-mounted in locations accessible to qualified persons only.

(b) Circuit breakers used to control oil-filled transformers in a vault shall either be located outside the transformer vault or be capable of operation from outside the vault.

(c) Oil circuit breakers shall be arranged or located so that adjacent readily combustible structures or materials are safeguarded in an approved manner

(2) Operating Characteristics. Circuit breakers shall have the following equipment or operating characteristics:

1. An accessible mechanical or other identified means for manual tripping, independent of control power

2. Be release free (trip free)

- 3. If capable of being opened or closed manually while energized, main contacts that operate independently of the speed of the manual operation
- 4. A mechanical position indicator at the circuit breaker to show the open or closed position of the main contacts

5. A means of indicating the open and closed position of the breaker at the point(s) from which they may be operated

(3) Nameplate. A circuit breaker shall have a permanent and legible nameplate showing manufacturer's name or trademark, manufacturer's type or identification number, continuous current rating, interrupting rating in megavolt-amperes (MVA) or amperes, and maximum voltage rating. Modification of a circuit breaker affecting its rating(s) shall be accompanied by an appropriate change of nameplate information.

(4) Rating. Circuit breakers shall have the following ratings:

1. The continuous current rating of a circuit breaker shall not be less than the maximum continuous current through the circuit breaker.

2. The interrupting rating of a circuit breaker shall not be less than the available fault current the circuit breaker will be required to interrupt, including contributions from all connected sources of energy.

3. The closing rating of a circuit breaker shall not be less than the maximum asymmetrical fault current into which the circuit breaker can be closed.

<u>4. The momentary rating of a circuit breaker shall not be less than the maximum asymmetrical fault current at the point of installation.</u>

5. The rated maximum voltage of a circuit breaker shall not be less than the maximum circuit voltage.

(5) **Retrofit Trip Units.** Retrofit trip units shall be listed for use with the specific circuit breaker with which it is installed

(B) Power Fuses and Fuseholders.

(1) Use. Where fuses are used to protect conductors and equipment, a fuse shall be placed in each ungrounded conductor. Two power fuses shall be permitted to be used in parallel to protect the same load if both fuses have identical ratings and both fuses are installed in an identified common mounting with electrical connections that divide the current equally. Power fuses of the vented type shall not be used indoors, underground, or in metal enclosures unless identified for the use.

(2) Interrupting Rating. The interrupting rating of power fuses shall not be less than the available fault current the fuse is required to interrupt, including contributions from all connected sources of energy.

(3) Voltage Rating. The maximum voltage rating of power fuses shall not be less than the maximum circuit voltage. Fuses having a minimum recommended operating voltage shall not be applied below this voltage.

(4) Identification of Fuse Mountings and Fuse Units. Fuse mountings and fuse units shall have permanent and legible nameplates showing the manufacturer's type or designation, continuous current rating, interrupting current rating, and maximum voltage rating.

(5) Fuses. Fuses that expel flame in opening the circuit shall be designed or arranged so that they function properly without hazard to persons or property.

(6) Fuseholders. Fuseholders shall be designed or installed so that they are de-energized while a fuse is being replaced. A field-applied permanent and legible sign, in accordance with 110.21(B), shall be installed immediately adjacent to the fuseholders and shall be worded as follows:

DANGER — DISCONNECT CIRCUIT BEFORE REPLACING FUSES.

Exception: Fuses and fuseholders designed to permit fuse replacement by qualified persons using identified equipment without de-energizing the fuseholder shall be permitted.

(7) High-Voltage Fuses. Switchgear and substations that utilize high-voltage fuses shall be provided with a gangoperated disconnecting switch. Isolation of the fuses from the circuit shall be provided by either connecting a switch between the source and the fuses or providing roll-out switch and fuse-type construction. The switch shall be of the load-interrupter type, unless mechanically or electrically interlocked with a load-interrupting device arranged to reduce the load to the interrupting capability of the switch.

Exception: More than one switch shall be permitted as the disconnecting means for one set of fuses where the switches are installed to provide connection to more than one set of supply conductors. The switches shall be mechanically or electrically interlocked to permit access to the fuses only when all switches are open. A conspicuous sign shall be placed at the fuses identifying the presence of more than one source.

(C) Distribution Cutouts and Fuse Links — Expulsion Type.

(1) Installation. Cutouts shall be located so that they may be readily and safely operated and re-fused, and so that the exhaust of the fuses does not endanger persons. Distribution cutouts shall not be used indoors, underground, or in metal enclosures.

(2) Operation. Where fused cutouts are not suitable to interrupt the circuit manually while carrying full load, an approved means shall be installed to interrupt the entire load. Unless the fused cutouts are interlocked with the switch to prevent opening of the cutouts under load, a conspicuous sign shall be placed at such cutouts identifying that they shall not be operated under load.

(3) Interrupting Rating. The interrupting rating of distribution cutouts shall not be less than the available fault current the cutout is required to interrupt, including contributions from all connected sources of energy.

(4) Voltage Rating. The maximum voltage rating of cutouts shall not be less than the maximum circuit voltage.

(5) Identification. Distribution cutouts shall have on their body, door, or fuse tube a permanent and legible nameplate or identification showing the manufacturer's type or designation, continuous current rating, maximum voltage rating, and interrupting rating.

(6) Fuse Links. Fuse links shall have a permanent and legible identification showing continuous current rating and type.

(7) Structure Mounted Outdoors. The height of cutouts mounted outdoors on structures shall provide safe clearance between lowest energized parts (open or closed position) and standing surfaces, in accordance with 110.34(E).

(D) Oil-Filled Cutouts.

(1) Continuous Current Rating. The continuous current rating of oil-filled cutouts shall not be less than the maximum continuous current through the cutout.

(2) Interrupting Rating. The interrupting rating of oil-filled cutouts shall not be less than the available fault current the oil-filled cutout is required to interrupt, including contributions from all connected sources of energy.

(3) Voltage Rating. The maximum voltage rating of oil-filled cutouts shall not be less than the maximum circuit voltage.

(4) Fault Closing Rating. Oil-filled cutouts shall have a fault closing rating not less than the maximum asymmetrical fault current that can occur at the cutout location, unless suitable interlocks or operating procedures preclude the possibility of closing into a fault.

(5) Identification. Oil-filled cutouts shall have a permanent and legible nameplate showing the rated continuous current, rated maximum voltage, and rated interrupting current.

(6) Fuse Links. Fuse links shall have a permanent and legible identification showing the rated continuous current.

(7) Location. Cutouts shall be located so that they are readily and safely accessible for re-fusing, with the top of the cutout not over 1.5 m (5 ft) above the floor or platform.

(8) Enclosure. Suitable barriers or enclosures shall be provided to prevent contact with nonshielded cables or energized parts of oil-filled cutouts.

(E) Load Interrupters. Load-interrupter switches shall be permitted if suitable fuses or circuit breakers are used in conjunction with these devices to interrupt available fault currents. Where these devices are used in combination, they shall be coordinated electrically so that they will safely withstand the effects of closing, carrying, or interrupting all possible currents up to the assigned maximum short-circuit rating.

Where more than one switch is installed with interconnected load terminals to provide for alternate connection to different supply conductors, each switch shall be provided with a warning sign identifying the presence of more than one source. Each warning sign or label shall comply with 110.21.

(1) Continuous Current Rating. The continuous current rating of interrupter switches shall equal or exceed the maximum continuous current at the point of installation.

(2) Voltage Rating. The maximum voltage rating of interrupter switches shall equal or exceed the maximum circuit voltage.

(3) Identification. Interrupter switches shall have a permanent and legible nameplate including the following information: manufacturer's type or designation, continuous current rating, interrupting current rating, fault closing rating, maximum voltage rating.

(4) Switching of Conductors. The switching mechanism shall be arranged to be operated from a location where the operator is not exposed to energized parts and shall be arranged to open all ungrounded conductors of the circuit simultaneously with one operation. Switches shall be arranged to be locked in the open position. Metal-enclosed switches shall be operable from outside the enclosure.

245.26 Feeders and Branch Circuits

(A) Location and Type of Protection. Feeder and branch-circuit conductors shall have overcurrent protection in each ungrounded conductor located at the point where the conductor receives its supply or at an alternative location in the circuit when designed under engineering supervision that includes but is not limited to considering the appropriate fault studies and time–current coordination analysis of the protective devices and the conductor damage curves. The overcurrent protection shall be permitted to be provided by either 245.26(A)(1) or (A)(2).

(1) Overcurrent Relays and Current Transformers. Circuit breakers used for overcurrent protection of 3-phase circuits shall have a minimum of three overcurrent relay elements operated from three current transformers. The separate overcurrent relay elements (or protective functions) shall be permitted to be part of a single electronic protective relay unit.

On 3-phase, 3-wire circuits, an overcurrent relay element in the residual circuit of the current transformers shall be permitted to replace one of the phase relay elements.

An overcurrent relay element, operated from a current transformer that links all phases of a 3-phase, 3-wire circuit, shall be permitted to replace the residual relay element and one of the phase-conductor current transformers. Where the neutral conductor is not regrounded on the load side of the circuit as permitted in 250.184(B), the current transformer shall be permitted to link all 3-phase conductors and the grounded circuit conductor (neutral).

(2) Fuses. A fuse shall be connected in series with each ungrounded conductor.

(B) Protective Devices. The protective device(s) shall be capable of detecting and interrupting all values of current that can occur at their location in excess of their trip-setting or melting point.

(C) Conductor Protection. The operating time of the protective device, the available short-circuit current, and the conductor used shall be coordinated to prevent damaging or dangerous temperatures in conductors or conductor insulation under short-circuit conditions.

245.27 Additional Requirements for Feeders.

(A) Rating or Setting of Overcurrent Protective Devices. The continuous ampere rating of a fuse shall not exceed three times the ampacity of the conductors. The long-time trip element setting of a breaker or the minimum trip setting of an electronically actuated fuse shall not exceed six times the ampacity of the conductor. For fire pumps, conductors shall be permitted to be protected for overcurrent in accordance with 695.4(B)(2).

(B) Feeder Taps. Conductors tapped to a feeder shall be permitted to be protected by the feeder overcurrent device where that overcurrent device also protects the tap conductor.

Part III. Overvoltage Protection

245.40 Other Articles. Equipment shall be protected against overvoltage in accordance with the article in this Code that covers the type of equipment or location specified in Table 245.40.

Table 245.40 Other Articles

<u>Equipment</u>	Article
Equipment over 1000 volts, nominal	<u>495</u>
Outdoor overhead conductors over 1000 volts	<u>399</u>

245.41 Uses Not Permitted. A surge arrester shall not be installed where the rating of the surge arrester is less than the maximum continuous phase-to-ground voltage at the power frequency available at the point of application.

245.42 Surge Arrester Selection. The surge arresters shall comply with 245.42(A) and (B).

(A) Rating. The rating of a surge arrester shall be equal to or greater than the maximum continuous operating voltage available at the point of application.

(1) Solidly Grounded Systems. The maximum continuous operating voltage shall be the phase-to-ground voltage of the system.

(2) Impedance or Ungrounded System. The maximum continuous operating voltage shall be the phase-to-phase voltage of the system.

(B) Silicon Carbide Types. The rating of a silicon carbide-type surge arrester shall be not less than 125 percent of the rating specified in 245.42(A).

Informational Note No. 1: For further information on surge arresters, see IEEE C62.11-2012, Standard for Metal-Oxide Surge Arresters for Alternating-Current Power Circuits (>1 kV), and IEEE C62.22-2009, Guide for the Application of Metal-Oxide Surge Arresters for Alternating-Current Systems. Informational Note No. 2: The selection of a properly rated metal oxide arrester is based on considerations of maximum continuous operating voltage and the magnitude and duration of overvoltages at the arrester location as affected by phase-to-ground faults, system grounding techniques, switching surges, and other causes. See the manufacturer's application rules for selection of the specific arrester to be used at a particular location.

245.44 Number Required. Where used at a point on a circuit, a surge arrester shall be connected to each ungrounded conductor. A single installation of such surge arresters shall be permitted to protect a number of interconnected circuits if no circuit is exposed to surges while disconnected from the surge arresters.

245.46 Location. Surge arresters shall be permitted to be located indoors or outdoors. Surge arresters shall be made inaccessible to unqualified persons unless listed for installation in accessible locations.

245.48 Routing of Surge Arrester Equipment Grounding Conductors. The conductor used to connect the surge arrester to line, bus, or equipment and to an equipment grounding conductor or grounding electrode connection point as provided in 245.50 shall not be any longer than necessary and shall avoid unnecessary bends.

245.50 Connection. The arrester shall be connected to one of the following:

- 1. Grounded service conductor
- 2. Grounding electrode conductor
- 3. Grounding electrode for the service
- 4. Equipment grounding terminal in the service equipment

245.52 Surge-Arrester Conductors. The conductor between the surge arrester and the line, and the surge arrester and the grounding connection, shall not be smaller than 6 AWG copper or aluminum.

245.54 Interconnections. The surge arrester protecting a transformer that supplies a secondary distribution system shall be interconnected as specified in 245.54(A), (B), or (C).

(A) Metal Interconnections. A metal interconnection shall be made to the secondary grounded circuit conductor or the secondary circuit grounding electrode conductor, if, in addition to the direct grounding connection at the surge arrester, the connection complies with 245.54(A)(1) or (A)(2).

(1) Additional Grounding Connection. The grounded conductor of the secondary has a grounding connection elsewhere to a continuous metal underground water piping system. In urban water-pipe areas where there are at least four water-pipe connections on the neutral conductor and not fewer than four such connections in each mile of neutral conductor, the metal interconnection shall be permitted to be made to the secondary neutral conductor with omission of the direct grounding connection at the surge arrester.

(2) Multigrounded Neutral System Connection. The grounded conductor of the secondary system is part of a multigrounded neutral system or static wire of which the primary neutral conductor or static wire has at least four grounding connections in each 1.6 km (1 mile) of line in addition to a grounding connection at each service.

(B) Through Spark Gap or Device. Where the surge arrester grounding electrode conductor is not connected as in 245.54(A), or where the secondary is not grounded as in 245.54(A) but is otherwise grounded as in 250.52, an interconnection shall be made through a spark gap or listed device as required by 245.54(B)(1) or (B)(2).

(1) Ungrounded or Unigrounded Primary System. For ungrounded or unigrounded primary systems, the spark gap for a listed device shall have a 60-Hz breakdown voltage of at least twice the primary circuit voltage but not necessarily more than 10 kV, and there shall be at least one other ground on the grounded conductor of the secondary that is not less than 6.0 m (20 ft) distant from the surge-arrester grounding electrode.

(2) Multigrounded Neutral Primary System. For multigrounded neutral primary systems, the spark gap or listed device shall have a 60-Hz breakdown of not more than 3 kV, and there shall be at least one other ground on the grounded conductor of the secondary that is not less than 6.0 m (20 ft) distant from the surge-arrester grounding electrode.

(C) By Special Permission. An interconnection of the surge-arrester ground and the secondary neutral conductor, other than as provided in 245.54(A) or (B), shall be permitted to be made only by special permission.

245.56 Grounding Electrode Conductor Connections and Enclosures. Except as indicated in this article, surgearrester grounding electrode conductor connections shall be made as specified in Article 250, Parts III and X. Grounding electrode conductors installed in metal enclosures shall comply with 250.64(E).

Revisions to Chapter 4

ARTICLE 430 Motors, Motor Circuits, and Controllers

(Only deleted / relocated text of Article 430 shown) (-relocated to Article 495 Part VI)

Part XI. Over 1000 Volts, Nominal

430.221 General. Part XI recognizes the additional hazard due to the use of higher voltages. It adds to or amends the other provisions of this article.

430.222 Marking on Controllers. In addition to the marking required by <u>430.8</u>, a controller shall be marked with the control voltage.

430.223 Raceway Connection to Motors. Flexible metal conduit or liquidtight flexible metal conduit not exceeding 1.8 m (6 ft) in length shall be permitted to be employed for raceway connection to a motor terminal enclosure.

430.224 Size of Conductors. Conductors supplying motors shall have an ampacity not less than the current at which the motor overload protective device(s) is selected to trip.

430.225 Motor-Circuit Overcurrent Protection.

(A) General. Each motor circuit shall include coordinated protection to automatically interrupt overload and fault currents in the motor, the motor circuit conductors, and the motor control apparatus. Exception: Where a motor is critical to an operation and the motor should operate to failure if necessary to prevent a greater hazard to persons, the sensing device(s) shall be permitted to be connected to a supervised annunciator or alarm instead of interrupting the motor circuit.

(B) Overload Protection.

(1) Type of Overload Device. Each motor shall be protected against dangerous heating due to motor overloads and failure to start by a thermal protector integral with the motor or external current sensing devices, or both. Protective device settings for each motor circuit shall be determined under engineering supervision.

(2) Wound-Rotor Alternating-Current Motors. The secondary circuits of wound-rotor ac motors, including conductors, controllers, and resistors rated for the application, shall be considered as protected against overcurrent by the motor overload protection means.

(3) Operation. Operation of the overload interrupting device shall simultaneously disconnect all ungrounded conductors.

(4) Automatic Reset. Overload sensing devices shall not automatically reset after trip unless resetting of the overload sensing device does not cause automatic restarting of the motor or there is no hazard to persons created by automatic restarting of the motor and its connected machinery.

(C) Fault-Current Protection.

(1) Type of Protection. Fault current protection shall be provided in each motor circuit as specified by either <u>430.225(C)(1)(a)</u> or (C)(1)(b).

(a) A circuit breaker of suitable type and rating arranged so that it can be serviced without hazard. The circuit breaker shall simultaneously disconnect all ungrounded conductors. The circuit breaker shall be permitted to sense the fault current by means of integral or external sensing elements.

(b) Fuses of a suitable type and rating placed in each ungrounded conductor. Fuses shall be used with suitable disconnecting means, or they shall be of a type that can also serve as the disconnecting means. They shall be arranged so that they cannot be serviced while they are energized.

(2) Reclosing. Fault current interrupting devices shall not automatically reclose the circuit. Exception: Automatic reclosing of a circuit shall be permitted where the circuit is exposed to transient faults and where such automatic reclosing does not create a hazard to persons.

(3) Combination Protection. Overload protection and fault-current protection shall be permitted to be provided by the same device.

430.226 Rating of Motor Control Apparatus. The ultimate trip current of overcurrent (overload) relays or other motor-protective devices used shall not exceed 115 percent of the controller's continuous current rating. Where the motor branch-circuit disconnecting means is separate from the controller, the disconnecting means current rating shall not be less than the ultimate trip setting of the overcurrent relays in the circuit.

430.227 Disconnecting Means. The controller disconnecting means shall be lockable in accordance with <u>110.25</u>.

Table 430.249 Full-Load Current, Two-Phase Alternating-Current Motors (4-Wire)

The following values of full-load current are for motors running at speeds usual for belted motors and motors with normal torque characteristics. Current in the common conductor of a 2-phase, 3-wire system will be 1.41 times the value given. The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120, 220 to 240, 440 to 480, and 550 to 600 volts.

115 Volts	230 Volts	460 Volts	575 Volts	2300- Volts
4.0	2.0	1.0	0.8	_
4.8	2.4	1.2	1.0	_
6.4	3.2	1.6	1.3	_
9.0	4.5	2.3	1.8	_
11.8	5.9	3.0	2.4	_
_	8.3	4.2	3.3	_
_	13.2	6.6	5.3	_
_	19	9.0	8.0	_
	Volts 4.0 4.8 6.4 9.0	Volts Volts 4.0 2.0 4.8 2.4 6.4 3.2 9.0 4.5 11.8 5.9 8.3 13.2	Volts Volts Volts 4.0 2.0 1.0 4.8 2.4 1.2 6.4 3.2 1.6 9.0 4.5 2.3 11.8 5.9 3.0 - 8.3 4.2 - 13.2 6.6	VoltsVoltsVoltsVolts 4.0 2.0 1.0 0.8 4.8 2.4 1.2 1.0 6.4 3.2 1.6 1.3 9.0 4.5 2.3 1.8 11.8 5.9 3.0 2.4 $ 8.3$ 4.2 3.3 $ 13.2$ 6.6 5.3

Induction-Type Squirrel Cage and Wound Rotor (Amperes)

Table 430.249 Full-Load Current, Two-Phase Alternating-Current Motors (4-Wire) The following values of full-load current are for motors running at speeds usual for belted motors and motors with normal torque characteristics. Current in the common conductor of a 2phase, 3-wire system will be 1.41 times the value given. The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120, 220 to 240, 440 to 480, and 550 to 600 volts.

Horsepower	115 Volts	230 Volts	460 Volts	575 Volts	2300 Volts
10		24	12	10	_
15	_	36	18	14	_
20	_	47	23	19	_
25	_	59	29	24	_
30	_	69	35	28	_
40	_	90	45	36	_
50	_	113	56	45	
60	_	133	67	53	44
75	_	166	83	66	18
100	_	218	109	87	23
125	_	270	135	108	28
150	_	312	156	125	32
200	_	416	208	167	43

Induction-Type Squirrel Cage and Wound Rotor (Amperes)

Table 430.250 Full-Load Current, Three-Phase Alternating-Current Motors The following values of full-load currents are typical for motors running at speeds usual for belted motors and motors with normal torque characteristics. The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120, 220 to 240, 440 to 480, and 550 to 600 volts.

Synchronous-Type Unity

Induction-Type Squirrel Cage and Wound Rotor (Amperes)							Ind	-	Po Factor* (wer	-
Horsepo wer	115 V olts	200 V olts	208 V olts	230 V olts	460 V olts	575 V olts	2300 V olts	230 V olts	460 V olts	575 V olts	2300 V olts
1/2	4.4	2.5	2.4	2.2	1.1	0.9	_	_	_	_	_
3/4	6.4	3.7	3.5	3.2	1.6	1.3	_	_	_	_	_
1	8.4	4.8	4.6	4.2	2.1	1.7	_	_	_	_	_
11⁄2	12.0	6.9	6.6	6.0	3.0	2.4	_	_	_	_	_
2	13.6	7.8	7.5	6.8	3.4	2.7	_	_	_	_	_
3	_	11.0	10.6	9.6	4.8	3.9	_	_	_	_	_
5	_	17.5	16.7	15.2	7.6	6.1	_	_	_	_	_
71⁄2	_	25.3	24.2	22	11	9	_	_			_
10	_	32.2	30.8	28	14	11		_	_		_
15	_	48.3	46.2	42	21	17	_	_	_	_	_
20	_	62.1	59.4	54	27	22	_	_	_	_	_
25	_	78.2	74.8	68	34	27	_	53	26	21	_
30	_	92	88	80	40	32	_	63	32	26	_
40	_	120	114	104	52	41	_	83	41	33	_
50	_	150	143	130	65	52	_	104	52	42	

Table 430.250 Full-Load Current, Three-Phase Alternating-Current Motors The following values of full-load currents are typical for motors running at speeds usual for belted motors and motors with normal torque characteristics. The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120, 220 to 240, 440 to 480, and 550 to 600 volts.

Synchronous-Type Unity

Induction-Type Squirrel Cage and Wound Rotor (Amperes)								Po ⁻ Factor* (wer		
Horsepo wer	115 V olts	200 V olts	208 V olts	230 V olts	460 V olts	575 V olts	2300 V olts	230 V olts	460 V olts	575 V olts	2300 V olts
60	_	177	169	154	77	62	16	123	61	49	12
75	_	221	211	192	96	77	20	155	78	62	15
100	_	285	273	248	124	99	26	202	101	81	20
125	_	359	343	312	156	125	31	253	126	101	25
150	_	414	396	360	180	144	37	302	151	121	30
200		552	528	480	240	192	49	400	201	161	40
250	_	_	_	_	302	242	60	_	_	_	_
300	—	—	—	—	361	289	72	_	—	—	_
350	_	_	_	_	414	336	83	_	_	_	_
400	_	_	_	_	477	382	95	_	_	_	_
450	_	_	_	_	515	412	103	_	_	_	_
500	_	—	—	—	590	472	118	_	—	—	—

*For 90 and 80 percent power factor, the figures shall be multiplied by 1.1 and 1.25, respectively.

ARTICLE 450 Transformers and Transformer Vaults (Including Secondary Ties) (450 part III Vaults -deleted / relocated)(relocated to Article 495 Parts VII and VIII)(450.21(c) edit also)

Part I. General Provisions

450.1 Scope. This article covers the installation of all transformers.

Informational Note: Article 495 includes additional requirements for transformers rated over 1000 volts ac, 1500 volts dc, nominal on either or both the primary or the secondary.

Exception No. 1: Current transformers.

Exception No. 2: Dry-type transformers that constitute a component part of other apparatus and comply with the requirements for such apparatus.

Exception No. 3: Transformers that are an integral part of an X-ray, high-frequency, or electrostatic-coating apparatus.

Exception No. 4: Transformers used with Class 2 and Class 3 circuits that comply with Article 725.

Exception No. 5: Transformers for sign and outline lighting that comply with Article 600.

Exception No. 6: Transformers for electric-discharge lighting that comply with Article 410.

Exception No. 7: Transformers used for power-limited fire alarm circuits that comply with Part III of Article 760.

Exception No. 8: Transformers used for research, development, or testing, where effective arrangements are provided to safeguard persons from contacting energized parts.

This article covers the installation of transformers dedicated to supplying power to a fire pump installation as modified by Article 695.

This article also covers the installation of transformers in hazardous (classified) locations as modified by Articles 501 through 504.

450.2 Definition.

The definitions in this section shall apply only within this article.

Transformer.

An individual transformer, single- or polyphase, identified by a single nameplate, unless otherwise indicated in this article.

450.3 Overcurrent Protection. Overcurrent protection of transformers shall comply with 450.3(A) (B), or (C). As used in this section, the word *transformer* shall mean a transformer or polyphase bank of two or more single-phase transformers operating as a unit.

Informational Note No. 1: See 240.4, 240.21, 240.100, and 240.101 for overcurrent protection of conductors.

Informational Note No. 2: Nonlinear loads can increase heat in a transformer without operating its overcurrent protective device.

(A) Transformers Over 1000 Volts, Nominal. Overcurrent protection shall be provided in accordance with <u>Table 495.103</u>.

(B) Transformers 1000 Volts, Nominal, or Less. Overcurrent protection shall be provided in accordance with Table 450.3(B).

Exception: Where the transformer is installed as a motor control circuit transformer in accordance with 430.72(C)(1) through (C)(5).

Table 450.3(A) Maximum Rating or Setting of Overcurrent Protection for Transformers Over 1000 Volts (as a Percentage of Transformer-Rated Current)

Secondary Protection (See

				Secondary Protection (See Note 2.)				
Location Limitations		Prim Protectic 1000-Y	on over	Over 100	1000 Volts or Less			
	Transformer Rated Impedance	Circuit Breaker (See Note 4.)	Fuse Rating	Circuit Breaker (See Note 4.)	Fuse Rating	Circuit Breaker or Fuse Rating		
Any location	Not more than 6%	600%- (See Note 1.)	300%- (See Note 1.)	300% (See Note 1.)	250% (See Note 1.)	125% (See Note 1.)		
Any location	More than 6%- and not more than 10%	400%- (See Note 1.)	300%- (See Note 1.)	250%- (See Note 1.)	225% (See Note 1.)	125% (See Note 1.)		
Supervised locations only (See Note 3.)	Any	300%- (See Note 1.)	250%- (See Note 1.)	Not required	Not required	Not required		
	Not more than 6%	600%	300%	300% (See Note 5.)	250% (See Note 5.)	250%- (See Note 5.)		
	More than 6%- and not more than 10%	4 00%	300%	250% (See Note 5.)	225%- (See Note 5.)	250%- (See Note 5.)		

Notes:

1. Where the required fuse rating or circuit breaker setting does not correspond to a standard rating or setting, a higher rating or setting that does not exceed the following shall be permitted:

a. The next higher standard rating or setting for fuses and circuit breakers 1000 volts and below, or

b. The next higher commercially available rating or setting for fuses and circuit breakers above 1000 volts.

2. Where secondary overcurrent protection is required, the secondary overcurrent device shall be permitted to consist of not more than six circuit breakers or six sets of fuses grouped in one location. Where multiple overcurrent devices are utilized, the total of all the device ratings shall not exceed the allowed value of a single overcurrent device. If both circuit breakers and fuses are used as the overcurrent device, the total of the device ratings shall not exceed that allowed for fuses.

3. A supervised location is a location where conditions of maintenance and supervision ensure that only qualified persons monitor and service the transformer installation.

4. Electronically actuated fuses that may be set to open at a specific current shall be set in accordance with settings for circuit breakers.

5. A transformer equipped with a coordinated thermal overload protection by the manufacturer shall be permitted to have separate secondary protection omitted.

Table 450.3(B) Maximum Rating or Setting of Overcurrent Protection for Transformers 1000 Volts and Less (as a Percentage of Transformer-Rated Current)

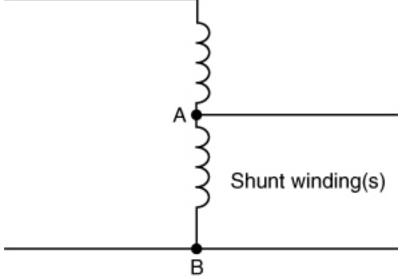
Protection Method	Pr	imary Protec	Secondary Protection (See Note 2.)		
	Currents of 9 Amperes or More	Currents Less Than 9 Amperes	Currents Less Than 2 Amperes	Currents of 9 Amperes or More	Currents Less Than 9 Amperes Not required
Primary only protection	125% (See Note 1.)	167%	300%	Not required	
Primary and secondary protection	250% (See Note 3.)	250% (See Note 3.)	250% (See Note 3.)	125% (See Note 1.)	167%

Notes:

1. Where 125 percent of this current does not correspond to a standard rating of a fuse or nonadjustable circuit breaker, a higher rating that does not exceed the next higher standard rating shall be permitted.

2. Where secondary overcurrent protection is required, the secondary overcurrent device shall be permitted to consist of not more than six circuit breakers or six sets of fuses grouped in one location. Where multiple overcurrent devices are utilized, the total of all the device ratings shall not exceed the allowed value of a single overcurrent device.

3. A transformer equipped with coordinated thermal overload protection by the manufacturer and arranged to interrupt the primary current shall be permitted to have primary overcurrent protection rated or set at a current value that is not more than six times the rated current of the transformer for transformers having not more than 6 percent impedance and not more than four times the rated current of the transformer for transformers having more than 6 percent but not more than 10 percent impedance.


(C) Voltage (Potential) Transformers. Voltage (potential) transformers installed indoors or enclosed shall be protected with primary fuses.

Informational Note: For protection of instrument circuits including voltage transformers, see 408.52.

450.4 Autotransformers 1000 Volts, Nominal, or Less.

(A) Overcurrent Protection. Each autotransformer 1000 volts, nominal, or less shall be protected by an individual overcurrent device installed in series with each ungrounded input conductor. Such overcurrent device shall be rated or set at not more than 125 percent of the rated full-load input current of the autotransformer. Where this calculation does not correspond to a standard rating of a fuse or nonadjustable circuit breaker and the rated input current is 9 amperes or more, the next higher standard rating described in 240.6 shall be permitted. An overcurrent device shall not be installed in series with the shunt winding (the winding common to both the input and the output circuits) of the autotransformer between Points A and B as shown in Figure 450.4(A).

Figure 450.4(A) Autotransformer.

Exception: Where the rated input current of the autotransformer is less than 9 amperes, an overcurrent device rated or set at not more than 167 percent of the input current shall be permitted.

(B) Transformer Field-Connected as an Autotransformer. A transformer field-connected as an autotransformer shall be identified for use at elevated voltage.

Informational Note: For information on permitted uses of autotransformers, see 210.9 and 215.11.

450.5 Grounding Autotransformers. Grounding autotransformers covered in this section are zigzag or T-connected transformers connected to 3-phase, 3-wire ungrounded systems for the purpose of creating a 3-phase, 4-wire distribution system or providing a neutral point for grounding purposes. Such transformers shall have a continuous per-phase current rating and a continuous neutral current rating. Zigzag-connected transformers shall not

be installed on the load side of any system grounding connection, including those made in accordance with 250.24(B), 250.30(A)(1), or 250.32(B), Exception No. 1. Informational Note: The phase current in a grounding autotransformer is one-third the neutral current.

(A) Three-Phase, 4-Wire System. A grounding autotransformer used to create a 3-phase, 4-wire distribution system from a 3-phase, 3-wire ungrounded system shall conform to 450.5(A)(1)through (A)(4).

(1) Connections. The transformer shall be directly connected to the ungrounded phase conductors and shall not be switched or provided with overcurrent protection that is independent of the main switch and common-trip overcurrent protection for the 3-phase, 4-wire system.

(2) Overcurrent Protection. An overcurrent sensing device shall be provided that will cause the main switch or common-trip overcurrent protection referred to in 450.5(A)(1) to open if the load on the autotransformer reaches or exceeds 125 percent of its continuous current per-phase or neutral rating. Delayed tripping for temporary overcurrents sensed at the autotransformer overcurrent device shall be permitted for the purpose of allowing proper operation of branch or feeder protective devices on the 4-wire system.

(3) Transformer Fault Sensing. A fault-sensing system that causes the opening of a main switch or commontrip overcurrent device for the 3-phase, 4-wire system shall be provided to guard against single-phasing or internal faults.

Informational Note: This can be accomplished by the use of two subtractive-connected donut-type current transformers installed to sense and signal when an unbalance occurs in the line current to the autotransformer of 50 percent or more of rated current.

(4) **Rating.** The autotransformer shall have a continuous neutral-current rating that is not less than the maximum possible neutral unbalanced load current of the 4-wire system.

(B) Ground Reference for Fault Protection Devices. A grounding autotransformer used to make available a specified magnitude of ground-fault current for operation of a ground-responsive protective device on a 3-phase, 3-wire ungrounded system shall conform to 450.5(B)(1) and (B)(2).

(1) Rating. The autotransformer shall have a continuous neutral-current rating not less than the specified ground-fault current.

(2) Overcurrent Protection. Overcurrent protection shall comply with 450.5(B)(2)(a) and (B)(2)(b).

(a) *Operation and Interrupting Rating.* An overcurrent protective device having an interrupting rating in compliance with 110.9 and that will open simultaneously all ungrounded conductors when it operates shall be applied in the grounding autotransformer branch circuit.

(b) Ampere Rating. The overcurrent protection shall be rated or set at a current not exceeding 125 percent of the autotransformer continuous per-phase current rating or 42 percent of the continuous-current rating of any series-connected devices in the autotransformer neutral connection. Delayed tripping for temporary overcurrents to permit the proper operation of ground-responsive tripping devices on the main system shall be permitted but shall not exceed values that would be more than the short-time current rating of the grounding autotransformer or any series connected devices in the neutral connection thereto.

Exception: For high-impedance grounded systems covered in 250.36, where the maximum ground-fault current is designed to be not more than 10 amperes, and where the grounding autotransformer and the grounding impedance are rated for continuous duty, an overcurrent device rated not more than 20 amperes that will simultaneously open all ungrounded conductors shall be permitted to be installed on the line side of the grounding autotransformer.

(C) Ground Reference for Damping Transitory Overvoltages. A grounding autotransformer used to limit transitory overvoltages shall be of suitable rating and connected in accordance with 450.5(A)(1).

450.6 Secondary Ties. As used in this article, a secondary tie is a circuit operating at 1000 volts, nominal, or less between phases that connects two power sources or power supply points, such as the secondaries of two

transformers. The tie shall be permitted to consist of one or more conductors per phase or neutral. Conductors connecting the secondaries of transformers in accordance with 450.7 shall not be considered secondary ties. As used in this section, the word *transformer* means a transformer or a bank of transformers operating as a unit.

(A) Tie Circuits. Tie circuits shall be provided with overcurrent protection at each end as required in Parts I, II, and VIII of Article 240.

Under the conditions described in 450.6(A)(1) and 450.6(A)(2), the overcurrent protection shall be permitted to be in accordance with 450.6(A)(3).

(1) Loads at Transformer Supply Points Only. Where all loads are connected at the transformer supply points at each end of the tie and overcurrent protection is not provided in accordance with Parts I, II, and VIII of Article 240, the ampacity of the tie shall not be less than 67 percent of the rated secondary current of the highest rated transformer supplying the secondary tie system.

(2) Loads Connected Between Transformer Supply Points. Where load is connected to the tie at any point between transformer supply points and overcurrent protection is not provided in accordance with Parts I, II, and VIII of Article 240, the ampacity of the tie shall not be less than 100 percent of the rated secondary current of the highest rated transformer supplying the secondary tie system.

Exception: Tie circuits comprised of multiple conductors per phase shall be permitted to be sized and protected in accordance with 450.6(A)(4).

(3) Tie Circuit Protection. Under the conditions described in 450.6(A)(1) and (A)(2), both supply ends of each ungrounded tie conductor shall be equipped with a protective device that opens at a predetermined temperature of the tie conductor under short-circuit conditions. This protection shall consist of one of the following: (1) a fusible link cable connector, terminal, or lug, commonly known as a limiter, each being of a size corresponding with that of the conductor and of construction and characteristics according to the operating voltage and the type of insulation on the tie conductors or (2) automatic circuit breakers actuated by devices having comparable time–current characteristics.

(4) Interconnection of Phase Conductors Between Transformer Supply Points. Where the tie consists of more than one conductor per phase or neutral, the conductors of each phase or neutral shall comply with 450.6(A)(4)(a) or (A)(4)(b).

(a) Interconnected. The conductors shall be interconnected in order to establish a load supply point, and the protective device specified in 450.6(A)(3) shall be provided in each ungrounded tie conductor at this point on both sides of the interconnection. The means of interconnection shall have an ampacity not less than the load to be served.

(b) Not Interconnected. The loads shall be connected to one or more individual conductors of a paralleled conductor tie without interconnecting the conductors of each phase or neutral and without the protection specified in 450.6(A)(3) at load connection points. Where this is done, the tie conductors of each phase or neutral shall have a combined capacity ampacity of not less than 133 percent of the rated secondary current of the highest rated transformer supplying the secondary tie system, the total load of such taps shall not exceed the rated secondary current of the highest rated transformer of the highest rated transformer, and the loads shall be equally divided on each phase and on the individual conductors of each phase as far as practicable.

(5) Tie Circuit Control. Where the operating voltage exceeds 150 volts to ground, secondary ties provided with limiters shall have a switch at each end that, when open, de-energizes the associated tie conductors and limiters. The current rating of the switch shall not be less than the rated current ampacity of the conductors connected to the switch. It shall be capable of interrupting its rated current, and it shall be constructed so that it will not open under the magnetic forces resulting from short-circuit current.

(B) Overcurrent Protection for Secondary Connections. Where secondary ties are used, an overcurrent device rated or set at not more than 250 percent of the rated secondary current of the transformers shall be provided in the secondary connections of each transformer supplying the tie system. In addition, an automatic circuit breaker

actuated by a reverse-current relay set to open the circuit at not more than the rated secondary current of the transformer shall be provided in the secondary connection of each transformer.

(C) Grounding. Where the secondary tie system is grounded, each transformer secondary supplying the tie system shall be grounded in accordance with the requirements of **250.30** for separately derived systems.

450.7 Parallel Operation. Transformers shall be permitted to be operated in parallel and switched as a unit, provided the overcurrent protection for each transformer meets the requirements of <u>495.103450.3(A)</u> for primary and secondary protective devices over 1000 volts, or <u>450.3(B)</u> for primary and secondary protective devices 1000 volts or less.

450.8 Guarding. Transformers shall be guarded as specified in 450.8(A) through (D).

(A) Mechanical Protection. Appropriate provisions shall be made to minimize the possibility of damage to transformers from external causes where the transformers are exposed to physical damage.

(B) Case or Enclosure. Dry-type transformers shall be provided with a noncombustible moisture-resistant case or enclosure that provides protection against the accidental insertion of foreign objects.

(C) Exposed Energized Parts. Switches or other equipment operating at 1000 volts, nominal, or less and serving only equipment within a transformer enclosure shall be permitted to be installed in the transformer enclosure if accessible to qualified persons only. All energized parts shall be guarded in accordance with 110.27, and 110.34.

(D) Voltage Warning. The operating voltage of exposed live parts of transformer installations shall be indicated by signs or visible markings on the equipment or structures.

450.9 Ventilation. The ventilation shall dispose of the transformer full-load heat losses without creating a temperature rise that is in excess of the transformer rating.

Informational Note No. 1: See IEEE C57.12.00-2015, General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers, and IEEE C57.12.01-2015, General Requirements for Dry-Type Distribution and Power Transformers.

Informational Note No. 2: Additional losses occur in some transformers where nonsinusoidal currents are present, resulting in increased heat in the transformer above its rating. See IEEE C57.110-2008, *Recommended Practice for Establishing Liquid-Filled and Dry-Type Power and Distribution Transformer Capability When Supplying Nonsinusoidal Load Currents*, where transformers are utilized with nonlinear loads.

Transformers with ventilating openings shall be installed so that the ventilating openings are not blocked by walls or other obstructions. The required clearances shall be clearly marked on the transformer. Transformer top surfaces that are horizontal and readily accessible shall be marked to prohibit storage.

450.10 Grounding.

(A) Dry-Type Transformer Enclosures. Where separate equipment grounding conductors and supply-side bonding jumpers are installed, a terminal bar for all grounding and bonding conductor connections shall be secured inside the transformer enclosure. The terminal bar shall be bonded to the enclosure in accordance with 250.12 and shall not be installed on or over any vented portion of the enclosure.

Exception: Where a dry-type transformer is equipped with wire-type connections (leads), the grounding and bonding connections shall be permitted to be connected together using any of the methods in 250.8 and shall be bonded to the enclosure if of metal.

(B) Other Metal Parts. Exposed non–current-carrying metal parts of transformer installations, including fences, guards, and so forth, shall be grounded and bonded under the conditions and in the manner specified for electrical equipment and other exposed metal parts in Parts V, VI, and VII of Article 250.

450.11 Marking.

(A) General. Each transformer shall be provided with a nameplate giving the following information:

- (1) Name of manufacturer
- (2) Rated kilovolt-amperes
- (3) Frequency
- (4) Primary and secondary voltage
- (5) Impedance of transformers 25 kVA and larger
- (6) Required clearances for transformers with ventilating openings
- (7) Amount and kind of insulating liquid where used
- (8) For dry-type transformers, temperature class for the insulation system

(B) Source Marking. A transformer shall be permitted to be supplied at the marked secondary voltage, provided that the installation is in accordance with the manufacturer's instructions.

450.12 Terminal Wiring Space. The minimum wire-bending space at fixed, 1000-volt and below terminals of transformer line and load connections shall be as required in 312.6. Wiring space for pigtail connections shall conform to Table 314.16(B).

450.13 Accessibility. All transformers and transformer vaults shall be readily accessible to qualified personnel for inspection and maintenance or shall meet the requirements of 450.13(A) or 450.13(B).

(A) Open Installations. Dry-type transformers 1000 volts, nominal, or less, located in the open on walls, columns, or structures, shall not be required to be readily accessible.

(B) Hollow Space Installations. Dry-type transformers 1000 volts, nominal, or less and not exceeding 50 kVA shall be permitted in hollow spaces of buildings not permanently closed in by structure, provided they meet the ventilation requirements of 450.9 and separation from combustible materials requirements of 450.21(A). Transformers so installed shall not be required to be readily accessible.

450.14 Disconnecting Means. Transformers, other than Class 2 or Class 3 transformers, shall have a disconnecting means located either in sight of the transformer or in a remote location. Where located in a remote location, the disconnecting means shall be lockable open in accordance with 110.25, and its location shall be field marked on the transformer.

Part II. Specific Provisions Applicable to Different Types of Transformers

450.21 Dry-Type Transformers Installed Indoors.

(A) Not Over 112¹/₂ kVA. Dry-type transformers installed indoors and rated 112¹/₂ kVA or less shall have a separation of at least 300 mm (12 in.) from combustible material unless separated from the combustible material by a fire-resistant, heat-insulated barrier.

Exception: This rule shall not apply to transformers rated for 1000 volts, nominal, or less that are completely enclosed, except for ventilating openings.

(B) Over $112\frac{1}{2}$ kVA. Individual dry-type transformers of more than $112\frac{1}{2}$ kVA rating shall be installed in a transformer room of fire-resistant construction having a minimum fire rating of 1 hour.

Exception No. 1: Transformers with Class 155 or higher insulation systems and separated from combustible material by a fire-resistant, heat-insulating barrier or by not less than 1.83 m (6 ft) horizontally and 3.7 m (12 ft) vertically.

Exception No. 2: Transformers with Class 155 or higher insulation systems and completely enclosed except for ventilating openings.

Informational Note: See ASTM E119-18a, *Standard Test Methods* for Fire Tests of Building Construction and *Materials*.

(C) Over 35,000 Volts. Dry-type transformers rated over 35,000 volts shall be installed in a vault complying with Part <u>V</u>III of this article <u>495</u>.

450.22 Dry-Type Transformers Installed Outdoors. Dry-type transformers installed outdoors shall have a weatherproof enclosure.

Transformers exceeding $112\mathscr{V}_2$ kVA shall not be located within 300 mm (12 in.) of combustible materials of buildings unless the transformer has Class 155 insulation systems or higher and is completely enclosed except for ventilating openings.

450.23 Less-Flammable-Liquid-Insulated Transformers. Liquid-insulated transformers shall comply with Part VII of article 495. Transformers insulated with listed less flammable liquids that have a fire point of not less than 300°C shall be permitted to be installed in accordance with 450.23(A) or 450.23(B).

450.40 Transformer Vaults. Transformer vaults shall comply with Part VIII of article 495.

(A) Indoor Installations. Indoor installations shall be permitted in accordance with one of the following: (1) In Type I or Type II buildings, in areas where all of the following requirements are met:-

a. The transformer is rated 35,000 volts or less.

b. No combustible materials are stored.

c. A liquid confinement area is provided.

d. The installation complies with all the restrictions provided for in the listing of the liquid.

Informational Note: Such restrictions can include, but are not limited to, maximum pressure of the tank, use of a pressure relief valve, appropriate fuse types, and proper sizing of overcurrent protection.

(2) If an automatic fire extinguishing system and a liquid confinement area is present, provided the transformer is rated 35,000 volts or less

(3) If the installation complies with 450.26

(B) Outdoor Installations. Less flammable liquid filled transformers shall be permitted to be installed outdoors, attached to, adjacent to, or on the roof of buildings, if installed in accordance with (1) or (2).

(1) For Type I and Type II buildings, the installation shall comply with all the restrictions provided for in the listing of the liquid.

Informational Note No. 1: Installations adjacent to combustible material, fire escapes, or door and window openings can require additional safeguards such as those listed in 450.27.

Informational Note No. 2: Such restrictions can include, but are not limited to: maximum pressure of the tank, use of a pressure relief valve, appropriate fuse types, and proper sizing of overcurrent protection. (2) In accordance with 450.27.

Informational Note No. 1: As used in this section, *Type I and Type II buildings* refers to Type I and Type II building construction as defined in NFPA 220-2018, *Standard on Types of Building Construction. Combustible materials* refers to those materials not classified as noncombustible or limited combustible as defined in NFPA 220-2018, *Standard on Types of Building Construction.*

Informational Note No. 2: See definition of Listed in Article 100.

450.24 Nonflammable Fluid-Insulated Transformers. Transformers insulated with a dielectric fluid identified as nonflammable shall be permitted to be installed indoors or outdoors. Such transformers installed indoors and rated over 35,000 volts shall be installed in a vault. Such transformers installed indoors shall be furnished with a liquid confinement area and a pressure relief vent. The transformers shall be furnished with a means for absorbing any gases generated by arcing inside the tank, or the pressure-relief vent shall be connected to a chimney or flue that will carry such gases to an environmentally safe area.

Informational Note: Safety may be increased if fire hazard analyses are performed for such transformer installations.

For the purposes of this section, a nonflammable dielectric fluid is one that does not have a flash point or fire point and is not flammable in air.

450.25 Askarel-Insulated Transformers Installed Indoors. Askarel insulated transformers installed indoors and rated over 25 kVA shall be furnished with a pressure relief vent. Where installed in a poorly ventilated place, they shall be furnished with a means for absorbing any gases generated by arcing inside the case, or the pressure-relief vent shall be connected to a chimney or flue that carries such gases outside the building. Askarel insulated transformers rated over 35,000 volts shall be installed in a vault.

450.26 Oil-Insulated Transformers Installed Indoors. Oil-insulated transformers installed indoors shall be installed in a vault constructed as specified in Part VIIIIII of this article 495.

Exception No. 1: Where the total capacity does not exceed 112½ kVA, the vault specified in Part <u>VIII</u>III of this articl 495e shall be permitted to be constructed of reinforced concrete that is not less than 100 mm (4 in.) thick.

Exception No. 2: Where the nominal voltage does not exceed 1000, a vault shall not be required if suitable arrangements are made to prevent a transformer oil fire from igniting other materials and the total capacity in one location does not exceed 10 kVA in a section of the building classified as combustible or 75 kVA where the surrounding structure is classified as fire-resistant construction.

Exception No. 3: Electric furnace transformers that have a total rating not exceeding 75 kVA shall be permitted to be installed without a vault in a building or room of fire-resistant construction, provided suitable arrangements are made to prevent a transformer oil fire from spreading to other combustible material.

Exception No. 4: A transformer that has a total rating not exceeding 75 kVA and a supply voltage of 1000 volts or less that is an integral part of charged particle accelerating equipment shall be permitted to be installed without a vault in a building or room of noncombustible or fire-resistant construction, provided suitable arrangements are made to prevent a transformer oil fire from spreading to other combustible material.

Exception No. 5: Transformers shall be permitted to be installed in a detached building that does not comply with Part III of this article if neither the building nor its contents present a fire hazard to any other building or property, and if the building is used only in supplying electric service and the interior is accessible only to qualified persons.

Exception No. 6: Oil insulated transformers shall be permitted to be used without a vault in portable and mobile surface mining equipment (such as electric excavators) if each of the following conditions is met:

- (1) Provision is made for draining leaking fluid to the ground.
- (2) Safe egress is provided for personnel.
- (3) A minimum 6-mm (1/4 rin.) steel barrier is provided for personnel protection.

450.27 Oil-Insulated Transformers Installed Outdoors. Combustible material, combustible buildings, and parts of buildings, fire escapes, and door and window openings shall be safeguarded from fires originating in oil-insulated transformers installed on roofs, attached to or adjacent to a building or combustible material. In cases where the transformer installation presents a fire hazard, one or more of the following safeguards shall be applied according to the degree of hazard involved:-

- (1) Space separations
- (2) Fire resistant barriers
- (3) Automatic fire suppression systems

(4) Enclosures that confine the oil of a ruptured transformer tank

Oil enclosures shall be permitted to consist of fire-resistant dikes, curbed areas or basins, or trenches filled with coarse, crushed stone. Oil enclosures shall be provided with trapped drains where the exposure and the quantity of oil involved are such that removal of oil is important.

Informational Note: For additional information on transformers installed on poles or structures or under ground, see ANSI/IEEE C2-2017, National Electrical Safety Code.

450.28 Modification of Transformers. When modifications are made to a transformer in an existing installation that change the type of the transformer with respect to Part II of this article, such transformer shall be marked to show the type of insulating liquid installed, and the modified transformer installation shall comply with the applicable requirements for that type of transformer.

Part III. Transformer Vaults

450.41 Location. Vaults shall be located where they can be ventilated to the outside air without using flues or ducts wherever such an arrangement is practicable.

450.42 Walls, Roofs, and Floors. The walls and roofs of vaults shall be constructed of materials that have approved structural strength for the conditions with a minimum fire resistance of 3 hours. The floors of vaults in contact with the earth shall be of concrete that is not less than 100 mm (4 in.) thick, but, where the vault is constructed with a vacant space or other stories below it, the floor shall have approved structural strength for the load imposed thereon and a minimum fire resistance of 3 hours. For the purposes of this section, studs and wallboard construction shall not be permitted.

Exception: Where transformers are protected with automatic sprinkler, water spray, carbon dioxide, or halon, construction of 1-hour rating shall be permitted.

Informational Note No. 1: For additional information, see ASTM E119 18a, Methods for Fire Tests of Building Construction and Materials.

Informational Note No. 2: A typical 3 hour construction is 150 mm (6 in.) thick reinforced concrete.

450.43 Doorways. Vault doorways shall be protected in accordance with 450.43(A), (B), and (C).

(A) Type of Door. Each doorway leading into a vault from the building interior shall be provided with a tight-fitting door that has a minimum fire rating of 3 hours. The authority having jurisdiction shall be permitted to require such a door for an exterior wall opening where conditions warrant.

Exception: Where transformers are protected with automatic sprinkler, water spray, carbon dioxide, or halon, construction of 1-hour rating shall be permitted.

Informational Note: For additional information, see NFPA 80 2016, Standard for Fire Doors and Other Opening Protectives.

(B) Sills. A door sill or curb that is of an approved height that will confine the oil from the largest transformer within the vault shall be provided, and in no case shall the height be less than 100 mm (4 in.).

(C) Locks. Doors shall be equipped with locks, and doors shall be kept locked, with access being allowed only to qualified persons. Personnel doors shall open in the direction of egress and be equipped with listed fire exit hardware.

450.45 Ventilation Openings. Where required by **450.9**, openings for ventilation shall be provided in accordance with **450.45(A)** through (F).

(A) Location. Ventilation openings shall be located as far as possible from doors, windows, fire escapes, and combustible material.

(B) Arrangement. A vault ventilated by natural circulation of air shall be permitted to have roughly half of the total area of openings required for ventilation in one or more openings near the floor and the remainder in one or more openings in the roof or in the sidewalls near the roof, or all of the area required for ventilation shall be permitted in one or more openings in or near the roof.

(C) Size. For a vault ventilated by natural circulation of air to an outdoor area, the combined net area of all ventilating openings, after deducting the area occupied by screens, gratings, or louvers, shall not be less than 1900 mm² (3 in.²) per kVA of transformer capacity in service, and in no case shall the net area be less than 0.1 m² (1 ft²) for any capacity under 50 kVA.

(D) Covering. Ventilation openings shall be covered with durable gratings, screens, or louvers, according to the treatment required in order to avoid unsafe conditions.

(E) Dampers. All ventilation openings to the indoors shall be provided with automatic closing fire dampers that operate in response to a vault fire. Such dampers shall possess a standard fire rating of not less than 1½ hours. Informational Note: See ANSI/UL 555 2016, *Standard for Fire Dampers*.

(F) Ducts. Ventilating ducts shall be constructed of fire-resistant material.

450.46 Drainage. Where practicable, vaults containing more than 100 kVA transformer capacity shall be provided with a drain or other means that will carry off any accumulation of oil or water in the vault unless local conditions make this impracticable. The floor shall be pitched to the drain where provided.

450.47 Water Pipes and Accessories. Any pipe or duct system foreign to the electrical installation shall not enter or pass through a transformer vault. Piping or other facilities provided for vault fire protection, or for transformer cooling, shall not be considered foreign to the electrical installation.

450.48 Storage in Vaults. Materials shall not be stored in transformer vaults.

ARTICLE 460 Capacitors

(Part II, Over 1000 Volts deleted / relocated to Article 495 Part IV. "Part I" is deleted as a Part in 460)

460.1 Scope. This article covers the installation of capacitors on electrical circuits <u>operating at 1000 Volts ac, 1500</u> Volts dc, nominal or less.

Surge capacitors or capacitors included as a component part of other apparatus and conforming with the requirements of such apparatus are excluded from these requirements.

This article also covers the installation of capacitors in hazardous (classified) locations as modified by Articles <u>501</u> through <u>503</u>.

Informational Note: Article 495 includes requirements for capacitors rated over 1000 volts ac, 1500 volts dc, nominal.

460.2 Definitions. The definition in this section shall apply only within this article.

Safe Zone. Low probability of damage other than a clight ewelling of the capacitor case, as identified by the case rupture curve of the capacitor.

460.3 Enclosing and Guarding.

(A) Containing More Than 11 L (3 gal) of Flammable Liquid. Capacitors containing more than 11 L (3 gal) of flammable liquid shall be enclosed in vaults or outdoor fenced enclosures complying with Article <u>110</u>, Part III. This limit shall apply to any single unit in an installation of capacitors.

(B) Accidental Contact. Where capacitors are accessible to unauthorized and unqualified persons, they shall be enclosed, located, or guarded so that persons cannot come into accidental contact or bring conducting materials into accidental contact with exposed energized parts, terminals, or buses associated with them. However, no additional guarding is required for enclosures accessible only to authorized and qualified persons.

Part I. 1000 Volts, Nominal, and Under

460.6 Discharge of Stored Energy. Capacitors shall be provided with a means of discharging stored energy.

(A) Time of Discharge. The residual voltage of a capacitor shall be reduced to 50 volts, nominal, or less within 1 minute after the capacitor is disconnected from the source of supply.

(B) Means of Discharge. The discharge circuit shall be either permanently connected to the terminals of the capacitor or capacitor bank or provided with automatic means of connecting it to the terminals of the capacitor bank on removal of voltage from the line. Manual means of switching or connecting the discharge circuit shall not be used.

460.8 Conductors.

(A) Ampacity. The ampacity of capacitor circuit conductors shall not be less than 135 percent of the rated current of the capacitor. The ampacity of conductors that connect a capacitor to the terminals of a motor or to motor circuit conductors shall not be less than one-third the ampacity of the motor circuit conductors and in no case less than 135 percent of the rated current of the capacitor.

(B) Overcurrent Protection. An overcurrent device shall be provided in each ungrounded conductor for each capacitor bank. The rating or setting of the overcurrent device shall be as low as practicable. *Exception: A separate overcurrent device shall not be required for a capacitor connected on the load side of a motor overload protective device.*

(C) Disconnecting Means. A disconnecting means shall be provided in each ungrounded conductor for each capacitor bank and shall meet the following requirements:

(1) The disconnecting means shall open all ungrounded conductors simultaneously.

(2) The disconnecting means shall be permitted to disconnect the capacitor from the line as a regular operating procedure.

(3) The rating of the disconnecting means shall not be less than 135 percent of the rated current of the capacitor.

Exception: A separate disconnecting means shall not be required where a capacitor is connected on the load side of a motor controller.

460.9 Rating or Setting of Motor Overload Device. Where a motor installation includes a capacitor connected on the load side of the motor overload device, the rating or setting of the motor overload device shall be based on the improved power factor of the motor circuit.

The effect of the capacitor shall be disregarded in determining the motor circuit conductor rating in accordance with <u>430.22</u>.

460.10 Grounding. Capacitor cases shall be connected to the equipment grounding conductor.

Exception: Capacitor cases shall not be connected to the equipment grounding conductor where the capacitor units are supported on a structure designed to operate at other than ground potential.

460.12 Marking. Each capacitor shall be provided with a nameplate giving the name of the manufacturer, rated voltage, frequency, kilovar or amperes, number of phases, and, if filled with a combustible liquid, the volume of liquid. Where filled with a nonflammable liquid, the nameplate shall so state. The nameplate shall also indicate whether a capacitor has a discharge device inside the case.

Part II. Over 1000 Volts, Nominal

460.24 Switching.

(A) Load Current. Group operated switches shall be used for capacitor switching and shall be capable of the following:

(1) Carrying continuously not less than 135 percent of the rated current of the capacitor installation

(2) Interrupting the maximum continuous load current of each capacitor, capacitor bank, or capacitor installation that will be switched as a unit

(3) Withstanding the maximum inrush current, including contributions from adjacent capacitor installations

(4) Carrying currents due to faults on capacitor side of switch

B) Isolation.

(1) General. A means shall be installed to isolate from all sources of voltage each capacitor, capacitor bank, or capacitor installation that will be removed from service as a unit. The isolating means shall provide a visible gap in the electrical circuit adequate for the operating voltage.

(2) Isolating or Disconnecting Switches with No Interrupting Rating. Isolating or disconnecting switches (with no interrupting rating) shall be interlocked with the load interrupting device or shall be provided with prominently displayed caution signs in accordance with <u>490.22</u> to prevent switching load current.

(C) Additional Requirements for Series Capacitors. The proper switching sequence shall be ensured by use of one of the following:

(1) Mechanically sequenced isolating and bypass switches

(2) Interlocks

(3) Switching procedure prominently displayed at the switching location

460.25 Overcurrent Protection.

(A) Provided to Detect and Interrupt Fault Current. A means shall be provided to detect and interrupt fault current likely to cause dangerous pressure within an individual capacitor.

(B) Single Pole or Multipole Devices. Single-pole or multipole devices shall be permitted for this purpose.

(C) Protected Individually or in Groups. Capacitors shall be permitted to be protected individually or in groups.

(D) Protective Devices Rated or Adjusted. Protective devices for capacitors or capacitor equipment shall be rated or adjusted to operate within the limits of the safe zone for individual capacitors.

460.26 Identification. Each capacitor shall be provided with a permanent nameplate giving the manufacturer's name, rated voltage, frequency, kilovar or amperes, number of phases, and the volume of liquid identified as flammable, if such is the case.

460.27 Grounding. Capacitor cases shall be connected to the equipment grounding conductor. If the capacitor neutral point is connected to a grounding electrode conductor, the connection shall be made in accordance with Part III of Article <u>250</u>.

Exception: Capacitor cases shall not be connected to the equipment grounding conductor where the capacitor units are supported on a structure designed to operate at other than ground potential.

460.28 Means for Discharge.

(A) Means to Reduce the Residual Voltage. A means shall be provided to reduce the residual voltage of a capacitor to 50 volts or less within 5 minutes after the capacitor is disconnected from the source of supply.

(B) Connection to Terminals. A discharge circuit shall be either permanently connected to the terminals of the capacitor or provided with automatic means of connecting it to the terminals of the capacitor bank after disconnection of the capacitor from the source of supply. The windings of motors, transformers, or other equipment directly connected to capacitors without a switch or overcurrent device interposed shall meet the requirements of 460.28(A).

ARTICLE 470 Resistors and Reactors

(Part II, Over 1000 Volts deleted / relocate to Article 495 Part X. Part I is deleted as a part in Article 470)

Part I. 1000 Volts, Nominal, and Under

470.1 Scope. This article covers the installation of separate resistors and reactors on electrical circuits <u>rated no</u> <u>more than 1000 volts ac, 1500 volts dc, nominal</u>.

Exception: Resistors and reactors that are component parts of other apparatus.

This article also covers the installation of resistors and reactors in hazardous (classified) locations as modified by Articles <u>501</u> through <u>504</u>.

Informational Note: Article 495 includes requirements for resistors and reactors rated over 1000 volts ac, 1500 volts dc, nominal.

470.2 Location. Resistors and reactors shall not be placed where exposed to physical damage.

470.3 Space Separation. A thermal barrier shall be required if the space between the resistors and reactors and any combustible material is less than 305 mm (12 in.).

470.4 Conductor Insulation. Insulated conductors used for connections between resistance elements and controllers shall be suitable for an operating temperature of not less than 90°C (194°F).

Exception: Other conductor insulations shall be permitted for motor starting service.

Part II. Over 1000 Volts, Nominal

470.18 General.

(A) Protected Against Physical Damage. Resistors and reactors shall be protected against physical damage.

(B) Isolated by Enclosure or Elevation. Resistors and reactors shall be isolated by enclosure or elevation to protect personnel from accidental contact with energized parts.

(C) Combustible Materials. Resistors and reactors shall not be installed in close enough proximity to combustible materials to constitute a fire hazard and shall have a clearance of not less than 305 mm (12 in.) from combustible materials.

(D) Clearances. Clearances from resistors and reactors to grounded surfaces shall be adequate for the voltage involved.

(E) Temperature Rise from Induced Circulating Currents. Metallic enclosures of reactors and adjacent metal parts shall be installed so that the temperature rise from induced circulating currents is not hazardous to personnel or does not constitute a fire hazard.

470.19 Grounding. Resistor and reactor cases or enclosures shall be connected to the equipment grounding conductor.

Exception: Resistor or reactor cases or enclosures supported on a structure designed to operate at other than ground potential shall not be connected to the equipment grounding conductor.

470.20 Oil-Filled Reactors. Installation of oil filled reactors, in addition to the above requirements, shall comply with applicable requirements of Article <u>450</u>.

ARTICLE 4950 Equipment Over 1000 Volts AC, 1500 VDC, Nominal

(Article 490 is renumbered Article 495. Changes to 490 shown below, along with additions from other Chapter 4 Articles where MV requirements have been relocated to 495)

Part I. General

4950.1 Scope. This article covers the general requirements for equipment operating at more than 1000 volts<u>ac</u>, <u>1500 volts dc</u>, nominal.

Informational Note No. 1: See *NFPA 70E*-2018, *Standard for Electrical Safety in the Workplace*, for electrical safety requirements for employee workplaces.

Informational Note No. 2: For further information on hazard signs and labels, see ANSI Z535.4-2011, *Product Signs and Safety Labels*.

Informational Note No. 3: For information regarding power distribution apparatus, see IEEE 3001.5-2013, *Recommended Practice for the Application of Power Distribution Apparatus in Industrial and Commercial Power Systems*.

4950.2 Definition. The definition in this section shall apply only within this article.

High Voltage. A potential difference of more than 1000 volts, nominal.

Safe Zone. Low probability of damage other than a slight swelling of the capacitor case, as identified by the case rupture curve of the capacitor.

Transformer.

An individual transformer, single- or polyphase, identified by a single nameplate, unless otherwise indicated in this article

4950.3 Other Articles. Enclosures in damp or wet locations shall meet the requirements of 312.2.

(A) Oil-Filled Equipment. Installation of electrical equipment, ether than transformers severed in Article 450, containing more than 38 L (10 gal) of flammable eil per unit shall meet the requirements of Parts II and III of Article 450.

(AB) Enclosures in Damp or Wet Locations. Enclosures in damp or wet locations shall meet the requirements of 312.2.

495.4 Flexible Cords and Flexible Cable Types.

Flexible cords and flexible cables over 1000 volts shall conform to the description in Table 49500.4. The use of flexible cords and flexible cables other than those in Table 49500.4shall require permission by the authority having jurisdiction.

Table 40950.4 Flexible Cords and Flexible Cables

							<u>Nominal</u> Insulati On Thickne <u>SS</u>		Braid			
<u>Trade</u> Name	<u>Typ</u> e Lett er	<u>Volta</u> ge	AW G or kcmi <u>l</u>	<u>Number</u> of <u>Conduct</u> <u>ors</u>	<u>Insulati</u> <u>on</u>	AW G or kcm <u>il</u>	mm	<u>mil</u> <u>s</u>	on Each Condu C- tor	<u>Outer</u> Coveri ng	<u>Use</u>	
Portab le_ power_ cable	<u>G</u>	<u>2000</u>	500	2-6 plus equipment grounding conductor(s	<u>Thermos</u> <u>et</u>		<u>12–2</u>) 250–500	$ \frac{1.5}{2} \\ \frac{2.0}{3} \\ \frac{2.4}{1} $	60 80 95		<u>Oil-</u> resista <u>t</u> thermo set	extra-
	G- GC ⁷	<u>2000</u>	<u>500</u>	3–6 plus equipment grounding conductors and 1 ground check conductor	<u>Thermos</u> <u>et</u>	1	<u>12–2</u> 1 <u>–4/0</u> 50–500	$\frac{1.5}{2}$ $\frac{2.0}{3}$ $\frac{2.4}{1}$	60 80 95		<u>Oil-</u> resista <u>t</u> thermo set	
Portable power cable	PPE	7 2000	12– 500	1–6 plus optional equipment grounding conductor(12–2 1–4/0 250–500	1.52 2.03 2.41	80	Oil-re therm plastic elastc	c	Portable, extra- hard usage
Portable power cable	₩7	2000	12– 500 501–		Thermo	oset	12–2 1–4/0 250–500	1.52 2.03 2.41	80 95	Oil- resista therm		Portable, extra- hard

Notes:

⁷Types G, G-GC, S, SC, SCE, SCT, SE, SEO, SEOO, SEW, SEOW, SEOOW, SO, SOO, SOW, SOOW, ST, STO, STOO, STW, STOOW, STOOW, PPE, and W shall be permitted for use on theater stages, in garages, and elsewhere where flexible cords are permitted by this *Code*.

501-

1000

2.80

110

usage

Part II. Equipment — Specific Provisions

1000

490.21 Circuit-Interrupting Devices. 490.21(A) Circuit Breakers. 490.21(A)(1) Location.

(a) Circuit breakers installed indoors shall be mounted either in metal-enclosed units or fire-resistant cellmounted units, or they shall be permitted to be open mounted in locations accessible to qualified persons only.

(b) Circuit breakers used to control oil filled transformers in a vault shall either be located outside the transformer vault or be capable of operation from outside the vault.

(c) Oil circuit breakers shall be arranged or located so that adjacent readily combustible structures or materials are safeguarded in an approved manner.

490.21(A)(2) Operating Characteristics.

Circuit breakers shall have the following equipment or operating characteristics:

(1 An accessible mechanical or other identified means for manual tripping, independent of control power

(2) Be release free (trip free)

(3) If capable of being opened or closed manually while energized, main contacts that operate independently of the speed of the manual operation

(4) A mechanical position indicator at the circuit breaker to show the open or closed position of the main contacts

(5) A means of indicating the open and closed position of the breaker at the point(s) from which they may be operated

490.21(A)(3) Nameplate.

A circuit breaker shall have a permanent and legible nameplate showing manufacturer's name or trademark, manufacturer's type or identification number, continuous current rating, interrupting rating in megavolt amperes (MVA) or amperes, and maximum voltage rating. Modification of a circuit breaker affecting its rating(s) shall be accompanied by an appropriate change of nameplate information.

490.21(A)(4) Rating.

Circuit breakers shall have the following ratings:

(1)The continuous current rating of a circuit breaker shall not be less than the maximum continuous current through the circuit breaker.

(2) The interrupting rating of a circuit breaker shall not be less than the available fault current the circuit breaker will be required to interrupt, including contributions from all connected sources of energy.

-(3) The closing rating of a circuit breaker shall not be less than the maximum asymmetrical fault current into which the circuit breaker can be closed.

(4) The momentary rating of a circuit breaker shall not be less than the maximum asymmetrical fault current at the point of installation.

(5) The rated maximum voltage of a circuit breaker shall not be less than the maximum circuit voltage.

490.21(A)(5) Retrofit Trip Units.

Retrofit trip units shall be listed for use with the specific circuit breaker with which it is installed.

490.21(B) Power Fuses and Fuseholders.

490.21(B)(1) Use.

Where fuses are used to protect conductors and equipment, a fuse shall be placed in each ungrounded conductor. Two power fuses shall be permitted to be used in parallel to protect the same load if both fuses have identical ratings and both fuses are installed in an identified common mounting with electrical connections that divide the current equally. Power fuses of the vented type shall not be used indoors, underground, or in metal enclosures unless identified for the use.

490.21(B)(2) Interrupting Rating.

The interrupting rating of power fuses shall not be less than the available fault current the fuse is required to interrupt, including contributions from all connected sources of energy.

490.21(B)(3) Voltage Rating.

The maximum voltage rating of power fuses shall not be less than the maximum circuit voltage. Fuses having a minimum recommended operating voltage shall not be applied below this voltage.

490.21(B)(4) Identification of Fuse Mountings and Fuse Units.

Euse mountings and fuse units shall have permanent and legible nameplates showing the manufacturer's type or designation, continuous current rating, interrupting current rating, and maximum voltage rating.

490.21(B)(5) Fuses.

Fuses that expel flame in opening the circuit shall be designed or arranged so that they function properly without hazard to persons or property.

490.21(B)(6) Fuseholders.

Fuseholders shall be designed or installed so that they are de energized while a fuse is being replaced. A fieldapplied permanent and legible sign, in accordance with 110.21(B), shall be installed immediately adjacent to the fuseholders and shall be worded as follows:

DANGER - DISCONNECT CIRCUIT BEFORE REPLACING FUSES.

Exception: Fuses and fuseholders designed to permit fuse replacement by qualified persons using identified equipment without de energizing the fuseholder shall be permitted.

490.21(B)(7) High-Voltage Fuses.

Switchgear and substations that utilize high-voltage fuses shall be provided with a gang-operated disconnecting switch. Isolation of the fuses from the circuit shall be provided by either connecting a switch between the source and the fuses or providing roll-out switch and fuse-type construction. The switch shall be of the load-interrupter type, unless mechanically or electrically interlocked with a load-interrupting device arranged to reduce the load to the interrupting capability of the switch.

Exception: More than one switch shall be permitted as the disconnecting means for one set of fuses where the switches are installed to provide connection to more than one set of supply conductors. The switches shall be mechanically or electrically interlocked to permit access to the fuses only when all switches are open. A conspicuous sign shall be placed at the fuses identifying the presence of more than one source.

490.21(C) Distribution Cutouts and Fuse Links — Expulsion Type.

490.21(C)(1) Installation.

Cutouts shall be located so that they may be readily and safely operated and re-fused, and so that the exhaust of the fuses does not endanger persons. Distribution cutouts shall not be used indoors, underground, or in metal enclosures.

490.21(C)(2) Operation.

Where fused cutouts are not suitable to interrupt the circuit manually while carrying full load, an approved means shall be installed to interrupt the entire load. Unless the fused cutouts are interlocked with the switch to prevent opening of the cutouts under load, a conspicuous sign shall be placed at such cutouts identifying that they shall not be operated under load.

490.21(C)(3) Interrupting Rating.

The interrupting rating of distribution cutouts shall not be less than the available fault current the cutout is required to interrupt, including contributions from all connected sources of energy.

490.21(C)(4) Voltage Rating.

The maximum voltage rating of cutouts shall not be less than the maximum circuit voltage.

490.21(C)(5) Identification.

Distribution cutouts shall have on their body, door, or fuse tube a permanent and legible nameplate or identification showing the manufacturer's type or designation, continuous current rating, maximum voltage rating, and interrupting rating.

490.21(C)(6) Fuse Links.

Fuse links shall have a permanent and legible identification showing continuous current rating and type.

490.21(C)(7) Structure Mounted Outdoors.

The height of cutouts mounted outdoors on structures shall provide safe clearance between lowest energized parts (open or closed position) and standing surfaces, in accordance with 110.34(E).

490.21(D) Oil-Filled Cutouts.

490.21(D)(1) Continuous Current Rating.

The continuous current rating of oil-filled cutouts shall not be less than the maximum continuous current through the cutout.

490.21(D)(2) Interrupting Rating.

The interrupting rating of oil-filled cutouts shall not be less than the available fault current the oil-filled cutout is required to interrupt, including contributions from all connected sources of energy.

490.21(D)(3) Voltage Rating.

The maximum voltage rating of oil filled cutouts shall not be less than the maximum circuit voltage.

490.21(D)(4) Fault Closing Rating.

Oil-filled cutouts shall have a fault closing rating not less than the maximum asymmetrical fault current that can occur at the cutout location, unless suitable interlocks or operating procedures preclude the possibility of closing into a fault.

490.21(D)(5) Identification.

Oil filled cutouts shall have a permanent and legible nameplate showing the rated continuous current, rated maximum voltage, and rated interrupting current.

490.21(D)(6) Fuse Links.

Fuse links shall have a permanent and legible identification showing the rated continuous current.

490.21(D)(7) Location.

Cutouts shall be located so that they are readily and safely accessible for re-fusing, with the top of the cutout not over 1.5 m (5 ft) above the floor or platform.

490.21(D)(8) Enclosure.

Suitable barriers or enclosures shall be provided to prevent contact with nonshielded cables or energized parts of oilfilled cutouts.

490.21(E) Load Interrupters.

Load interrupter switches shall be permitted if suitable fuses or circuit breakers are used in conjunction with these devices to interrupt available fault currents. Where these devices are used in combination, they shall be coordinated electrically so that they will safely withstand the effects of closing, carrying, or interrupting all possible currents up to the assigned maximum short-circuit rating.

Where more than one switch is installed with interconnected load terminals to provide for alternate connection to different supply conductors, each switch shall be provided with a warning sign identifying the presence of more than one source. Each warning sign or label shall comply with 110.21.

490.21(E)(1) Continuous Current Rating.

The continuous current rating of interrupter switches shall equal or exceed the maximum continuous current at the point of installation.

490.21(E)(2) Voltage Rating.

The maximum voltage rating of interrupter switches shall equal or exceed the maximum circuit voltage.

490.21(E)(3) Identification.

Interrupter switches shall have a permanent and legible nameplate including the following information: manufacturer's type or designation, continuous current rating, interrupting current rating, fault closing rating, maximum voltage rating.

490.21(E)(4) Switching of Conductors.

The switching mechanism shall be arranged to be operated from a location where the operator is not exposed to energized parts and shall be arranged to open all ungrounded conductors of the circuit simultaneously with one operation. Switches shall be arranged to be locked in the open position. Metal enclosed switches shall be operable from outside the enclosure.

490.21(E)(5) Stored Energy for Opening.

The stored energy operator shall be permitted to be left in the uncharged position after the switch has been closed if a single movement of the operating handle charges the operator and opens the switch.

490.21(E)(6) Supply Terminals.

The supply terminals of fused interrupter switches shall be installed at the top of the switch enclosure, or, if the terminals are located elsewhere, the equipment shall have barriers installed so as to prevent persons from accidentally contacting energized parts or dropping tools or fuses into energized parts.

49<u>5</u>**0.22 Isolating Means.** Means shall be provided to completely isolate an item of equipment from all ungrounded conductors. The use of isolating switches shall not be required where there are other ways of deenergizing the equipment for inspection and repairs, such as draw-out-type switchgear units and removable truck panels.

Isolating switches not interlocked with an approved circuit-interrupting device shall be provided with a sign warning against opening them under load. The warning sign(s) or label(s) shall comply with 110.21(B).

An identified fuseholder and fuse shall be permitted as an isolating switch.

4950.23 Voltage Regulators. Proper switching sequence for regulators shall be ensured by use of one of the following:

- (1) Mechanically sequenced regulator bypass switch(es)
- (2) Mechanical interlocks
- (3) Switching procedure prominently displayed at the switching location

4950.24 Minimum Space Separation. In field-fabricated installations, the minimum air separation between bare live conductors and between such conductors and adjacent grounded surfaces shall not be less than the values given in Table 4950.24. These values shall not apply to interior portions or exterior terminals of equipment designed, manufactured, and tested in accordance with accepted national standards.

Table 4950.24 Minimum Clearance of Live Parts

1

	Impulse Basic Im	Pl	hase-1	to-Pha	se	Phase-to-Ground				
Nominal Voltage	Basic III	Inde	oors	Outd	oors	Inde	ors	Outde	oors	
Rating (kV)	Indoors	Outdoors	mm	in.	mm	in.	mm	in.	Mm	in.
2.4-4.16	60	95	115	4.5	180	7	80	3.0	155	6
7.2	75	95	140	5.5	180	7	105	4.0	155	6
13.8	95	110	195	7.5	305	12	130	5.0	180	7
14.4	110	110	230	9.0	305	12	170	6.5	180	7
23	125	150	270	10.5	385	15	190	7.5	255	10
34.5	150	150	320	12.5	385	15	245	9.5	255	10
	200	200	460	18.0	460	18	335	13.0	335	13
46	_	200			460	18			335	13
		250			535	21	_		435	17
69	_	250			535	21			435	17
		350			790	31			635	25
115	_	550			1350	53			1070	42

Minimum Clearance of Live Parts

Table 4950.24 Minimum Clearance of Live Parts

	-	pulse Withstand, Phase-to-Phase		se	Pha	ase-to	o-Grou	nd		
Nominal Voltage Doting		L (kV)	Indo	oors Outdoors			Indo	ors	Outde	oors
Rating (kV)	Indoors	Outdoors	mm	in.	mm	in.	mm	in.	Mm	in.
138	—	550			1350	53			1070	42
	—	650			1605	63			1270	50
161	—	650			1605	63			1270	50
	—	750			1830	72			1475	58
230	—	750			1830	72			1475	58
	—	900			2265	89			1805	71
	_	1050			2670	105	_		2110	83

Minimum Clearance of Live Parts

Note: The values given are the minimum clearance for rigid parts and bare conductors under favorable service conditions. They shall be increased for conductor movement or under unfavorable service conditions or wherever space limitations permit. The selection of the associated impulse withstand voltage for a particular system voltage is determined by the characteristics of the surge protective equipment.

4950.25 Backfeed. Installations where the possibility of backfeed exists shall comply with **4950.25(A)** and (B), which follow.

(A) Sign. A permanent sign in accordance with 110.21(B) shall be installed on the disconnecting means enclosure or immediately adjacent to open disconnecting means with the following words or equivalent: DANGER — CONTACTS ON EITHER SIDE OF THIS DEVICE MAY BE ENERGIZED BY BACKFEED.

(B) Diagram. A permanent and legible single-line diagram of the local switching arrangement, clearly identifying each point of connection to the high-voltage section, shall be provided within sight of each point of connection.

495.26 (A)-Oil-Filled Equipment. Installation of electrical equipment, other than transformers covered in Article-Part VII450, containing more than 38 L (10 gal) of flammable oil per unit shall meet the requirements of Parts VII-and III of Article 450.

Informational Note: The same requirements for oil used in oil-filled transformers are also applicable to other oil-filled equipment.

Part III. Equipment — Switchgear and Industrial Control Assemblies

4950.30 General. Part III covers assemblies of switchgear and industrial control equipment including, but not limited to, switches and interrupting devices and their control, metering, protection, and regulating equipment where they are an integral part of the assembly, with associated interconnections and supporting structures.
4950.31 Arrangement of Devices in Assemblies. Arrangement of devices in assemblies shall be such that individual components can safely perform their intended function without adversely affecting the safe operation of other components in the assembly.

4950.32 Guarding of High-Voltage Energized Parts Within a Compartment. Where access for other than visual inspection is required to a compartment that contains energized high-voltage parts, barriers shall be provided to prevent accidental contact by persons, tools, or other equipment with energized parts. Exposed live parts shall only be permitted in compartments accessible to qualified persons. Fuses and fuseholders designed to enable future replacement without de-energizing the fuseholder shall only be permitted for use by qualified persons.

4950.33 Guarding of Energized Parts Operating at 1000 Volts, Nominal, or Less Within Compartments. Energized bare parts mounted on doors shall be guarded where the door must be opened for maintenance of equipment or removal of draw-out equipment.

4950.34 Clearance for Cable Conductors Entering Enclosure. The unobstructed space opposite terminals or opposite raceways or cables entering a switchgear or control assembly shall be approved for the type of conductor and method of termination.

49<u>5</u>0.35 Accessibility of Energized Parts.

(A) High-Voltage Equipment. Doors that would provide unqualified persons access to high-voltage energized parts shall be locked. Permanent signs in accordance with 110.21(B) shall be installed on panels or doors that provide access to live parts over 1000 volts and shall read DANGER — HIGH VOLTAGE — KEEP OUT.

(B) Control Equipment. Where operating at 1000 volts, nominal, or less, control equipment, relays, motors, and the like shall not be installed in compartments with high-voltage parts or high-voltage wiring, unless:

(1) The access means is interlocked with the high-voltage switch or disconnecting means to prevent the access means from being opened or removed_when the high-voltage switch is in the closed position or a withdrawable disconnecting means is in the connected position, and

(2) All high-voltage parts or high-voltage wiring in the compartment that remain energized when a fixed mounted high-voltage switch is in the open position or a withdrawable disconnecting means is in the isolating (fully withdrawn) position are protected by insulating or grounded metal barriers to prevent accidental contact with energized high-voltage parts or wiring.

(C) High-Voltage Instruments or Control Transformers and Space Heaters. High-voltage instrument or control transformers and space heaters shall be permitted to be installed in the high-voltage compartment without access restrictions beyond those that apply to the high-voltage compartment generally.

4950.36 Grounding. Frames of switchgear and control assemblies shall be connected to an equipment grounding conductor or, where permitted, the grounded conductor.

4950.37 Grounding of Devices. The metal cases or frames, or both, such as those of instruments, relays, meters, and instrument and control transformers, located in or on switchgear or control assemblies, shall be connected to an equipment grounding conductor or, where permitted, the grounded conductor.

4950.38 Door Stops and Cover Plates. External hinged doors or covers shall be provided with stops to hold them in the open position. Cover plates intended to be removed for inspection of energized parts or wiring shall be

equipped with lifting handles and shall not exceed 1.1 m² (12 ft²) in area or 27 kg (60 lb) in weight, unless they are hinged and bolted or locked.

4950.39 Gas Discharge from Interrupting Devices. Gas discharged during operating of interrupting devices shall be directed so as not to endanger personnel.

4950.40 Visual Inspection Windows. Windows intended for visual inspection of disconnecting switches or other devices shall be of suitable transparent material.

4950.41 Location of Industrial Control Equipment. Routinely operated industrial control equipment shall meet the requirements of **4950.41(A)** unless infrequently operated, as covered in **4950.41(B)**.

(A) Control and Instrument Transfer Switch Handles or Push Buttons. Control and instrument transfer switch handles or push buttons shall be in a readily accessible location at an elevation of not over 2.0 m (6 ft 7 in.).

Exception: Operating handles requiring more than 23 kg (50 lb) of force shall be located no higher than 1.7 m (66 in.) in either the open or closed position.

(B) Infrequently Operated Devices. Where operating handles for such devices as draw-out fuses, fused potential or control transformers and their primary disconnects, and bus transfer and isolating switches are only operated infrequently, the handles shall be permitted to be located where they are safely operable and serviceable from a portable platform.

4950.42 Interlocks — **Interrupter Switches.** Interrupter switches equipped with stored energy mechanisms shall have mechanical interlocks to prevent access to the switch compartment unless the stored energy mechanism is in the discharged or blocked position.

4950.43 Stored Energy for Opening. The stored energy operator shall be permitted to be left in the uncharged position after the switch has been closed if a single movement of the operating handle charges the operator and opens the switch.

49<u>5</u>0.44 Fused Interrupter Switches.

(A) Supply Terminals. The supply terminals of fused interrupter switches shall be installed at the top of the switch enclosure or, if the terminals are located elsewhere, the equipment shall have barriers installed so as to prevent persons from accidentally contacting energized parts or dropping tools or fuses into energized parts.

(B) Backfeed. Where fuses can be energized by backfeed, a sign shall be placed on the enclosure door identifying this hazard.

(C) Switching Mechanism. The switching mechanism shall be arranged to be operated from a location outside the enclosure where the operator is not exposed to energized parts and shall be arranged to open all ungrounded conductors of the circuit simultaneously with one operation. Switches shall be lockable open in accordance with 110.25.

49<u>5</u>0.45 Circuit Breakers — Interlocks.

(A) Circuit Breakers. Circuit breakers equipped with stored energy mechanisms shall be designed to prevent the release of the stored energy unless the mechanism has been fully charged.

(B) Mechanical Interlocks. Mechanical interlocks shall be provided in the housing to prevent the complete withdrawal of the circuit breaker from the housing when the stored energy mechanism is in the fully charged position, unless a suitable device is provided to block the closing function of the circuit breaker before complete withdrawal.

4950.46 Circuit Breaker Locking. Circuit breakers shall be capable of being locked in the open position or, if they are installed in a drawout mechanism, that mechanism shall be capable of being locked in such a position that the mechanism cannot be moved into the connected position. In either case, the provision for locking shall be lockable open in accordance with 110.25.

4950.47 Switchgear Used as Service Equipment. Switchgear installed as high-voltage service equipment shall include a ground bus for the connection of service cable shields and to facilitate the attachment of safety grounds for personnel protection. This bus shall be extended into the compartment where the service conductors are terminated. Where the compartment door or panel provides access to parts that can only be de-energized and visibly isolated by the serving utility, the warning sign required by 4950.35(A) shall include a notice that access is limited to the serving utility or is permitted only following an authorization of the serving utility.

4950.48 Substation Design, Documentation, and Required Diagram.

(A) Design and Documentation. Substations shall be designed by a qualified licensed professional engineer. Where components or the entirety of the substation are listed by a qualified electrical testing laboratory, documentation of internal design features subject to the listing investigation shall not be required. The design shall address but not be limited to the following topics, and the documentation of this design shall be made available to the authority having jurisdiction

- (1) Clearances and exits
- (2) Electrical enclosures
- (3) Securing and support of electrical equipment
- (4) Fire protection
- (5) Safety ground connection provisions
- (6) Guarding live parts
- (7) Transformers and voltage regulation equipment
- (8) Conductor insulation, electrical and mechanical protection, isolation, and terminations
- (9) Application, arrangement, and disconnection of circuit breakers, switches, and fuses
- (10) Provisions for oil filled equipment
- (11) Switchgear
- (12) Surge arresters

4950.48(B) Diagram. A permanent, single-line diagram of the switchgear shall be provided in a readily visible location within the same room or enclosed area with the switchgear, and this diagram shall clearly identify interlocks, isolation means, and all possible sources of voltage to the installation under normal or emergency conditions, and the marking on the switchgear shall cross-reference the diagram.

Exception: Where the equipment consists solely of a single cubicle or metal-enclosed substation containing only one high-voltage switching device, diagrams shall not be required.

4950.49 Reconditioned Switchgear. Switchgear, or sections of switchgear, within the scope of this article shall be permitted to be reconditioned. The reconditioning process shall use design qualified parts verified under applicable standards and be performed in accordance with any instructions provided by the manufacturer. Reconditioned switchgear shall be listed or field labeled as *reconditioned*, and previously applied listing marks, if any, within the portions reconditioned shall be removed. If equipment has been damaged by fire, products of combustion, or water, it shall be specifically evaluated by its manufacturer or a qualified testing laboratory prior to being returned to service.

Part IV. Mobile and Portable Equipment

49<u>5</u>0.51 General.

(A) Covered. The provisions of this part shall apply to installations and use of high-voltage power distribution and utilization equipment that is portable, mobile, or both, such as substations and switch houses mounted on skids, trailers, or cars; mobile shovels; draglines; cranes; hoists; drills; dredges; compressors; pumps; conveyors; underground excavators; and the like.

(B) Other Requirements. The requirements of this part shall be additional to, or amendatory of, those prescribed in Articles 100 through 725 of this *Code*. Special attention shall be paid to Article 250.

(C) Protection. Approved enclosures or guarding, or both, shall be provided to protect portable and mobile equipment from physical damage.

(D) Disconnecting Means. Disconnecting means shall be installed for mobile and portable high-voltage equipment according to the requirements of Part VIII of Article 230 and shall disconnect all ungrounded conductors.

4950.52 Overcurrent Protection. Motors driving single or multiple dc generators supplying a system operating on a cyclic load basis do not require overload protection, provided that the thermal rating of the ac drive motor cannot be exceeded under any operating condition. The branch-circuit protective device(s) shall provide short-circuit and locked-rotor protection and shall be permitted to be external to the equipment.

4950.53 Enclosures. All energized switching and control parts shall be enclosed in grounded metal cabinets or enclosures. These cabinets or enclosures shall be marked DANGER — HIGH VOLTAGE — KEEP OUT and shall be locked so that only authorized and qualified persons can enter. The danger marking(s) or label(s) shall comply with **110.21(B)**. Circuit breakers and protective equipment shall have the operating means projecting through the metal cabinet or enclosure so these units can be reset without opening locked doors. With doors closed, safe access for normal operation of these units shall be provided.

4950.54 Collector Rings. The collector ring assemblies on revolving-type machines (shovels, draglines, etc.) shall be guarded to prevent accidental contact with energized parts by personnel on or off the machine.

49<u>5</u>**0**.55 Power Cable Connections to Mobile Machines. A metallic enclosure shall be provided on the mobile machine for enclosing the terminals of the power cable. The enclosure shall include terminal connections to the machine frame for the equipment grounding conductor. Ungrounded conductors shall be attached to insulators or be terminated in approved high-voltage cable couplers (which include equipment grounding conductor connectors) of proper voltage and ampere rating. The method of cable termination used shall prevent any strain or pull on the cable from stressing the electrical connections. The enclosure shall have provision for locking so that only authorized and qualified persons may open it and shall be marked as follows:

DANGER — HIGH VOLTAGE — KEEP OUT.

The danger marking(s) or label(s) shall comply with 110.21(B).

4950.56 High-Voltage Portable Cable for Main Power Supply. Flexible high-voltage cable supplying power to portable or mobile equipment shall comply with Article **250** and Article **400**, Part III.

Part V. Electrode-Type Boilers

4950.70 General. The provisions of Part V shall apply to boilers operating over 1000 volts, nominal, in which heat is generated by the passage of current between electrodes through the liquid being heated.

49<u>5</u>0.71 Electrical Supply System. Electrode-type boilers shall be supplied only from a 3-phase, 4-wire solidly grounded wye system, or from isolating transformers arranged to provide such a system. Control circuit voltages shall not exceed 150 volts, shall be supplied from a grounded system, and shall have the controls in the ungrounded conductor.

49<u>5</u>0.72 Branch-Circuit Requirements.

(A) Rating. Each boiler shall be supplied from an individual branch circuit rated not less than 100 percent of the total load.

(B) Common-Trip Fault-Interrupting Device. The circuit shall be protected by a 3-phase, common-trip faultinterrupting device, which shall be permitted to automatically reclose the circuit upon removal of an overload condition but shall not reclose after a fault condition.

(C) Phase-Fault Protection. Phase-fault protection shall be provided in each phase, consisting of a separate phase-overcurrent relay connected to a separate current transformer in the phase.

(D) Ground Current Detection. Means shall be provided for detection of the sum of the neutral conductor and equipment grounding conductor currents and shall trip the circuit-interrupting device if the sum of those currents exceeds the greater of 5 amperes or $7\frac{1}{2}$ percent of the boiler full-load current for 10 seconds or exceeds an instantaneous value of 25 percent of the boiler full-load current.

(E) Grounded Neutral Conductor. The grounded neutral conductor shall be as follows:

(1) Connected to the pressure vessel containing the electrodes

- (2) Insulated for not less than 1000 volts
- (3) Have not less than the ampacity of the largest ungrounded branch-circuit conductor

(4) Installed with the ungrounded conductors in the same raceway, cable, or cable tray, or, where installed as open conductors, in close proximity to the ungrounded conductors

(5) Not used for any other circuit

4950.73 Pressure and Temperature Limit Control. Each boiler shall be equipped with a means to limit the maximum temperature, pressure, or both, by directly or indirectly interrupting all current flow through the electrodes. Such means shall be in addition to the temperature, pressure, or both, regulating systems and pressure relief or safety valves.

4950.74 Bonding. All exposed non–current-carrying metal parts of the boiler and associated exposed metal structures or equipment shall be bonded to the pressure vessel or to the neutral conductor to which the vessel is connected in accordance with 250.102, except the ampacity of the bonding jumper shall not be less than the ampacity of the neutral conductor.

Part VI. Motors, Motor Circuits and Controllers

495.80 430.221 General. Part XI-VI recognizes the additional hazard due to the use of higher voltages. It adds to or amends the other provisions of this article <u>430</u>.

430.222495.81 Marking on Controllers. In addition to the marking required by <u>430.8</u>, a controller shall be marked with the control voltage.

430.223495.82 Raceway Connection to Motors. Flexible metal conduit or liquidtight flexible metal conduit not exceeding 1.8 m (6 ft) in length shall be permitted to be employed for raceway connection to a motor terminal enclosure.

430.224495.83 Size of Conductors. Conductors supplying motors shall have an ampacity not less than the current at which the motor overload protective device(s) is selected to trip.

430.225495.84 Motor-Circuit Overcurrent Protection.

(A) General. Each motor circuit shall include coordinated protection to automatically interrupt overload and fault currents in the motor, the motor-circuit conductors, and the motor control apparatus.

Exception: Where a motor is critical to an operation and the motor should operate to failure if necessary to prevent a greater hazard to persons, the sensing device(s) shall be permitted to be connected to a supervised annunciator or alarm instead of interrupting the motor circuit.

(B) Overload Protection.

(1) Type of Overload Device. Each motor shall be protected against dangerous heating due to motor overloads and failure to start by a thermal protector integral with the motor or external current-sensing devices, or both. Protective device settings for each motor circuit shall be determined under engineering supervision.

(2) Wound-Rotor Alternating-Current Motors. The secondary circuits of wound-rotor ac motors, including conductors, controllers, and resistors rated for the application, shall be considered as protected against overcurrent by the motor overload protection means.

(3) Operation. Operation of the overload interrupting device shall simultaneously disconnect all ungrounded conductors.

(4) Automatic Reset. Overload sensing devices shall not automatically reset after trip unless resetting of the overload sensing device does not cause automatic restarting of the motor or there is no hazard to persons created by automatic restarting of the motor and its connected machinery.

(C) Fault-Current Protection.

(1) Type of Protection. Fault-current protection shall be provided in each motor circuit as specified by either <u>430.225(C)(1)495.84(C)(1)</u>(a) or (C)(1)(b).

(a) A circuit breaker of suitable type and rating arranged so that it can be serviced without hazard. The circuit breaker shall simultaneously disconnect all ungrounded conductors. The circuit breaker shall be permitted to sense the fault current by means of integral or external sensing elements.

(b) Fuses of a suitable type and rating placed in each ungrounded conductor. Fuses shall be used with suitable disconnecting means, or they shall be of a type that can also serve as the disconnecting means. They shall be arranged so that they cannot be serviced while they are energized.

(2) Reclosing. Fault-current interrupting devices shall not automatically reclose the circuit.

Exception: Automatic reclosing of a circuit shall be permitted where the circuit is exposed to transient faults and where such automatic reclosing does not create a hazard to persons.

(3) Combination Protection. Overload protection and fault-current protection shall be permitted to be provided by the same device.

430.226495.85 Rating of Motor Control Apparatus. The ultimate trip current of overcurrent (overload) relays or other motor-protective devices used shall not exceed 115 percent of the controller's continuous current rating. Where the motor branch-circuit disconnecting means is separate from the controller, the disconnecting means current rating shall not be less than the ultimate trip setting of the overcurrent relays in the circuit.

430.227495.86 Disconnecting Means. The controller disconnecting means shall be lockable in accordance with <u>110.25</u>.

Part XIVIV. Tables

Table 495.87 Full-Load Current, Two-Phase Alternating-Current Motors (4-Wire)

The following values of full-load current are for motors running at speeds usual for belted motors and motors with normal torque characteristics. Current in the common conductor of a 2-phase, 3-wire system will be 1.41 times the value given. The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120, 220 to 240, 440 to 480, and 550 to 600 volts. The currents listed shall be permitted for system voltage ranges of 2300 to 2400 volts.

Usessee	Induction-Type Squirrel Cage and Wound Rotor (Amperes)							
Horsepower	<u>115</u> Volts	230 Volts	460 Volts	575 Volts	<u>2300</u> <u>Volts</u>			
<u>60</u>	=	133	67	53	<u>14</u>			
<u>75</u>	=	166	83	66	<u>18</u>			
<u>100</u>	=	218	109	87	<u>23</u>			
<u>125</u>	=	270	135	108	<u>28</u>			
<u>150</u>	=	<u>312</u>	156	125	<u>32</u>			
200	=	<u>416</u>	208	167	<u>43</u>			

Table 495.88 Full-Load Current, Three-Phase Alternating-Current Motors

The following values of full-load currents are typical for motors running at speeds usual for belted motors and motors with normal torque characteristics. The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120, 220 to 240, 440 to 480, and 550 to 6002300 to 2400 volts.

Horsepow		<u>Indı</u>	iction-Ty		rel Cage and nperes)	Wound I	<u>Rotor</u>		<u>Synch</u>	ronous-T Factor*		-
er	115	; Vol 2	00 Vol 2 ()8 Vol 23	0 Vol <u>460 V</u>	ol 575 Vc	<u>+ 2300 \</u>	Vol	230 Vo	l 460 Vol	575 Vol	2300 Vol
	1	3	<u>ts</u>	<u>ts</u>	te te	ts	<u>ts</u>		ts ts	ts	ts	<u>ts</u>
<u>60</u>	=	177	169	154	77	62	<u>16</u>	_	123	61	49	<u>12</u>
<u>100</u>	_	285	273	248	124	99	<u>26</u>	_	202	101	81	<u>20</u>
<u>125</u>	=	<u>359</u>	343	<u>312</u>	156	125	<u>31</u>	_	253	126	101	<u>25</u>
<u>150</u>	=	<u>414</u>	396	360	180	144	<u>37</u>	_	302	<u>151</u>	121	<u>30</u>
<u>200</u>	_	<u>552</u>	528	<u>480</u>	240	192	<u>49</u>	_	<u>400</u>	201	161	<u>40</u>

*For 90 and 80 percent power factor, the figures shall be multiplied by 1.1 and 1.25, respectively.

Part VII. Transformers

ARTICLE 450 Transformers and Transformer Vaults (Including Secondary Ties) Part I. General Provisions

450.1495.100 Scope General Provisions. This article Partsection covers the installation of all transformers over 1000 volts on either the Primary or Secondary. Part VII supplements or amends the other provisions of article 450.

Exception No. 1: Current transformers.

Exception No. 2: Dry-type transformers that constitute a component part of other apparatus and comply with the requirements for such apparatus.

Exception No. 3: Transformers that are an integral part of an X-ray, high-frequency, or electrostatic-coating apparatus.

Exception No. 4: Transformers used with Class 2 and Class 3 circuits that comply with Article 725.

Exception No. 45: Transformers for sign and outline lighting that comply with Article 600.

Exception No. 56: Transformers for electric-discharge lighting that comply with Article 410.

Exception No. 7: Transformers used for power-limited fire alarm circuits that comply with Part III of Article 760.

Exception No. <u>68</u>: *Transformers used for research, development, or testing, where effective arrangements are provided to safeguard persons from contacting energized parts.*

This article covers the installation of transformers dedicated to supplying power to a fire pump installation as modified by Article <u>695</u>.

This article also covers the installation of transformers in hazardous (classified) locations as modified by Articles $\frac{501}{504}$.

x450.2495.102 Definition. The definitions in this section shall apply only within this article.

Transformer. An individual transformer, single- or polyphase, identified by a single nameplate, unless otherwise indicated in this article.

495.102 Exposed Energized Parts. Switches or other equipment operating at 1000 volts, nominal, or less and serving only equipment within a transformer enclosure shall be permitted to be installed in the transformer enclosure if accessible to qualified persons only. All energized parts shall be guarded in accordance with 110.27 and 110.34.

450.3495.103 Overcurrent Protection. Overcurrent protection of transformers shall comply with $\frac{(B)}{(C).495.103}$ As used in this section, the word *transformer* shall mean a transformer or polyphase bank of two or more single-phase transformers operating as a unit.

Informational Note No. 1: See 240.4, 240.21, 240.100, and 240.101 for overcurrent protection of conductors.

Informational Note No. 2: Nonlinear loads can increase heat in a transformer without operating its overcurrent protective device.

450.3(A) Transformers Over 1000 Volts, Nominal. Overcurrent protection shall be provided in accordance with Table 450.3(A).

 Table 450.3495.103 (A)
 Maximum Rating or Setting of Overcurrent Protection for Transformers

 Over 1000 Volts (as a Percentage of Transformer-Rated Current)

Secondary Protection (See Note 2.)

		Primary Pro over 1000		Over 1000	1000 Volts or Less	
Location Limitations	Transformer Rated Impedance	Circuit Breaker (See Note 4.)	Fuse Rating	Circuit Breaker (See Note 4.)	Fuse Rating	Circuit Breaker or Fuse Rating
Anylocotion	Not more than 6%	600% (See Note 1.)	300% (See Note 1.)	300% (See Note 1.)	250% (See Note 1.)	125% (See Note 1.)
Any location	More than 6% and not more than 10%	400% (See Note 1.)	300% (See Note 1.)	250% (See Note 1.)	225% (See Note 1.)	125% (See Note 1.)
Supervised locations only (See Note 3.)	Any	300% (See Note 1.)	250% (See Note 1.)	Not required	Not required	Not required
	Not more than 6%	600%	300%	300% (See Note 5.)	250% (See Note 5.)	250% (See Note 5.)
	More than 6% and not more than 10%	400%	300%	250% (See Note 5.)	225% (See Note 5.)	250% (See Note 5.)

Notes:

1. Where the required fuse rating or circuit breaker setting does not correspond to a standard rating or setting, a higher rating or setting that does not exceed the following shall be permitted:

a. The next higher standard rating or setting for fuses and circuit breakers 1000 volts and below, or

b. The next higher commercially available rating or setting for fuses and circuit breakers above 1000 volts.

2. Where secondary overcurrent protection is required, the secondary overcurrent device shall be permitted to consist of not more than six circuit breakers or six sets of fuses grouped in one location. Where multiple overcurrent devices are utilized, the total of all the device ratings shall not exceed the allowed value of a single overcurrent device. If both circuit breakers and fuses are used as the overcurrent device, the total of the device ratings shall not exceed that allowed for fuses.

3. A supervised location is a location where conditions of maintenance and supervision ensure that only qualified persons monitor and service the transformer installation.

4. Electronically actuated fuses that may be set to open at a specific current shall be set in accordance with settings for circuit breakers.

5. A transformer equipped with a coordinated thermal overload protection by the manufacturer shall be permitted to have separate secondary protection omitted.

450.21495.104 Dry-Type Transformers Installed Indoors.

(A) Not Over 112½ kVA. Dry-type transformers installed indoors and rated 112½ kVA or less shall have a separation of at least 300 mm (12 in.) from combustible material unless separated from the combustible material by a fire-resistant, heat-insulated barrier.

(B) Over $112\frac{1}{2}$ kVA. Individual dry-type transformers of more than $112\frac{1}{2}$ kVA rating shall be installed in a transformer room of fire-resistant construction having a minimum fire rating of 1 hour.

Exception No. 1: Transformers with Class 155 or higher insulation systems and separated from combustible material by a fire-resistant, heat-insulating barrier or by not less than 1.83 m (6 ft) horizontally and 3.7 m (12 ft) vertically.

Exception No. 2: Transformers with Class 155 or higher insulation systems and completely enclosed except for ventilating openings.

Informational Note: See ASTM E119-18a, *Standard Test Methods for Fire Tests of Building Construction and Materials*.

(C) Over 35,000 Volts. Dry-type transformers rated over 35,000 volts shall be installed in a vault complying with Part III the provisions of this article.

450.22495.105 Dry-Type Transformers Installed Outdoors. Dry-type transformers installed outdoors shall have a weatherproof enclosure.

Transformers exceeding $112\mathscr{V}_2$ kVA shall not be located within 300 mm (12 in.) of combustible materials of buildings unless the transformer has Class 155 insulation systems or higher and is completely enclosed except for ventilating openings.

450.23495.106 Less-Flammable Liquid-Insulated Transformers. Transformers insulated with listed less-flammable liquids that have a fire point of not less than 300°C shall be permitted to be installed in accordance with 495.106450.23(A) or 495.106450.23(B).

450.23495.106(A) Indoor Installations. Indoor installations shall be permitted in accordance with one of the following:

(1) In Type I or Type II buildings, in areas where all of the following requirements are met:

- a. The transformer is rated 35,000 volts or less.
- b. No combustible materials are stored.
- c. A liquid confinement area is provided.

d. The installation complies with all the restrictions provided for in the listing of the liquid.

Informational Note: Such restrictions can include, but are not limited to maximum pressure of the tank, use of a pressure relief valve, appropriate fuse types, and proper sizing of overcurrent protection.

(2) If an automatic fire extinguishing system and a liquid confinement area is present, provided the transformer is rated 35,000 volts or less

(3) If the installation complies with 495.109 450.26

(B) Outdoor Installations.

Less-flammable liquid-filled transformers shall be permitted to be installed outdoors, attached to, adjacent to, or on the roof of buildings, if installed in accordance with (1) or (2).

(1) For Type I and Type II buildings, the installation shall comply with all the restrictions provided for in the listing of the liquid.

Informational Note No. 1: Installations adjacent to combustible material, fire escapes, or door and window openings can require additional safeguards such as those listed in <u>495.110</u><u>450.27</u>. Informational Note No. 2: Such restrictions can include, but are not limited to: maximum pressure of the tank, use of a pressure relief valve, appropriate fuse types, and proper sizing of overcurrent protection.

(2) In accordance with 450.27495.110.

Informational Note No. 1: As used in this section, *Type I and Type II buildings* refers to Type I and Type II building construction as defined in <u>NFPA 220-2018</u>, *Standard on Types of Building Construction. Combustible materials* refers to those materials not classified as noncombustible or limitedcombustible as defined in <u>NFPA 220-2018</u>, *Standard on Types of Building Construction*. Informational Note No. 2: See definition of *Listed* in Article <u>100</u>.

450.24495.107 Nonflammable Fluid-Insulated Transformers. Transformers insulated with a dielectric fluid identified as nonflammable shall be permitted to be installed indoors or outdoors. Such transformers installed indoors and rated over 35,000 volts shall be installed in a vault. Such transformers installed indoors shall be furnished with a liquid confinement area and a pressure-relief vent. The transformers shall be furnished with a means for absorbing any gases generated by arcing inside the tank, or the pressure-relief vent shall be connected to a chimney or flue that will carry such gases to an environmentally safe area.

Informational Note: Safety may be increased if fire hazard analyses are performed for such transformer installations.

For the purposes of this section, a nonflammable dielectric fluid is one that does not have a flash point or fire point and is not flammable in air.

450.25495.108 Askarel-Insulated Transformers Installed Indoors. Askarel-insulated transformers installed indoors and rated over 25 kVA shall be furnished with a pressure-relief vent. Where installed in a poorly ventilated place, they shall be furnished with a means for absorbing any gases generated by arcing inside the case, or the pressure-relief vent shall be connected to a chimney or flue that carries such gases outside the building. Askarel-insulated transformers rated over 35,000 volts shall be installed in a vault.

495.109 Oil-Insulated Transformers Installed Indoors. Oil-insulated transformers installed indoors shall be installed in a vault constructed as specified in Part III of this article.

Exception No. 1: Where the total capacity does not exceed $112\frac{1}{2}$ kVA, the vault specified in Part III of this article shall be permitted to be constructed of reinforced concrete that is not less than 100 mm (4 in.) thick.

Exception No. 2: Where the nominal voltage does not exceed 1000, a vault shall not be required if suitable arrangements are made to prevent a transformer oil fire from igniting other materials and the total capacity in one location does not exceed 10 kVA in a section of the building classified as combustible or 75 kVA where the surrounding structure is classified as fire-resistant construction. Exception No. 3: Electric furnace transformers that have a total rating not exceeding 75 kVA shall be permitted to be installed without a vault in a building or room of fire-resistant construction, provided suitable arrangements are made to prevent a transformer oil fire from spreading to other combustible material.

Exception No. 4: A transformer that has a total rating not exceeding 75 kVA and a supply voltage of 1000 volts or less that is an integral part of charged-particle-accelerating equipment shall be permitted to be installed without a vault in a building or room of noncombustible or fire-resistant construction, provided suitable arrangements are made to prevent a transformer oil fire from spreading to other combustible material.

Exception No. 5: Transformers shall be permitted to be installed in a detached building that does not comply with Part III of this article if neither the building nor its contents present a fire hazard to any other building or property, and if the building is used only in supplying electric service and the interior is accessible only to qualified persons.

Exception No. 6: Oil-insulated transformers shall be permitted to be used without a vault in portable and mobile surface mining equipment (such as electric excavators) if each of the following conditions is met:

(1) Provision is made for draining leaking fluid to the ground.

(2) Safe egress is provided for personnel.

(3) A minimum 6-mm (1/4-in.) steel barrier is provided for personnel protection.

495.110 Oil-Insulated Transformers Installed Outdoors.

<u>Combustible material, combustible buildings, and parts of buildings, fire escapes, and door and window openings</u> shall be safeguarded from fires originating in oil-insulated transformers installed on roofs, attached to or adjacent to a <u>building or combustible material.</u>

In cases where the transformer installation presents a fire hazard, one or more of the following safeguards shall be applied according to the degree of hazard involved:

(1) Space separations

(2) Fire-resistant barriers

(3) Automatic fire suppression systems

(4) Enclosures that confine the oil of a ruptured transformer tank

Oil enclosures shall be permitted to consist of fire-resistant dikes, curbed areas or basins, or trenches filled with coarse, crushed stone. Oil enclosures shall be provided with trapped drains where the exposure and the quantity of oil involved are such that removal of oil is important.

Informational Note: For additional information on transformers installed on poles or structures or under ground, see ANSI/IEEE C2-2017, National Electrical Safety Code.

495.111 Modification of Transformers.

When modifications are made to a transformer in an existing installation that change the type of the transformer with respect to Part VII of this article, such transformer shall be marked to show the type of insulating liquid installed, and the modified transformer installation shall comply with the applicable requirements for that type of transformer.

Part III<u>VIII</u>. Transformer Vaults

450.41<u>495.112</u> Location. Vaults shall be located where they can be ventilated to the outside air without using flues or ducts wherever such an arrangement is practicable.

495.113 Accessibility. All transformer vaults shall be readily accessible to qualified personnel for inspection and maintenance or shall meet the requirements of 450.13(A) or 450.13(B).

450.42495.1143 Walls, Roofs, and Floors. The walls and roofs of vaults shall be constructed of materials that have approved structural strength for the conditions with a minimum fire resistance of 3 hours. The floors of vaults in contact with the earth shall be of concrete that is not less than 100 mm (4 in.) thick, but, where the vault is constructed with a vacant space or other stories below it, the floor shall have approved structural strength for the load imposed thereon and a minimum fire resistance of 3 hours. For the purposes of this section, studs and wallboard construction shall not be permitted.

Exception: Where transformers are protected with automatic sprinkler, water spray, carbon dioxide, or halon, construction of 1-hour rating shall be permitted.

Informational Note No. 1: For additional information, see ASTM E119-18a, *Methods for Fire Tests of Building Construction and Materials*.

Informational Note No. 2: A typical 3-hour construction is 150 mm (6 in.) thick reinforced concrete.

450.43495.1154 Doorways. Vault doorways shall be protected in accordance with <u>495.1154450.43(A)</u>, (B), and (C).

(A) Type of Door. Each doorway leading into a vault from the building interior shall be provided with a tight-fitting door that has a minimum fire rating of 3 hours. The authority having jurisdiction shall be permitted to require such a door for an exterior wall opening where conditions warrant.

Exception: Where transformers are protected with automatic sprinkler, water spray, carbon dioxide, or halon, construction of 1-hour rating shall be permitted.

Informational Note: For additional information, see <u>NFPA 80</u>-2016, *Standard for Fire Doors and Other Opening Protectives*.

(B) Sills. A door sill or curb that is of an approved height that will confine the oil from the largest transformer within the vault shall be provided, and in no case shall the height be less than 100 mm (4 in.).

(C) Locks. Doors shall be equipped with locks, and doors shall be kept locked, with access being allowed only to qualified persons. Personnel doors shall open in the direction of egress and be equipped with listed fire exit hardware.

450.45495.1165 Ventilation Openings. Where required by <u>450.9</u>, openings for ventilation shall be provided in accordance with <u>495.1165450.45(A)</u> through (F).

(A) Location. Ventilation openings shall be located as far as possible from doors, windows, fire escapes, and combustible material.

(B) Arrangement. A vault ventilated by natural circulation of air shall be permitted to have roughly half of the total area of openings required for ventilation in one or more openings near the floor and the remainder in one or more openings in the roof or in the sidewalls near the roof, or all of the area required for ventilation shall be permitted in one or more openings in or near the roof.

(C) Size. For a vault ventilated by natural circulation of air to an outdoor area, the combined net area of all ventilating openings, after deducting the area occupied by screens, gratings, or louvers, shall not be less than 1900 mm² (3 in.²) per kVA of transformer capacity in service, and in no case shall the net area be less than 0.1 m^2 (1 ft²) for any capacity under 50 kVA.

(D) Covering. Ventilation openings shall be covered with durable gratings, screens, or louvers, according to the treatment required in order to avoid unsafe conditions.

(E) Dampers. All ventilation openings to the indoors shall be provided with automatic closing fire dampers that operate in response to a vault fire. Such dampers shall possess a standard fire rating of not less than $1\frac{1}{2}$ hours. Informational Note: See ANSI/UL 555-2016, *Standard for Fire Dampers*.

(F) Ducts. Ventilating ducts shall be constructed of fire-resistant material.

495.1176 450.46 Drainage. Where practicable, vaults containing more than 100 kVA transformer capacity shall be provided with a drain or other means that will carry off any accumulation of oil or water in the vault unless local conditions make this impracticable. The floor shall be pitched to the drain where provided.

495.1187 450.47 Water Pipes and Accessories. Any pipe or duct system foreign to the electrical installation shall not enter or pass through a transformer vault. Piping or other facilities provided for vault fire protection, or for transformer cooling, shall not be considered foreign to the electrical installation.

495.1198 450.48 Storage in Vaults. Materials shall not be stored in transformer vaults.

Part IX. Capacitors

495.120119 Enclosing and Guarding.

(A) Containing More Than 11 L (3 gal) of Flammable Liquid. Capacitors containing more than 11 L (3 gal) of flammable liquid shall be enclosed in vaults or outdoor fenced enclosures complying with Article 110, Part III. This limit shall apply to any single unit in an installation of capacitors.

(B) Accidental Contact. Where capacitors are accessible to unauthorized and unqualified persons, they shall be enclosed, located, or guarded so that persons cannot come into accidental contact or bring conducting materials into accidental contact with exposed energized parts, terminals, or buses associated with them. However, no additional guarding is required for enclosures accessible only to authorized and qualified persons

495.1210 Not Covered.

Surge capacitors or capacitors included as a component part of other apparatus and conforming with the requirements of such apparatus are excluded from these requirements.

This Part also covers the installation of capacitors in hazardous (classified) locations as modified by Articles <u>501</u> through <u>503</u>.

495.1224 Switching.

(A) Load Current. Group-operated switches shall be used for capacitor switching and shall be capable of the following:

(1) Carrying continuously not less than 135 percent of the rated current of the capacitor installation

(2) Interrupting the maximum continuous load current of each capacitor, capacitor bank, or capacitor installation that will be switched as a unit

- (3) Withstanding the maximum inrush current, including contributions from adjacent capacitor installations
- (4) Carrying currents due to faults on capacitor side of switch

(B) Isolation.

(1) General. A means shall be installed to isolate from all sources of voltage each capacitor, capacitor bank, or capacitor installation that will be removed from service as a unit. The isolating means shall provide a visible gap in the electrical circuit adequate for the operating voltage.

(2) Isolating or Disconnecting Switches with No Interrupting Rating. Isolating or disconnecting switches (with no interrupting rating) shall be interlocked with the load-interrupting device or shall be provided with prominently displayed caution signs in accordance with <u>4950.22</u> to prevent switching load current.

(C) Additional Requirements for Series Capacitors. The proper switching sequence shall be ensured by use of one of the following:

- (1) Mechanically sequenced isolating and bypass switches
- (2) Interlocks
- (3) Switching procedure prominently displayed at the switching location

495.1232 Overcurrent Protection.

(A) Provided to Detect and Interrupt Fault Current. A means shall be provided to detect and interrupt fault current likely to cause dangerous pressure within an individual capacitor.

(B) Single Pole or Multipole Devices. Single-pole or multipole devices shall be permitted for this purpose.

(C) Protected Individually or in Groups. Capacitors shall be permitted to be protected individually or in groups.

(D) Protective Devices Rated or Adjusted. Protective devices for capacitors or capacitor equipment shall be rated or adjusted to operate within the limits of the safe zone for individual capacitors.

495.1243 460.26 Identification. Each capacitor shall be provided with a permanent nameplate giving the manufacturer's name, rated voltage, frequency, kilovar or amperes, number of phases, and the volume of liquid identified as flammable, if such is the case.

495.1254 460.27 Grounding. Capacitor cases shall be connected to the equipment grounding conductor. If the capacitor neutral point is connected to a grounding electrode conductor, the connection shall be made in accordance with Part III of Article <u>250</u>.

Exception: Capacitor cases shall not be connected to the equipment grounding conductor where the capacitor units are supported on a structure designed to operate at other than ground potential.

495.1265 460.28 Means for Discharge.

(A) Means to Reduce the Residual Voltage. A means shall be provided to reduce the residual voltage of a capacitor to 50 volts or less within 5 minutes after the capacitor is disconnected from the source of supply.

(B) Connection to Terminals. A discharge circuit shall be either permanently connected to the terminals of the capacitor or provided with automatic means of connecting it to the terminals of the capacitor bank after disconnection of the capacitor from the source of supply. The windings of motors, transformers, or other equipment directly connected to capacitors without a switch or overcurrent device interposed shall meet the requirements of <u>495.12660.28(A)</u>.

Part X. Resistors and Reactors

470.18495.130 General.

(A) Protected Against Physical Damage.

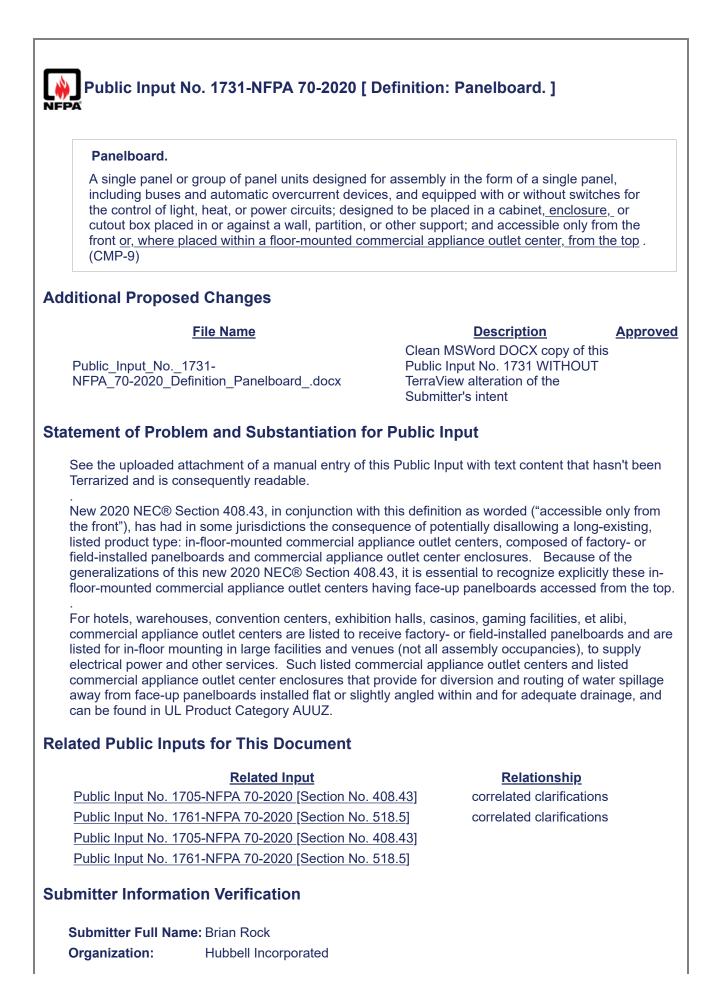
Resistors and reactors shall be protected against physical damage.

(B) Isolated by Enclosure or Elevation. Resistors and reactors shall be isolated by enclosure or elevation to protect personnel from accidental contact with energized parts.

(C) Combustible Materials. Resistors and reactors shall not be installed in close enough proximity to combustible materials to constitute a fire hazard and shall have a clearance of not less than 305 mm (12 in.) from combustible materials.

(D) Clearances. Clearances from resistors and reactors to grounded surfaces shall be adequate for the voltage involved.

(E) Temperature Rise from Induced Circulating Currents. Metallic enclosures of reactors and adjacent metal parts shall be installed so that the temperature rise from induced circulating currents is not hazardous to personnel or does not constitute a fire hazard.


<u>495.131</u> 470.19- Grounding. Resistor and reactor cases or enclosures shall be connected to the equipment grounding conductor.

Exception: Resistor or reactor cases or enclosures supported on a structure designed to operate at other than ground potential shall not be connected to the equipment grounding conductor.

<u>495.132</u> <u>470.20</u> OII-Filled Reactors. Installation of oil-filled reactors, in addition to the above requirements, shall comply with applicable requirements of Article <u>495, Part VII450</u>.

Γ

TITLE OF NEW	
Type your conten	nt here Feeder Panel Board: Create a definition fo term
tatement of Probl	em and Substantiation for Public Input
	-
This would create a	definition for the general term sub panel.
ubmitter Informat	tion Varification
Submitter Full Nan	
	ne: Brian Cornell
Organization:	ne: Brian Cornell Brian Cornell
Organization:	Brian Cornell
Organization: Affiliation:	Brian Cornell
Organization: Affiliation: Street Address:	Brian Cornell
Organization: Affiliation: Street Address: City:	Brian Cornell
Organization: Affiliation: Street Address: City: State:	Brian Cornell
Organization: Affiliation: Street Address: City: State: Zip:	Brian Cornell Contractor
Organization: Affiliation: Street Address: City: State: Zip: Submittal Date:	Brian Cornell Contractor Wed Sep 09 08:01:53 EDT 2020

Street Addre	ess:
City:	
State:	
Zip:	
Submittal D	ate: Thu Jun 25 16:27:12 EDT 2020
Committee:	NEC-P09
Committee St	atement
Resolution:	FR-7946-NFPA 70-2020
Statement:	Panelboards are commonly installed in cabinets and cutout boxes but may be installed in many types of equipment so this addition would cover other applications with the term identified equipment.

NFP	Public Inp	out No. 892-NFPA 70-2020 [Definition: Panelboard.]
	Panelboar	d.
	including but the control as a switch	nel or group of panel units designed for assembly in the form of a single panel, uses and automatic overcurrent devices, and equipped with or without switches for of light, heat, or power circuits; designed to be <u>placed</u> _ <u>installed</u> _in <u>equipment such</u> <u>iboard, industrial control panel, explosionproof panelboard enclosure or a</u> _cabinet or placed in or against a wall, partition, or other support; and accessible only from the -9)
Stat	ement of P	roblem and Substantiation for Public Input
5	such as in a sv	revision provides additional examples of equipment that could contain a panelboard vitchboard, explosionproof enclosure or other enclosure.
5	Submitter Full	Name: Agnieszka Golriz
C	Organization:	NECA
5	Street Addres	s:
C	City:	
5	State:	
Z	Zip:	
5	Submittal Date	
C	Committee:	NEC-P09
Con	nmittee Sta	tement
F	Resolution: F	R-7946-NFPA 70-2020
	Statement: P	Panelboards are commonly installed in cabinets and cutout boxes but may be installed in nany types of equipment so this addition would cover other applications with the term dentified equipment.

Public Input No. 1096-NFPA 70-2020 [Section No. 312.2]

312.2 Damp and Wet Locations.

In damp or wet locations, surface-type enclosures within the scope of this article shall be placed or equipped so as to prevent moisture or water from entering and accumulating within the cabinet or cutout box, and shall be mounted so there is at least 6-mm (¹/₄-in.) airspace between the enclosure and the wall or other supporting surface. Enclosures installed in wet locations shall be weatherproof. For enclosures in wet locations, raceways or cables entering <u>at or</u> above the level of uninsulated live parts shall use <u>threaded hub</u> fittings listed for wet locations.

Enclosures designed to be surface mounted shall be surface mounted when installed in a wet or damp location or if raceways served route through a wet or damp location at or above the enclosure mounted height. Weep holes of enclosures designed for wet or damp locations shall not be blocked by structure or building finishes.

Exception: Nonmetallic enclosures shall be permitted to be installed without the airspace on a concrete, masonry, tile, or similar surface.

Informational Note: For protection against corrosion, see 300.6.

Statement of Problem and Substantiation for Public Input

Four items to address:

1. Entering an enclosure that has live parts, with raceways or cables, I propose, will become more stringent by including the level of uninsulated live parts not just 'above the level of live parts'. Driving or sideways rains, sprinkler system water, or similar can enter an enclosure and wash live parts by existing standards. By adding 'at or' would include the lowest height of busbars or uninsulated live parts.

2. Wet location fittings by themselves are insufficient when connected directly to an enclosure without the aid of a threaded hub. Raintight EMT connectors, PVC male adapters, and the like do allow water to get around the fitting and into the enclosure. The raintight portion of the fitting appears to cover the raceway side of the fitting, not the flat surface enclosure side of the fitting. The locknut or locknut/gasket combination does not adequately keep water and moisture out. Corrosion and faulted circuits can occur if rains and moisture can't be kept out of the enclosures listed in 312.1 and the enclosures of 408 included to 312 by 408.2.

3. Raintight EMT fittings, PVC male adapters, and the like suffice when installed below busbar or uninsulated live parts level.

4. Dimples out the back of some enclosures are designed to step the enclosure off the surface. These dimples become non-functional when this type of enclosure is embedded (within stucco for example). Enclosures mounted this way may never experience a problem. Problems can arise if water or moisture were able to enter the enclosure and become trapped. Premature failure or worse, of the enclosure or components within the enclosure will occur if water or moisture is trapped. Water may also enter from a conduit entering the enclosure.

Existing installations across the country that have already been inspected and approved appear to violate the already written first part of 312.2 by trapping enclosures and weep holes due to structure. The structure can be stucco finish or finished carpentry in an attempt to hide an 'unsightly' electrical enclosure. 110.26 clearances may also come into play and referenced.

I'd say please disregard the latter part of my public input on blocking weep holes if this is already

adequately written in the NEC (possibly not adequately enforced in the field).

Do consider though, the first part of the public input on threaded hub fittings at or above uninsulated live parts or busbars. I believe this is overdue.

Submitter Information Verification

Submitter Full Name:	Norman Feck
Organization:	State of Colorado
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Sat May 16 11:16:39 EDT 2020
Committee:	NEC-P09

Committee Statement

Resolution: CMP-9 concludes the section is correctly written. The enclosures within the scope of Art. 312 and placed in wet or damp locations will be rated NEMA 3R at minimum, and as such the enclosures will have been evaluated for corrosion resistance, as also required by 312.10(A). In addition, the current wording requires placement or being equipped to prevent water accumulation. In the event the enclosure does not have them, a weep hole can easily be added; if the weep hole was improperly located so as to be blocked by structure, the installation no longer accords with the requirements. A driving rain does not counteract the effects of gravity within an enclosure; the broadening of these requirements to levels below uninsulated live parts is not justified and does not conflict with 110.3(B) which, in the event that such coverage is mandated by a listing instruction, will continue to apply. This section provides minimum requirements; an installation instruction providing more robust connection provisions will apply in addition to NEC minimums. A rear entry to an enclosure must be judged by the AHJ in accordance with these provisions.

Public Ir	nput No. 2713-NFPA 70-2020 [Section No. 312.2]
312.2 Da	amp and Wet Locations.
or equippe cabinet or the enclos shall be w	or wet locations, surface-type enclosures within the scope of this article shall be placed ed so as to prevent moisture or water from entering and accumulating within the cutout box, and shall be mounted so there is at least 6-mm (¹ / ₄ -in.) airspace between sure and the wall or other supporting surface. Enclosures installed in wet locations reatherproof. For enclosures in wet locations, raceways or cables entering above the hinsulated live parts shall <u>cables shall</u> use fittings listed for wet locations.
	n: Nonmetallic enclosures shall be permitted to be installed without the airspace on a , masonry, tile, or similar surface.
Info	rmational Note: For protection against corrosion, see 300.6.
atement of	Problem and Substantiation for Public Input
accumulate,	cables entering on the side or top of a wet locations enclosure can allow water to and can corrode enclosure regardless of the location of live parts. The enclosure is vita ntact with live parts.
ıbmitter Info	ormation Verification
Submitter Fu	Ill Name: Greg Chontow
Organizatior	
Street Addre	SS:
City:	
State:	
Zip:	
Submittal Da	
Committee:	NEC-P09
ommittee St	atement
Resolution:	CMP-9 concludes the section is correctly written. The enclosures within the scope of At 312 and placed in wet or damp locations will be rated NEMA 3R at minimum, and as such the enclosures will have been evaluated for corrosion resistance, as also required by 312.10(A). In addition, the current wording requires placement or being equipped to prevent water accumulation. In the event the enclosure does not have them, a weep ho can easily be added; if the weep hole was improperly located so as to be blocked by structure, the installation no longer accords with the requirements. A driving rain does requirements to levels below uninsulated live parts is not justified and does not conflict with 110.3(B) which, in the event that such coverage is mandated by a listing instruction will continue to apply. This section provides minimum requirements; an installation instruction providing more robust connection provisions will apply in addition to NEC minimums. A rear entry to an enclosure must be judged by the AHJ in accordance with

Public li	nput No. 3449-NFPA 70-2020 [Section No. 312.2]						
312.2	amp and Wat Locations						
	312.2 Damp and Wet Locations. In damp or wet locations, surface-type enclosures within the scope of this article shall be placed						
or equipp cabinet o the enclo shall be v	or equipped so as to prevent moisture or water from entering and accumulating within the cabinet or cutout box, and shall be mounted so there is at least 6-mm (¹ / ₄ -in.) airspace between the enclosure and the wall or other supporting surface. Enclosures installed in wet locations shall be weatherproof. For enclosures in wet locations, raceways or cables entering above the level of uninsulated live parts shall <u>cables shall</u> use fittings listed for wet locations.						
	Exception: Nonmetallic enclosures shall be permitted to be installed without the airspace on a concrete, masonry, tile, or similar surface.						
Info	ormational Note: For protection against corrosion, see 300.6.						
Statement of	Problem and Substantiation for Public Input						
accumulate, prevent cont	r cables and their fittings entering enclosures in a wet locations can allow water to and can corrode enclosure regardless of the location of live parts. The enclosure is vital to act with live parts. Raceways or cable fittings in wet locations should be listed for a wet ardless of where it enters the enclosure (in a wet location).						
Submitter Infe	ormation Verification						
Submitter F	ull Name: Rudolph Garza						
Organizatio							
Affiliation:	IAEI						
Street Addre	ess:						
City:							
State:							
Zip:							
Submittal Da	ate: Tue Sep 08 15:17:42 EDT 2020						
Committee:	NEC-P09						
Committee St	atement						
Resolution:	CMP-9 concludes the section is correctly written. The enclosures within the scope of Art. 312 and placed in wet or damp locations will be rated NEMA 3R at minimum, and as such the enclosures will have been evaluated for corrosion resistance, as also required by 312.10(A). In addition, the current wording requires placement or being equipped to prevent water accumulation. In the event the enclosure does not have them, a weep hole can easily be added; if the weep hole was improperly located so as to be blocked by structure, the installation no longer accords with the requirements. A driving rain does not counteract the effects of gravity within an enclosure; the broadening of these requirements to levels below uninsulated live parts is not justified and does not conflict with 110.3(B) which, in the event that such coverage is mandated by a listing instruction, will continue to apply. This section provides minimum requirements; an installation instruction providing more robust connection provisions will apply in addition to NEC minimums. A rear entry to an enclosure must be judged by the AHJ in accordance with these provisions.						

Public Input No. 351-NFPA 70-2020 [Section No. 312.2] 312.2 Damp and Wet Locations. In damp or wet locations, surface-type enclosures within the scope of this article shall be placed or equipped so as to prevent moisture or water from entering and accumulating within the cabinet or cutout box, and shall be mounted so there is at least 6-mm (¹/₄-in.) airspace between the enclosure and the wall or other supporting surface. Enclosures installed in wet locations shall be weatherproof. For enclosures in wet locations, raceways or cables entering above the level of uninsulated live parts shall use fittings listed for wet locations from a non exposed side shall be permitted to be of the dry type when provided with a sealant above the connector. Exception: Nonmetallic enclosures shall be permitted to be installed without the airspace on a concrete, masonry, tile, or similar surface. Informational Note: For protection against corrosion, see 300.6. Statement of Problem and Substantiation for Public Input The problem here is this section allow non- wet location rated connections below uninsulated live parts however this would be in direct conflict with 110.3 (B). This old mentality of drip proof is inconsistent with the product listing when exposed to a wet condition and this practice should no longer be allowed however if the enclosure is installed against a wall and a sealant above the connect is provided then a dry type connector should be allowed. this is actually current practice example: an outdoor bell box housing a receptacle NM cable is connected with a dry type connector with duct seal to divert any moist or water around the connection the same for a Meter socket with SER Submitter Information Verification Submitter Full Name: Alfio Torrisi **Organization:** Master Electrician Street Address: City: State: Zip: Submittal Date: Thu Jan 23 09:55:11 EST 2020 Committee: NEC-P09 **Committee Statement Resolution:** CMP-9 concludes the section is correctly written. The enclosures within the scope of Art. 312 and placed in wet or damp locations will be rated NEMA 3R at minimum, and as such the enclosures will have been evaluated for corrosion resistance, as also required by 312.10(A). In addition, the current wording requires placement or being equipped to prevent water accumulation. In the event the enclosure does not have them, a weep hole can easily be added; if the weep hole was improperly located so as to be blocked by structure, the installation no longer accords with the requirements. A driving rain does not counteract the effects of gravity within an enclosure; the broadening of these requirements to levels below uninsulated live parts is not justified and does not conflict with 110.3(B) which, in the event that such coverage is mandated by a listing instruction, will continue to apply. This section provides minimum requirements; an installation

instruction providing more robust connection provisions will apply in addition to NEC

minimums. A rear entry to an enclosure must be judged by the AHJ in accordance with these provisions.

Public Ir	
312.2 Da	Imp and <u>or</u> Wet Locations.
In damp of or equippe cabinet or the enclos shall be w	r wet locations, surface-type enclosures within the scope of this article shall be placed ed so as to prevent moisture or water from entering and accumulating within the cutout box, and shall be mounted so there is at least 6-mm (¼-in.) airspace between sure and the wall or other supporting surface. Enclosures installed in wet locations eatherproof. For enclosures in wet locations, raceways or cables entering above the insulated live parts shall use fittings listed for wet locations.
	n: Nonmetallic enclosures shall be permitted to be installed without the airspace on a masonry, tile, or similar surface.
Info	rmational Note: For protection against corrosion, see 300.6.
intent of this s	age that should be in the title of this section. This change doesn't seek to change the section but simply make the title match the requirement.
intent of this s	Section but simply make the title match the requirement.
intent of this s bmitter Info Submitter Fu Organization Street Addre	Section but simply make the title match the requirement.
intent of this s bmitter Info Submitter Fu Organizatior	Section but simply make the title match the requirement.
intent of this s bmitter Info Submitter Fu Organization Street Addre City:	Section but simply make the title match the requirement.
intent of this s bmitter Info Submitter Fu Organization Street Addre City: State: Zip: Submittal Da	Section but simply make the title match the requirement.
intent of this s bmitter Info Submitter Fu Organization Street Addre City: State: Zip:	Section but simply make the title match the requirement.
intent of this s bmitter Info Submitter Fu Organization Street Addre City: State: Zip: Submittal Da Committee:	Section but simply make the title match the requirement.
intent of this s bmitter Info Submitter Fu Organization Street Addre City: State: Zip: Submittal Da Committee: mmittee St	Section but simply make the title match the requirement.
intent of this s bmitter Info Submitter Fu Organization Street Addre City: State: Zip: Submittal Da Committee: mmittee St Resolution:	section but simply make the title match the requirement.

312.5 Cabinets, Cutout Boxes, and Meter Socket Enclosures.
<u>(A)</u> Conductors. <u>Conductors</u> entering enclosures within the scope of this article shall be protected from abrasion- and shall comply with 312 $_{.}$ 5(A) through (C).
(
A)– Openings to Be Closed.
Openings through which conductors enter shall be closed in an approved manner.
ϵ
B)
_
Metal
Cabinets, Cutout Boxes, and Meter Socket
Enclosures.
Where metal enclosures within the scope of this article are installed with messenger- supported wiring, open wiring on insulators, or concealed knob-and-tube wiring, conductors shall enter through insulating bushings or, in dry locations, through flexible tubing extending from the last insulating support and firmly secured to the enclosure.

(C) Cables.

Where cable is used

<u>Where cables enter enclosures withing the scope of this article, each cable shall be secured</u> to the cabinet, cutout box, or meter socket enclosure. <u>Openings through which cables enter</u> shall be closed in an approved manner.

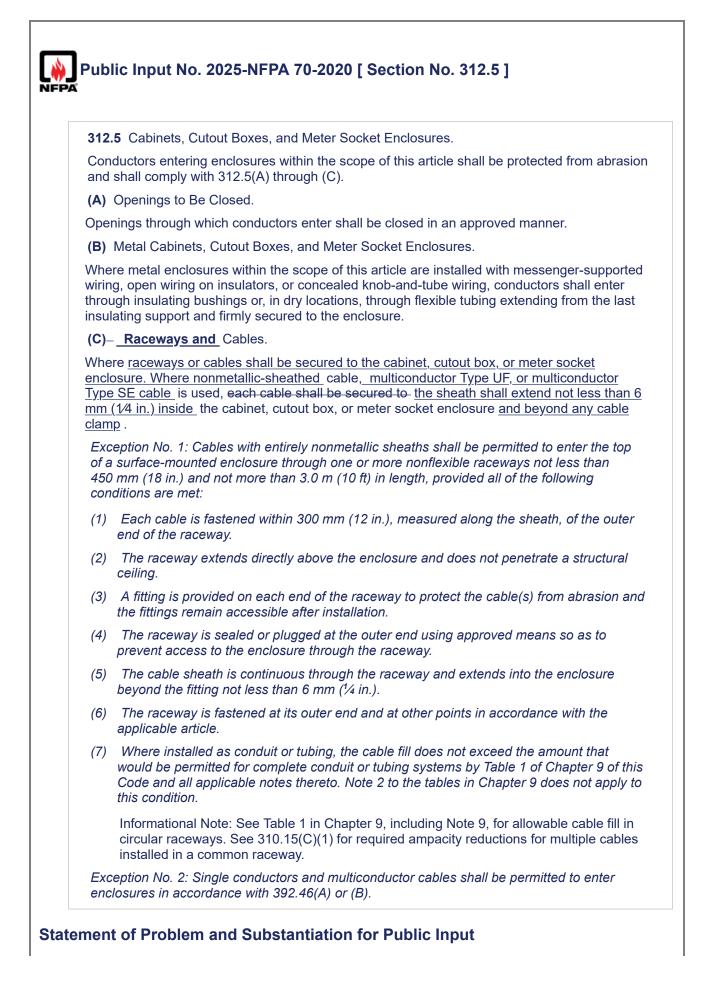
Exception No. 1: Cables with entirely nonmetallic sheaths shall be permitted to enter the top of <u>a surface-mounted an</u> enclosure through one or more nonflexible raceways not less than 450 mm (18 in.) and not more than 3.0 m (10 ft) in length, provided all of the following conditions are met:

- (1) Each cable is fastened within 300 mm (12 in.), measured along the sheath, of the outer end of the raceway.
- (2) The raceway extends <u>to an accessible area</u> directly above the enclosure and does not penetrate a structural ceiling.
- (3) A fitting is provided on each end of the raceway to protect the cable(s) from abrasion and the fittings remain accessible after installation.
- (4) The raceway is sealed or plugged at the outer end using approved means so as to prevent access to the enclosure through the raceway.
- (5) The cable sheath is continuous through the raceway and extends into the enclosure beyond the fitting not less than 6 mm ($\frac{1}{4}$ in.).
- (6) The raceway is fastened at its outer end and at other points in accordance with the applicable article.
- (7) Where installed as conduit or tubing, the cable fill does not exceed the amount that would be permitted for complete conduit or tubing systems by Table 1 of Chapter 9 of this Code and all applicable notes thereto. Note 2 to the tables in Chapter 9 does not apply to this condition.

Informational Note: See Table 1 in Chapter 9, including Note 9, for allowable cable fill in circular raceways. See 310.15(C)(1) for required ampacity reductions for multiple cables installed in a common raceway.

Exception No. 2: - Single For cable tray installations, s ingle conductors and multiconductor cables shall be permitted to enter enclosures in accordance with 392.46(A) or (B).

Statement of Problem and Substantiation for Public Input


Organize the rule into a list format and allow the exception to apply to both concealed and exposed installations.

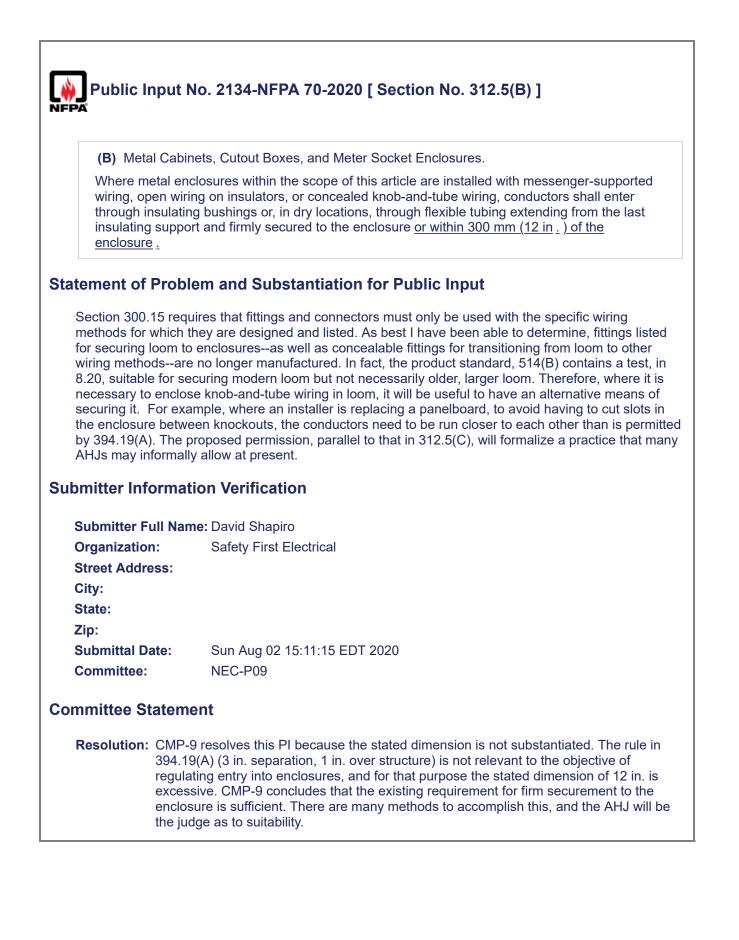
Submitter Information Verification

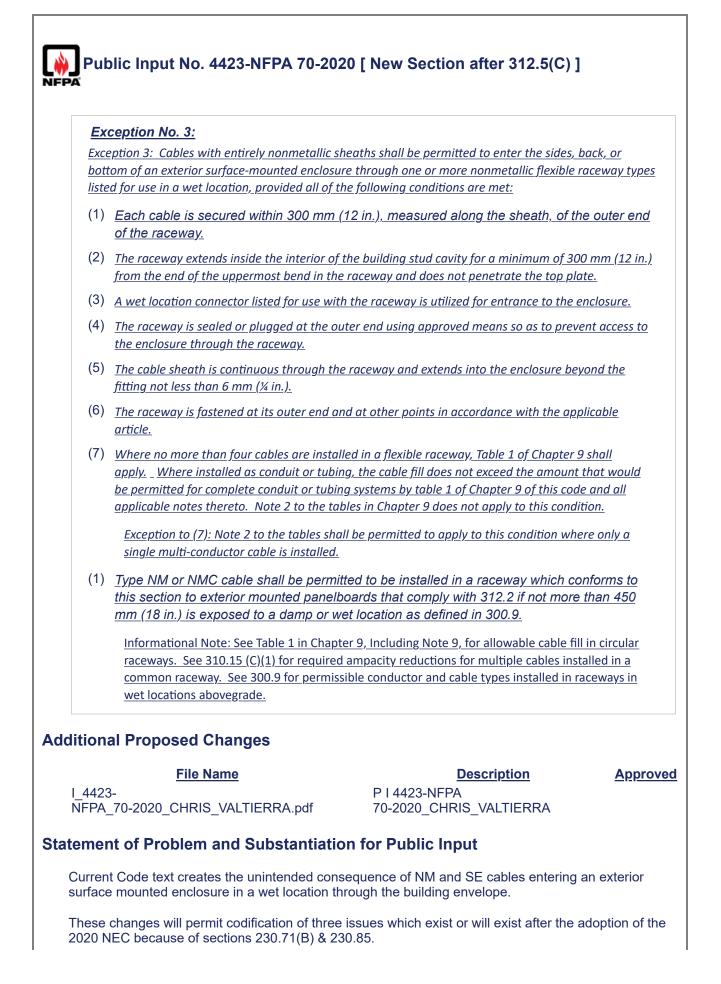
Submitter Full Name: Mike Holt			
Organization: Mike Holt Enterprises Inc			
Street Address:			
City:			
State:			
Zip:			
Submittal Date:	Thu Jun 25 17:10:43 EDT 2020		
Committee:	NEC-P09		

Committee Statement

Resolution: CMP-9 is resolving all five of these PIs because they expand the application of the exception in ways that are inconsistent with the safety objectives of the requirements. CMP-9 notes that the fundamental rule is for each cable (or cable pair as recognized in some connector designs) to enter the enclosure through a connector designed for that purpose, and therefore capable of confining an arcing event to the enclosure. The exception trades off that ideal, to a carefully crafted extent, in favor of a substantial improvement in workmanship, as frequently applied in light commercial work involving suspended ceilings and related applications. PI-4423 would create an additional exception for outdoor applications extended from the sides, back or bottom of the enclosure in wet locations, greatly exceeding the intended use of the existing exception. PI-1736 would extend the reach of the exception to concealed applications. This is an entirely unnecessary expansion of usage because the cabinets to which it applies are equipped with numerous cable knockouts, or can be punched accordingly, and the concealed use entirely avoids the workmanship issues that motivated the insertion of the exception in the 1999 NEC. PI-2025 is resolved because there is no need to extend the requirement to raceways given the requirement in 300.12. In addition, CMP-9 is uncertain as to the exact intent of the first "sentence" in (C) as proposed because as written the words do not form a sentence in the English language. CMP-9 acknowledges that there is no ¼-in. sheath extension requirement at this location, but concludes that the rule would be excessive in cabinets with their far greater volumes that allow for better entrainment of such conductors. PI-1215 is resolved because there is no substantiation that supports the dramatic decrease in containment that would occur in such replacement panelboards. PI-538 is resolved because any extension of the exception as described would dramatically decrease the containment function of the cabinet due to the effective elimination of any significant raceway length. In addition, CMP-9 is reluctant to apply this concept to the back of a cabinet. Such locations are inherently much closer to the energized busbars. Contrary to the assertion made in the substantiation, these prepunched knockout positions are related to potential supply or related uses such as a feed-through application, and with the bending space calculated in accordance with 408.55(C).

I added raceways to the rule so that it's clear that raceways are also required to be secured. The additional text "Where nonmetallic-sheathed cable or multiconductor Type UF cable is used, the sheath shall extend not less than 6 mm (1/4 in.) inside the box and beyond any cable clamp." was extracted from 314.17(B). Currently there is no rule on the minimum length of the sheath.


Submitter Information Verification


Submitter Full Name: Mike HoltOrganization:Mike Holt Enterprises IncStreet Address:City:City:State:State:Submittal Date:Submittal Date:Sun Jul 26 09:58:02 EDT 2020Committee:NEC-P09

Committee Statement

Resolution: CMP-9 is resolving all five of these PIs because they expand the application of the exception in ways that are inconsistent with the safety objectives of the requirements. CMP-9 notes that the fundamental rule is for each cable (or cable pair as recognized in some connector designs) to enter the enclosure through a connector designed for that purpose, and therefore capable of confining an arcing event to the enclosure. The exception trades off that ideal, to a carefully crafted extent, in favor of a substantial improvement in workmanship, as frequently applied in light commercial work involving suspended ceilings and related applications. PI-4423 would create an additional exception for outdoor applications extended from the sides, back or bottom of the enclosure in wet locations, greatly exceeding the intended use of the existing exception. PI-1736 would extend the reach of the exception to concealed applications. This is an entirely unnecessary expansion of usage because the cabinets to which it applies are equipped with numerous cable knockouts, or can be punched accordingly, and the concealed use entirely avoids the workmanship issues that motivated the insertion of the exception in the 1999 NEC. PI-2025 is resolved because there is no need to extend the requirement to raceways given the requirement in 300.12. In addition, CMP-9 is uncertain as to the exact intent of the first "sentence" in (C) as proposed because as written the words do not form a sentence in the English language. CMP-9 acknowledges that there is no ¹/₄-in. sheath extension requirement at this location, but concludes that the rule would be excessive in cabinets with their far greater volumes that allow for better entrainment of such conductors. PI-1215 is resolved because there is no substantiation that supports the dramatic decrease in containment that would occur in such replacement panelboards. PI-538 is resolved because any extension of the exception as described would dramatically decrease the containment function of the cabinet due to the effective elimination of any significant raceway length. In addition, CMP-9 is reluctant to apply this concept to the back of a cabinet. Such locations are inherently much closer to the energized busbars. Contrary to the assertion made in the substantiation, these prepunched knockout positions are related to potential supply or related uses such as a feed-through application, and with the bending space calculated in accordance with 408.55(C).

(A)– Opening	s to Be Closed Conductors .
	ugh which conductors enter <u>Single conductors entering an enclosure</u> shall be ted_in an approved manner.
atement of Pro	blem and Substantiation for Public Input
conductors such a 250.130 (C) enter	ressed in section 110.12 (A) and is not needed to be repeated here. However single as grounding electrode conductors or equipment grounding conductors allowed in ring an enclosures are not addressed this new language would allow the use of s in equipment, or chase nipples and NM cables with bushings to be acceptable if
bmitter Inform	ation Verification
Submitter Full N	
Organization:	Master electrician
Street Address:	
City: State:	
Zip:	
Submittal Date:	Thu Jan 23 10:32:01 EST 2020
Committee:	NEC-P09
mmittee State	nent
	P-9 disagrees with the assertion that 110.12(A), which covers "unused openings," lies to "openings through which conductors enter" and therefore, the substantiation

1. SE Cable Style R is the most common cable installed in the North Texas area as well as other parts of the United States for Single Family, (33,000 new permits annually) Two Family, and Multi-Family Dwelling Unit feeders. Currently there is not a listed, raintight connector for SE-R cable. When terminated into NEMA-3R Service Disconnects or Meter Packs containing service disconnects located in a wet location on the exterior, there is not a Code compliant solution for the cable entrance into the equipment.

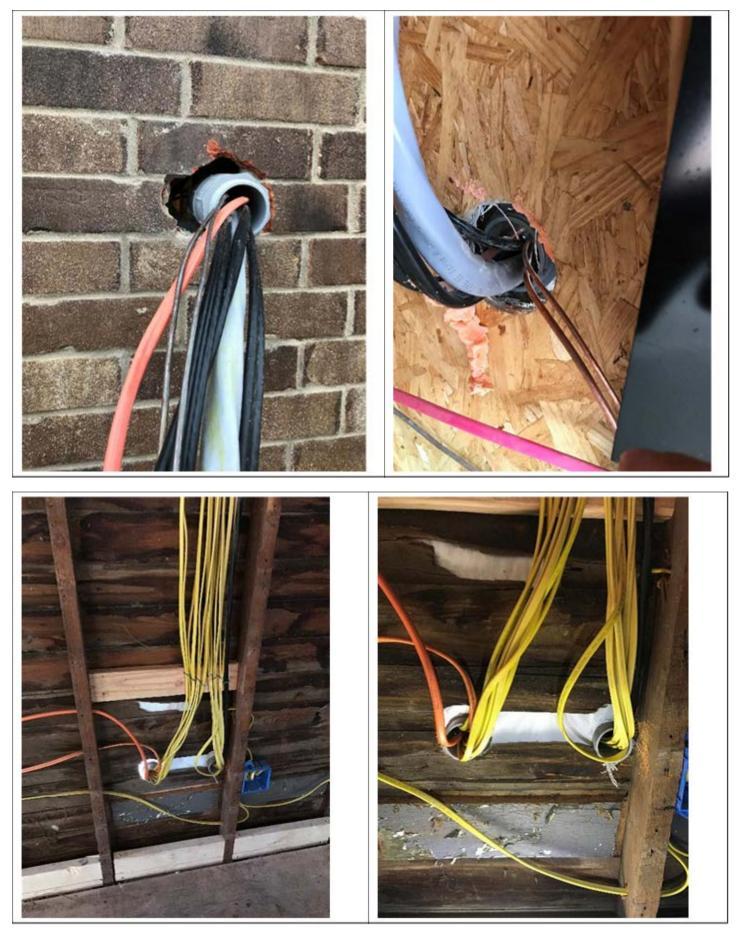
2. Type NM cable entrances into exterior panelboards and exterior device boxes. Currently the Standard Trade Practice for the North Texas Region and other parts of the United States, is to enter in the back of a NEMA-3R cabinet via a PVC male adaptor. This practice is not codified, is a violation of the listing of the PVC male adaptor and can permit insects, vermin and the like to enter the enclosure through the PVC male adaptor as well as permit the uncooled products of combustion to escape into the building.

3. Additionally, in structures of Type III, IV, and V construction, Type NM and NMC cable is typically installed to exterior device boxes in damp and wet locations via LFNC raceway.

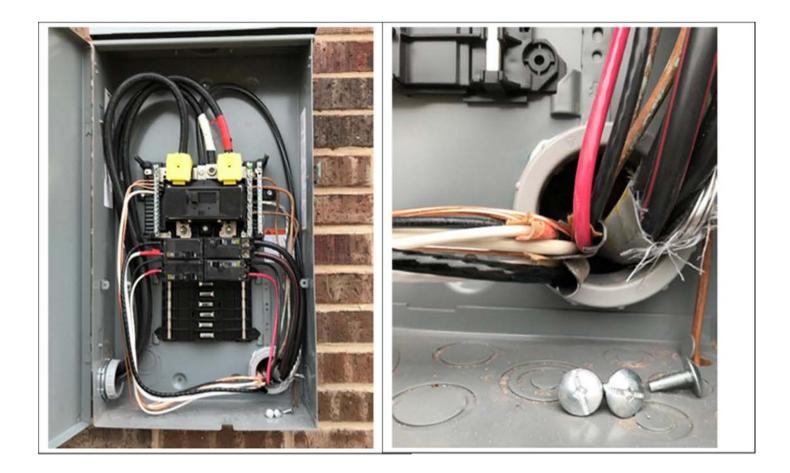
The modification of this section of the NEC (as well as a modification of section 334.10) would provide a codified path for the installation of branch circuit and feeder cables to meter packs, panelboards and exterior device locations while limiting the exposure of cables which are not listed for wet locations to a minimum length and providing a raintight raceway entrance into wet location enclosures. Regarding the NM and NMC cable located in the wet location area of the masonry and voids behind the equipment, I do not know of any cable failures in this area where the cables have been employed in this manner.

By limiting the number of cables to two, this avoids the requirements of the allowable cable fill does not exceed that permitted for complete conduit or tubing systems by Table 1 of Chapter 9 of the Code, and all applicable notes thereto.

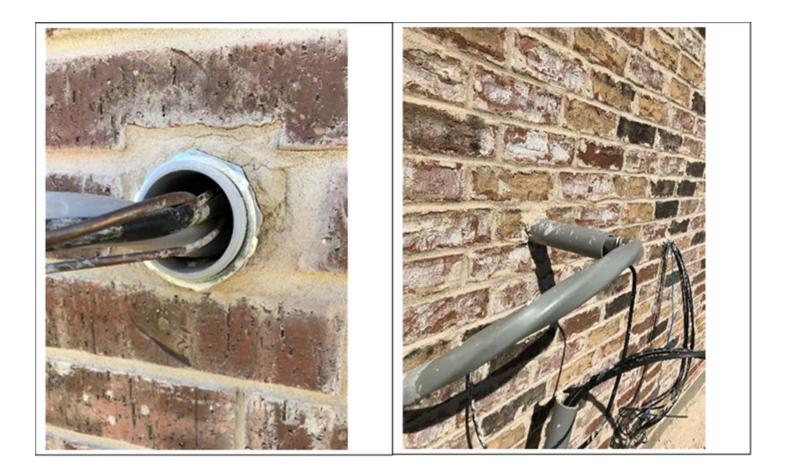
Submitter Information Verification

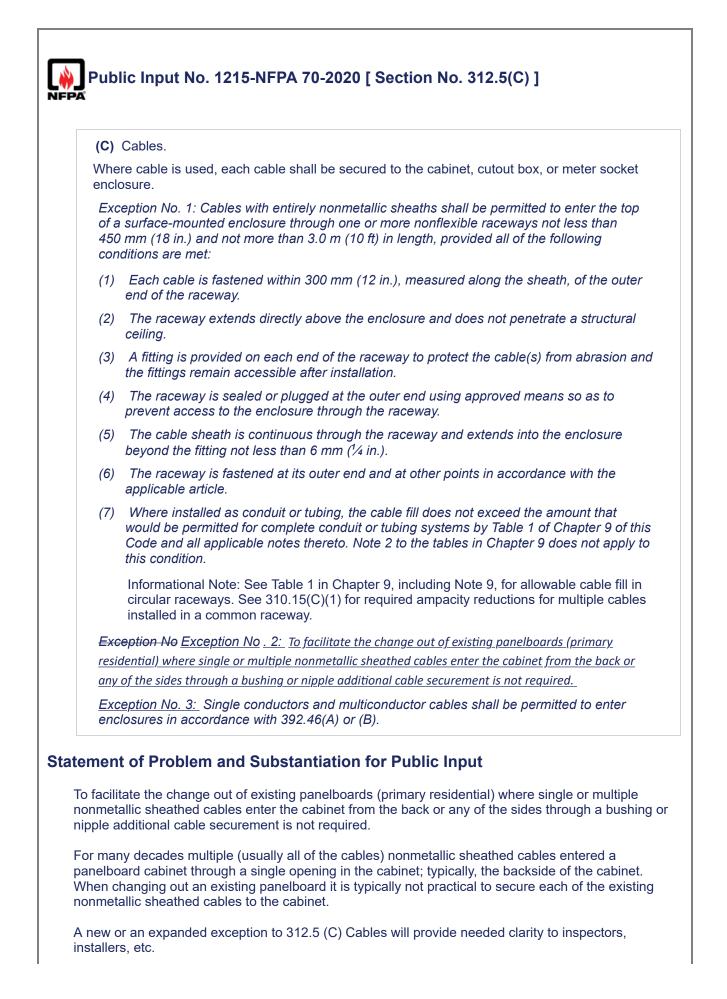

Submitter Full Name:	Chris Valtierra	
Organization: City of Waco TX		
Street Address:		
City:		
State:		
Zip:		
Submittal Date:	Thu Sep 10 12:50:40 EDT 2020	
Committee:	NEC-P09	

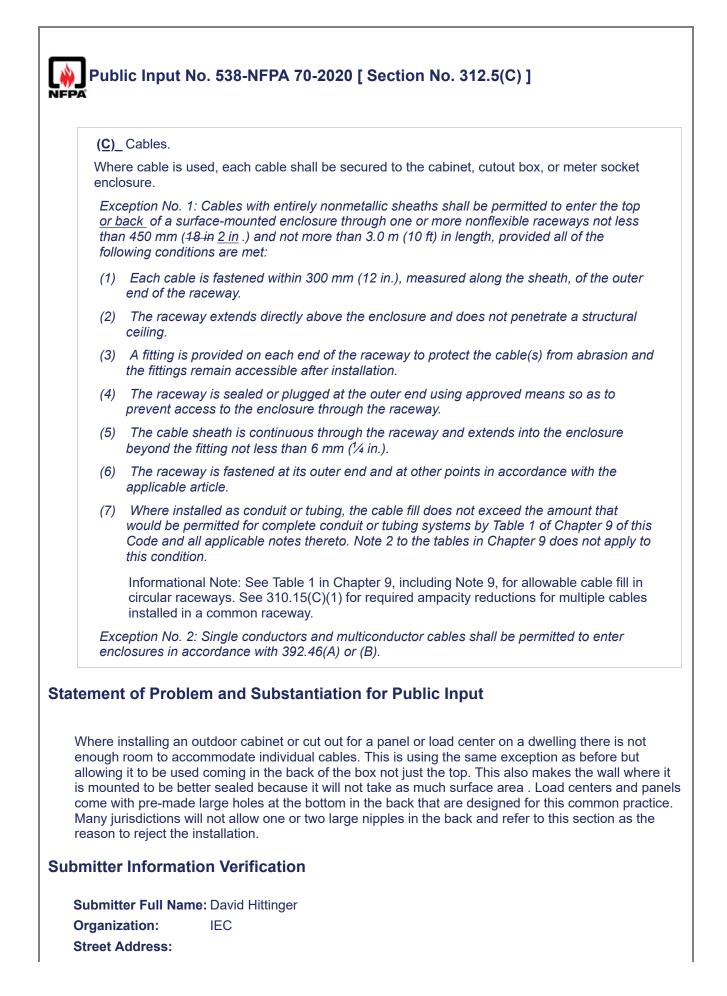
Committee Statement


Resolution: CMP-9 is resolving all five of these PIs because they expand the application of the exception in ways that are inconsistent with the safety objectives of the requirements. CMP-9 notes that the fundamental rule is for each cable (or cable pair as recognized in some connector designs) to enter the enclosure through a connector designed for that purpose, and therefore capable of confining an arcing event to the enclosure. The exception trades off that ideal, to a carefully crafted extent, in favor of a substantial improvement in workmanship, as frequently applied in light commercial work involving suspended ceilings and related applications. PI-4423 would create an additional exception for outdoor applications extended from the sides, back or bottom of the enclosure in wet locations, greatly exceeding the intended use of the existing exception. PI-1736 would extend the reach of the exception to concealed applications. This is an entirely unnecessary expansion of usage because the cabinets to which it applies are equipped with numerous cable knockouts, or can be punched accordingly, and the concealed use entirely avoids the workmanship issues that motivated the insertion of the exception in the 1999 NEC. PI-2025 is resolved because there is no need to extend the

requirement to raceways given the requirement in 300.12. In addition, CMP-9 is uncertain as to the exact intent of the first "sentence" in (C) as proposed because as written the words do not form a sentence in the English language. CMP-9 acknowledges that there is no ¼-in. sheath extension requirement at this location, but concludes that the rule would be excessive in cabinets with their far greater volumes that allow for better entrainment of such conductors. PI-1215 is resolved because there is no substantiation that supports the dramatic decrease in containment that would occur in such replacement panelboards. PI-538 is resolved because any extension of the exception as described would dramatically decrease the containment function of the cabinet due to the effective elimination of any significant raceway length. In addition, CMP-9 is reluctant to apply this concept to the back of a cabinet. Such locations are inherently much closer to the energized busbars. Contrary to the assertion made in the substantiation, these prepunched knockout positions are related to potential supply or related uses such as a feed-through application, and with the bending space calculated in accordance with 408.55(C).


PI 4423-NFPA 70-2020 Chris Valtierra



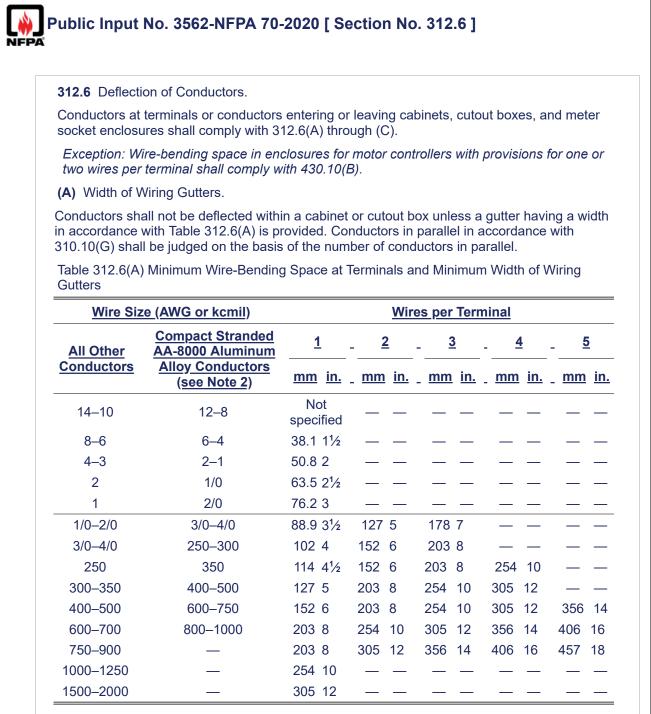


Submitter Information Verification

Submitter Full Name: Gary Hein				
Organization:	Submission is independent of employer.			
Street Address:				
City:				
State:				
Zip:				
Submittal Date:	Sat May 23 08:56:54 EDT 2020			
Committee:	NEC-P09			

Committee Statement

Resolution: CMP-9 is resolving all five of these PIs because they expand the application of the exception in ways that are inconsistent with the safety objectives of the requirements. CMP-9 notes that the fundamental rule is for each cable (or cable pair as recognized in some connector designs) to enter the enclosure through a connector designed for that purpose, and therefore capable of confining an arcing event to the enclosure. The exception trades off that ideal, to a carefully crafted extent, in favor of a substantial improvement in workmanship, as frequently applied in light commercial work involving suspended ceilings and related applications. PI-4423 would create an additional exception for outdoor applications extended from the sides, back or bottom of the enclosure in wet locations, greatly exceeding the intended use of the existing exception. PI-1736 would extend the reach of the exception to concealed applications. This is an entirely unnecessary expansion of usage because the cabinets to which it applies are equipped with numerous cable knockouts, or can be punched accordingly, and the concealed use entirely avoids the workmanship issues that motivated the insertion of the exception in the 1999 NEC. PI-2025 is resolved because there is no need to extend the requirement to raceways given the requirement in 300.12. In addition, CMP-9 is uncertain as to the exact intent of the first "sentence" in (C) as proposed because as written the words do not form a sentence in the English language. CMP-9 acknowledges that there is no ¼-in. sheath extension requirement at this location, but concludes that the rule would be excessive in cabinets with their far greater volumes that allow for better entrainment of such conductors. PI-1215 is resolved because there is no substantiation that supports the dramatic decrease in containment that would occur in such replacement panelboards. PI-538 is resolved because any extension of the exception as described would dramatically decrease the containment function of the cabinet due to the effective elimination of any significant raceway length. In addition, CMP-9 is reluctant to apply this concept to the back of a cabinet. Such locations are inherently much closer to the energized busbars. Contrary to the assertion made in the substantiation, these prepunched knockout positions are related to potential supply or related uses such as a feed-through application, and with the bending space calculated in accordance with 408.55(C).



City: State:	
Zip: Submittal Date: Committee:	Wed Feb 26 15:23:18 EST 2020 NEC-P09

Committee Statement

Resolution: CMP-9 is resolving all five of these PIs because they expand the application of the exception in ways that are inconsistent with the safety objectives of the requirements. CMP-9 notes that the fundamental rule is for each cable (or cable pair as recognized in some connector designs) to enter the enclosure through a connector designed for that purpose, and therefore capable of confining an arcing event to the enclosure. The exception trades off that ideal, to a carefully crafted extent, in favor of a substantial improvement in workmanship, as frequently applied in light commercial work involving suspended ceilings and related applications. PI-4423 would create an additional exception for outdoor applications extended from the sides, back or bottom of the enclosure in wet locations, greatly exceeding the intended use of the existing exception. PI-1736 would extend the reach of the exception to concealed applications. This is an entirely unnecessary expansion of usage because the cabinets to which it applies are equipped with numerous cable knockouts, or can be punched accordingly, and the concealed use entirely avoids the workmanship issues that motivated the insertion of the exception in the 1999 NEC. PI-2025 is resolved because there is no need to extend the requirement to raceways given the requirement in 300.12. In addition, CMP-9 is uncertain as to the exact intent of the first "sentence" in (C) as proposed because as written the words do not form a sentence in the English language. CMP-9 acknowledges that there is no ¼-in. sheath extension requirement at this location, but concludes that the rule would be excessive in cabinets with their far greater volumes that allow for better entrainment of such conductors. PI-1215 is resolved because there is no substantiation that supports the dramatic decrease in containment that would occur in such replacement panelboards. PI-538 is resolved because any extension of the exception as described would dramatically decrease the containment function of the cabinet due to the effective elimination of any significant raceway length. In addition, CMP-9 is reluctant to apply this concept to the back of a cabinet. Such locations are inherently much closer to the energized busbars. Contrary to the assertion made in the substantiation, these prepunched knockout positions are related to potential supply or related uses such as a feed-through application, and with the bending space calculated in accordance with 408.55(C).

	nut No. 252 NEDA 70.2020 [Section No. 212 5 [Evoluting only Sub							
	Public Input No. 353-NFPA 70-2020 [Section No. 312.5 [Excluding any Sub-							
NFPA Sectional 1								
Sections]]								
	Conductors-Insulated or covered conductors entering enclosures within the scope of this article shall be protected from abrasion and shall comply with 312.5(A) through (C).							
Statement of	Statement of Problem and Substantiation for Public Input							
what is the p	oint if they are not insulated or covered							
Submitter Infe	ormation Verification							
Submitter F	ull Name: Alfio Torrisi							
Organizatio	Organization: master electrician							
Street Addre	ess:							
City:								
State:								
Zip:								
Submittal Da	ate: Thu Jan 23 10:52:28 EST 2020							
Committee:	NEC-P09							
Committee St	atement							
Resolution:	FR-7704-NFPA 70-2020							
	Statement: Cmp-9 is correcting the parent language to accurately cover the intended coverage of this section.							

Notes:

1. Bending space at terminals shall be measured in a straight line from the end of the lug or wire connector (in the direction that the wire leaves the terminal) to the wall, barrier, or obstruction.

2. This column shall be permitted to be used to determine the minimum wire-bending space for compact stranded aluminum conductors in sizes up to 1000 kcmil and manufactured using AA-8000 series electrical grade aluminum alloy conductor material in accordance with 310.3(B). The minimum width of the wire gutter space shall be determined using the all other conductors value in this table.

(B) Wire-Bending Space at Terminals.

Wire-bending space at each terminal shall be provided in accordance with 312.6(B)(1) or (B)(2).

(1) Conductors Not Entering or Leaving Opposite Wall.

Table 312.6(A) shall apply where the conductor does not enter or leave the enclosure through the wall opposite its terminal.

(2) Conductors Entering or Leaving Opposite Wall.

wall opposite its terminal.

Table 312.6(A), a conductor shall be permitted to enter or leave an enclosure through the wall opposite its terminal, provided the conductor enters or leaves the enclosure where the gutter joins an adjacent gutter that has a width that conforms to Table 312.6(B) for the conductor. Exception No. 2: A conductor not larger than 350 kcmil shall be permitted to enter or leave an enclosure containing only a meter socket(s) through the wall opposite its terminal, provided the distance between the terminal and the opposite wall is not less than that specified in Table 312.6(A) and the terminal is a lay-in type or removable lug with integral mounting tang, where the terminal is either of the following: (1) Directed toward the opening in the enclosure and within a 45-degree angle of directly facing the enclosure wall (2) Directly facing the enclosure wall and offset not greater than 50 percent of the bending space specified in Table 312.6(A) Informational Note: Offset is the distance measured along the enclosure wall from the axis of the centerline of the terminal to a line passing through the center of the opening in the enclosure. Table 312.6(B) Minimum Wire-Bending Space at Terminals Wires per Terminal Wire Size (AWG or kcmil) 4 or 1 2 <u>3</u> More **Compact Stranded All Other** AA-8000 Aluminum Alloy mm in. mm in. mm in. mm in. Conductors Conductors (See Note 3.) Not 14 - 1012-8 specified 6 8 $38.1 \ 1^{1/2}$ 6 4 50.8 2 4 2 76.2 3 3 1 76.2 3 2 88.9 3¹/2 1/02/0 1 114 $4^{1}/_{2}$ 1/0 140 $5^{1}/_{2}$ 140 5¹/2 3/0 178 7 2/0 4/0 152 6 152 6 $190 7\frac{1}{2}$ 3/0 165^a 6¹⁄₂^a 165^a 6¹⁄₂^a 203 8 250 4/0 300 178^b 7^b 190^C 7¹/2^C 216^a 8¹/2^a 216^d 8¹/₂^d 216^d 8¹/₂^d 229^b 9^b 254 250 350 10 254^e 10^e 254^d 10^d 279^b 11^b 305 12 300 400 305^e 12^e 305^e 12^e 330^e 13^e 356^d 14^d 350 500 400 600 330^e 13^e 330^e 13^e 356^e 14^e 381^e 15^e 356^e 14^e 356^e 14^e 381^e 15^e 406^e 16^e 500 700-750 600 800-900 381^e 15^e 406^e 16^e 457^e 18^e 483^e 19^e

Table 312.6(B) shall apply where the conductor does enter or leave the enclosure through the

Exception No. 1: Where the distance between the wall and its terminal is in accordance with

				<u>Wire</u>	<u>s per</u>	Term	<u>ninal</u>		
Wire Size (AWG or kcmil)			1		2		<u>3</u>		or ore
All Other Conductors	AA-8000 Aluminum Allov		<u>in.</u>	<u>mm</u>	<u>in.</u>	<u>mm</u>	<u>in.</u>	<u>mm</u>	<u>in.</u>
700	1000	406 ^e	16 ^e	457 ^e	18 ^e	508 ^e	20 ^e	559 ^e	22 ^e
750	—	432 ^e	17 ^e	483 ^e	19 ^e	559 ^e	22 ^e	610 ^e	24 ^e
800	_	457	18	508	20	559	22	610	24
900	—	483	19	559	22	610	24	610	24
1000	—	508	20		_			-	
1250	—	559	22		_				
1500	—	610	24		—			-	
1750	—	610	24		_				
2000	_	610	24	_	_				

Notes:

1. Bending space at terminals shall be measured in a straight line from the end of the lug or wire connector in a direction perpendicular to the enclosure wall.

2. For removable and lay-in wire terminals intended for only one wire, bending space shall be permitted to be reduced by the following number of millimeters (inches):

^a12.7 mm (¹/₂ in.)

^b25.4 mm (1 in.)

^C38.1 mm (1¹/₂ in.)

^d50.8 mm (2 in.)

^e76.2 mm (3 in.)

3. This column shall be permitted to determine the required wire-bending space for compact stranded aluminum conductors in sizes up to 1000 kcmil and manufactured using AA-8000 series electrical grade aluminum alloy conductor material in accordance with 310.3(B).

(C) Conductors 4 AWG or Larger.

Installation shall comply with 300.4(G).

Additional Proposed Changes

Fi	le	Name

Description

Approved

NEC_2023_Proposed_Change_To_Section_312_6.docx

Proposal to move information contained in 312.6 to Article 110

Statement of Problem and Substantiation for Public Input

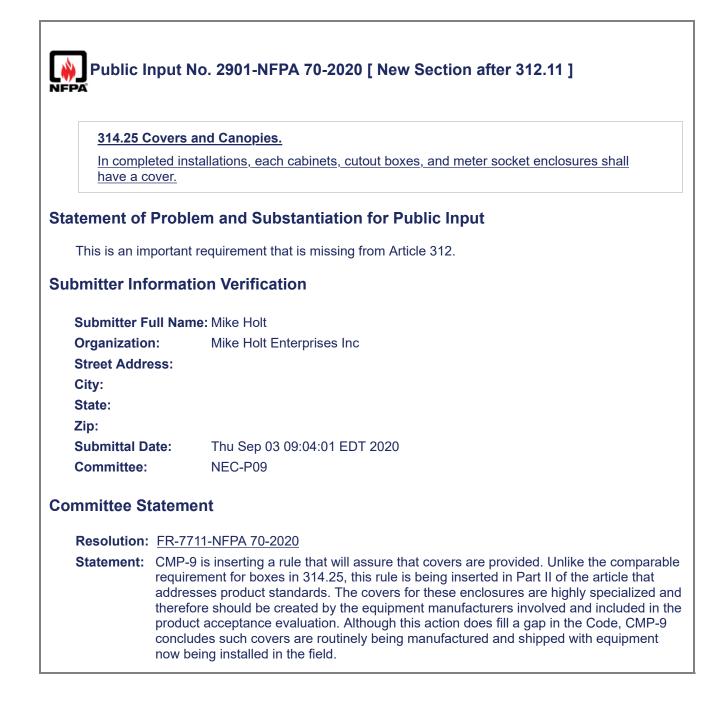
This proposal is to relocate all the information contained in Section 312.6 to Article 110. Minimum wire bending space issues are extremely common in electrical installations. Tables 312.6(A) and (B) are referenced in several articles (312, 314, 366, 376, 378, 380, 404, 450). Moving the information contained in 312.6 to Article 110 would promote consistency and commonality in locating this information.

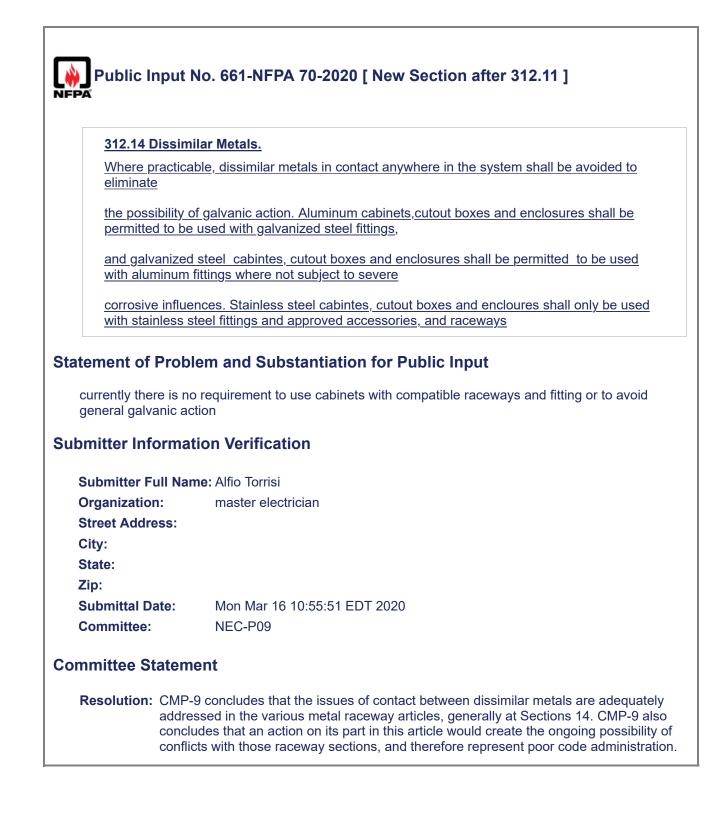
Submitter Information Verification

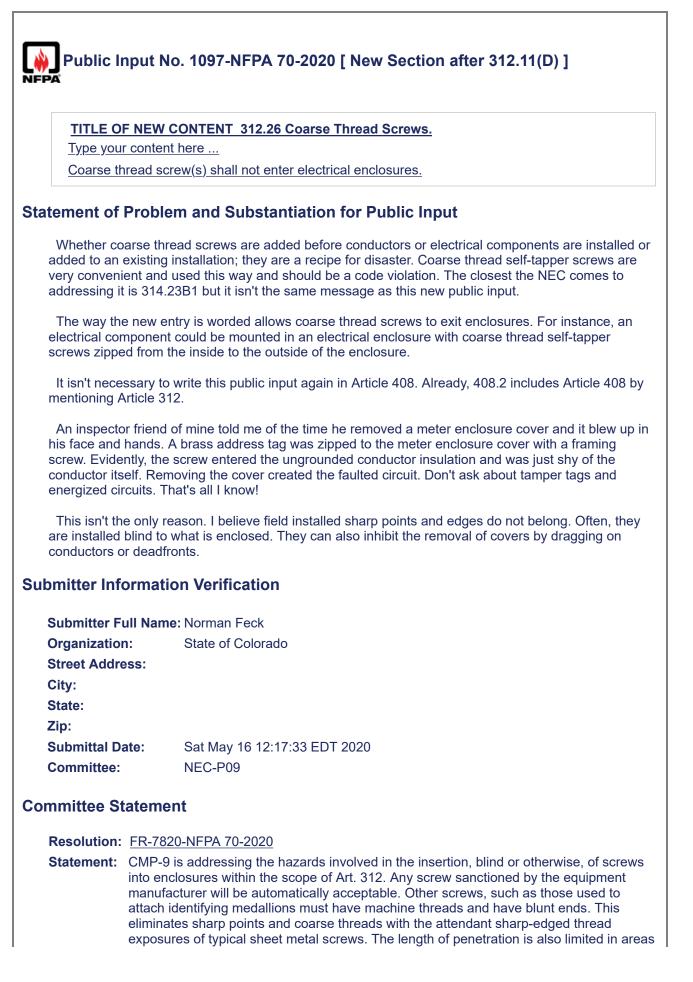
Submitter Full Name: Mark Mathews				
Organization:	Not affiliated with a company or business			
Affiliation:	Not affiliated with a client or organization			
Street Address:				
City:				
State:				
Zip:				
Submittal Date:	Tue Sep 08 22:56:24 EDT 2020			
Committee:	NEC-P09			

Committee Statement

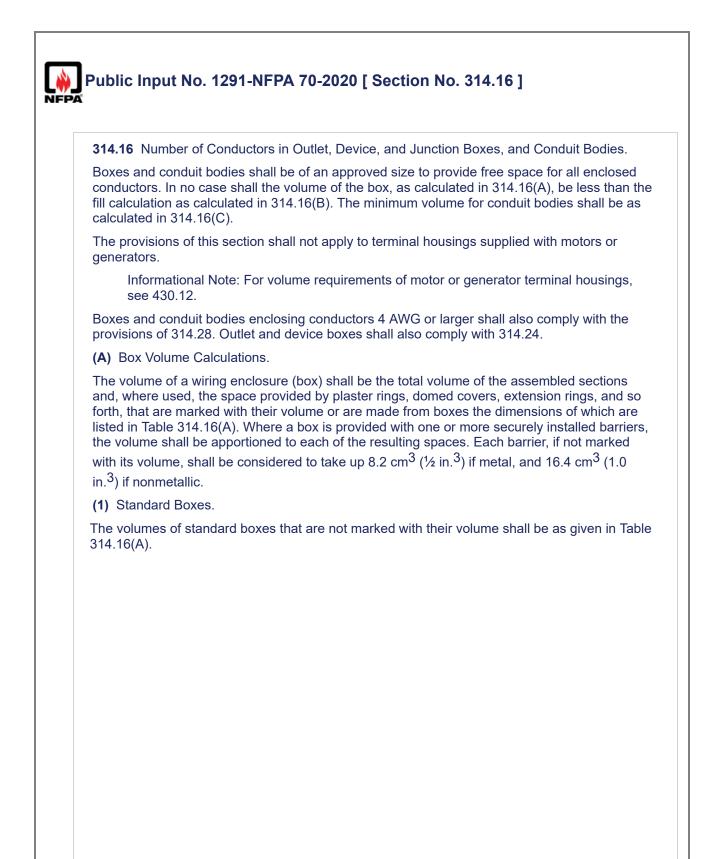
Resolution: CMP-9 is resolving this PI because the bending space required at terminations is logically related to the enclosures within the scope of the article. This subject has been included here since the emergence of cabinets and cutout boxes as a separate article (then Art. 373) in the 1947 edition, and users are justifiably accustomed to finding it in this location. In addition, with the exception of Art. 100, responsibility for coverage of technical content has been made on an article by article basis by the Correlating Committee. The technical expertise for the evaluation of these requirements plainly belongs to CMP-9, and this would be lost if the material were relocated into Art. 110.


This proposal is to relocate the information contained in Section 312.6, *Deflection of Conductors*, to Article 110.


This proposal does not include technical changes to 312.6.


Public Input No. 409-NFPA 70-2020 [Section No. 312.8(A)]
NFPA
(A) Splices, Taps, and Feed-Through Conductors.
The wiring space of enclosures for switches or overcurrent devices shall be permitted for conductors feeding through, spliced, or tapping off to other enclosures, switches, or overcurrent devices where all of the following conditions are met:
(<u>1</u>)_ <u>Comply with 314.28(A)(2)</u>
(1) The total of all conductors installed at any cross section of the wiring space does not exceed 40 percent of the cross-sectional area of that space.
(2) The total area of all conductors, splices, and taps installed at any cross section of the wiring space does not exceed 75 percent of the cross-sectional area of that space.
(3) A warning label complying with 110.21(B) is applied to the enclosure that identifies the closest disconnecting means for any feed-through conductors.
Statement of Problem and Substantiation for Public Input
In 312.8(A) it doesn't mention anything about calculations regarding the conductor bends. If conductors are passing through a panel the cabinet could be too small for the conductor bend radius. It also don't make any reference to 314.16 and 314.28(A) and the installer could be in violation by not taking it into account. If splices are made and the cabinet that encloses the overcurrent protection is being used as a pull box then please reference it in in 312.8(A).
Please clarify.
Submitter Information Verification
Submitter Full Name: Jose Franco
Organization: [Not Specified]
Street Address:
City:
State: Zip:
Submittal Date: Mon Feb 03 16:42:01 EST 2020
Committee: NEC-P09
Committee Statement
Resolution: FR-7708-NFPA 70-2020
Statement: If large conductors (4 AWG and up) are installed in these wiring spaces, the dimensions in 314.28(A)(2) should be applied. These enclosures do not differ in terms of minimum bending space concerns from comparable enclosures in Art. 314.

(1) Ident	ification.
equipmer equipmer	er monitoring or energy. <u>Power monitoring equipment and energy</u> management nt shall <u>either</u> be identified as a field installable accessory as part of the listed nt,_ or is . <u>shall be</u> a listed kit evaluated for field installation in switch or overcurrent inclosures.
atement of	Problem and Substantiation for Public Input
and energy r one need co 2) the syntax listed kit".	operator 'or' does not apply between the two categories of power monitoring equipment management equipment. If both types were present, than this language would infer only mply rather than both. So the logic operator 'and' is required. (for the two compliance options infer that "or is a listed kit" should be written as "or as a ormation Verification
O	all Newsey July Different
	ull Name: John Blissett
Organizatio	n: Bernhard TME
Organization Street Addre	n: Bernhard TME
Organization Street Addre City:	n: Bernhard TME
Organization Street Addre City: State:	n: Bernhard TME
Organization Street Addre City:	n: Bernhard TME ess:
Organization Street Addre City: State: Zip:	n: Bernhard TME ess:
Organization Street Addre City: State: Zip: Submittal D	n: Bernhard TME ess: ate: Thu Aug 13 17:51:35 EDT 2020 NEC-P09
Organization Street Addre City: State: Zip: Submittal Da Committee St	n: Bernhard TME ess: ate: Thu Aug 13 17:51:35 EDT 2020 NEC-P09


Machine Screws		
	sugage requiring machine screws to attach covers similar in intent to 404.10 (B) and 406.5 to	
	e use of screws such as wood or drywall screws.	
atement of	Problem and Substantiation for Public Input	
attach covers	e perhaps to 312.10 Construction Specifications to specifically require screws used to s and similar that enter cabinets, cutout boxes, or meter socket enclosures to be of a essens the possibility of damage to conductors.	
	uage requiring machine screws to attach covers similar in intent to 404.10 (B) and 406.5 t ise of screws such as wood or drywall screws.	
Ibmitter Info	ormation Verification	
Submitter F	ull Name: Gary Hein	
Organizatio	n: Submission is independent of employer.	
Street Addre	SS:	
City:		
State:		
Zip:	Set May 22 08:50:11 EDT 2020	
Submittal Da Committee:	ate: Sat May 23 08:50:11 EDT 2020 NEC-P09	
committee.	NEC-FU9	
ommittee St	atement	
Resolution:	FR-7820-NFPA 70-2020	
Statement:	CMP-9 is addressing the hazards involved in the insertion, blind or otherwise, of screws into enclosures within the scope of Art. 312. Any screw sanctioned by the equipment manufacturer will be automatically acceptable. Other screws, such as those used to attach identifying medallions must have machine threads and have blunt ends. This eliminates sharp points and coarse threads with the attendant sharp-edged thread exposures of typical sheet metal screws. The length of penetration is also limited in area of an enclosure that form a boundary of a wiring gutter or other wiring space. For such exposures, the penetration is limited to ¼ inch. However, if the penetration in such cases is near (within 3/8 inch) an adjacent wall, the length increases to allow a ½ inch screw (expressed in terms of the amount of actual penetration, or 7/16ths inch). This reflects the successful use of screws to attach covers on boxes and wireways.	

of an enclosure that form a boundary of a wiring gutter or other wiring space. For such exposures, the penetration is limited to $\frac{1}{4}$ inch. However, if the penetration in such cases is near (within $\frac{3}{8}$ inch) an adjacent wall, the length increases to allow a $\frac{1}{2}$ inch screw (expressed in terms of the amount of actual penetration, or $\frac{7}{16}$ ths inch). This reflects the successful use of screws to attach covers on boxes and wireways.

(2) Other Boxes.

Boxes 1650 cm³ (100 in.³) or less, other than those described in Table 314.16(A), and nonmetallic boxes shall be durably and legibly marked by the manufacturer with their volume(s). Boxes described in Table 314.16(A) that have a volume larger than is designated in the table shall be permitted to have their volume marked as required by this section.

Table 314.16(A) Metal Boxes

	Box Trade	e Size		<u>imum</u> lume		<u>c</u>	<u>Cond</u>	<u>ucto</u>	<u>nber</u> rs* NG s			
mm	<u>in.</u>	=		<u>cm</u> 3	<u>in.³</u>	<u>18</u>	<u>16</u>	<u>14</u>	<u>12</u>	<u>10</u>	<u>8</u>	<u>6</u>
100 × 32	$(4 \times 1^{1}/_{4})$	round/octagonal	205	12.5	8	7	6	5	5	5	2	
100 × 38	(4 × 1½)	round/octagonal	254	15.5	10	8	7	6	6	5	3	
100 × 54	(4 × 21⁄8)	round/octagonal	353	21.5	14	12	10	9	8	7	4	
100 × 32	(4× 1¼)	square	295	18.0	12	10	9	8	7	6	3	-
100 × 38	(4 × 1½)	square	344	21.0	14	12	10	9	8	7	4	
100 × 54	(4 × 2 ¹ ⁄8)	square	497	30.3	20	17	15	13	12	10	6	
120 × 32	(4 ¹¹ ⁄16 × 1 ¹ ⁄4)	square	418	25.5	17	14	12	11	10	8	5	-
120 × 38	(4 ¹¹ ⁄ ₁₆ × 1 ¹ ⁄ ₂)	square	484	29.5	19	16	14	13	11	9	5	
120 × 54	(4 ¹¹ ⁄16 × 2 ¹ ⁄8)	square	689	42.0	28	24	21	18	16	14	8	_
75 × 50 × 38	(3 × 2 × 1½)	device	123	7.5	5	4	3	3	3	2	1	
75 × 50 × 50	(3 × 2 × 2)	device	164	10.0	6	5	5	4	4	3	2	
75× 50 × 57	(3× 2 × 2¼)	device	172	10.5	7	6	5	4	4	3	2	
75 × 50 × 65	(3 × 2 × 2½)	device	205	12.5	8	7	6	5	5	4	2	
75 × 50 × 70	(3 × 2 × 2 ³ ⁄4)	device	230	14.0	9	8	7	6	5	4	2	
75 × 50 × 90	(3 × 2 × 3½)	device	295	18.0	12	10	9	8	7	6	3	_
100 × 54 × 38	(4 × 2 ¹ ⁄ ₈ × 1 ¹ ⁄ ₂)	device	169	10.3	6	5	5	4	4	3	2	
100 × 54 × 48	(4 × 2 ¹ ⁄ ₈ × 1 ⁷ ⁄ ₈)	device	213	13.0	8	7	6	5	5	4	2	
100 × 54 × 54	(4 × 2 ¹ / ₈ × 2 ¹ / ₈)	device	238	14.5	9	8	7	6	5	4	2	_
95 × 50 × 65	(3 ³ ⁄ ₄ × 2 × 2 ¹ ⁄ ₂)	masonry box/gang	230	14.0	9	8	7	6	5	4	2	
95 × 50 × 90	(3¾ × 2 × 3½)	masonry box/gang	344	21.0	14	12	10	9	8	7	4	-
min. 44.5 depth	FS — sir	ngle cover/gang (1¾)	221	13.5	9	7	6	6	5	4	2	

	Box Trade Size		<u>nimum</u> olume	-	<u>c</u>	Cond	Nun ucto by AV	<u>rs*</u>			
<u>mm</u>	<u>in.</u>		<u>cm</u> 3	<u>in.³</u>	<u>18</u>	<u>16</u>	<u>14</u>	<u>12</u>	<u>10</u>	<u>8</u>	<u>6</u>
min. 60.3 depth	FD — single cover/gang (2⅔)	295	18.0	12	10	9	8	7	6	3	_
min. 44.5 depth	FS — multiple cover/gang (1¾)	295	18.0	12	10	9	8	7	6	3	
min. 60.3 depth	FD — multiple cover/gang (2³⁄ଃ)	395	24.0	16	13	12	10	9	8	4	

*Where no volume allowances are required by 314.16(B)(2) through (B)(5).

(B) Box Fill Calculations.

The volumes in paragraphs 314.16(B)(1) through (B)(5), as applicable, shall be added together. No allowance shall be required for small fittings such as locknuts and bushings. Each space within a box installed with a barrier shall be calculated separately.

(1) Conductor Fill.

Each conductor that originates outside the box and terminates or is spliced within the box shall be counted once, and each conductor that passes through the box without splice or termination shall be counted once. Each loop or coil of unbroken conductor not less than twice the minimum length required for free conductors in 300.14 shall be counted twice. The conductor fill shall be calculated using Table 314.16(B). A conductor, no part of which leaves the box, shall not be counted.

Exception: An equipment grounding conductor or conductors or not over four fixture wires smaller than 14 AWG, or both, shall be permitted to be omitted from the calculations where they enter a box from a domed luminaire or similar canopy and terminate within that box.

(2) Clamp Fill.

Where one or more internal cable clamps, whether factory or field supplied, are present in the box, a single volume allowance in accordance with Table 314.16(B) shall be made based on the largest conductor present in the box. No allowance shall be required for a cable connector with its clamping mechanism outside the box.

A clamp assembly that incorporates a cable termination for the cable conductors shall be listed and marked for use with specific nonmetallic boxes. Conductors that originate within the clamp assembly shall be included in conductor fill calculations covered in 314.16(B)(1) as though they entered from outside the box. The clamp assembly shall not require a fill allowance, but the volume of the portion of the assembly that remains within the box after installation shall be excluded from the box volume as marked in 314.16(A)(2).

(3) Support Fittings Fill.

Where one or more luminaire studs or hickeys are present in the box, a single volume allowance in accordance with Table 314.16(B) shall be made for each type of fitting based on the largest conductor present in the box.

(4) Device or Equipment Fill.

For each yoke or strap containing one or more devices or equipment, a double volume allowance in accordance with Table 314.16(B) shall be made for each yoke or strap based on the largest conductor connected to a device(s) or equipment supported by that yoke or strap. A device or utilization equipment wider than a single 50 mm (2 in.) device box as described in Table 314.16(A) shall have double volume allowances provided for each gang required for mounting.

	Free Space Within Bo	x for Each Conductor
Size of Conductor (AWG) —	<u>cm³</u>	<u>in.³</u>
18	24.6	1.50
16	28.7	1.75
14	32.8	2.00
12	36.9	2.25
10	41.0	2.50
3	49.2	3.00
3	81.9	5.00

Table 314.16(B) Volume Allowance Required per Conductor

(5) Equipment Grounding Conductor Fill.

Where up to four equipment grounding conductors or equipment bonding jumpers enter a box, a single volume allowance in accordance with Table 314.16(B) shall be made based on the largest equipment grounding conductor or equipment bonding jumper entering the box. A ¹/₄ volume allowance shall be made for each additional equipment grounding conductor or equipment bonding jumper that enters the box, based on the largest equipment grounding conductor or equipment bonding conductor is box.

- (C) Conduit Bodies.
- (1) General.

Conduit bodies enclosing 6 AWG conductors or smaller, other than short-radius conduit bodies as described in 314.16(C)(3), shall have a cross-sectional area not less than twice the cross-sectional area of the largest conduit or tubing to which they can be attached. The maximum number of conductors permitted shall be the maximum number permitted by Table 1 of Chapter 9 for the conduit or tubing to which it is attached.

(2) With Splices, Taps, or Devices.

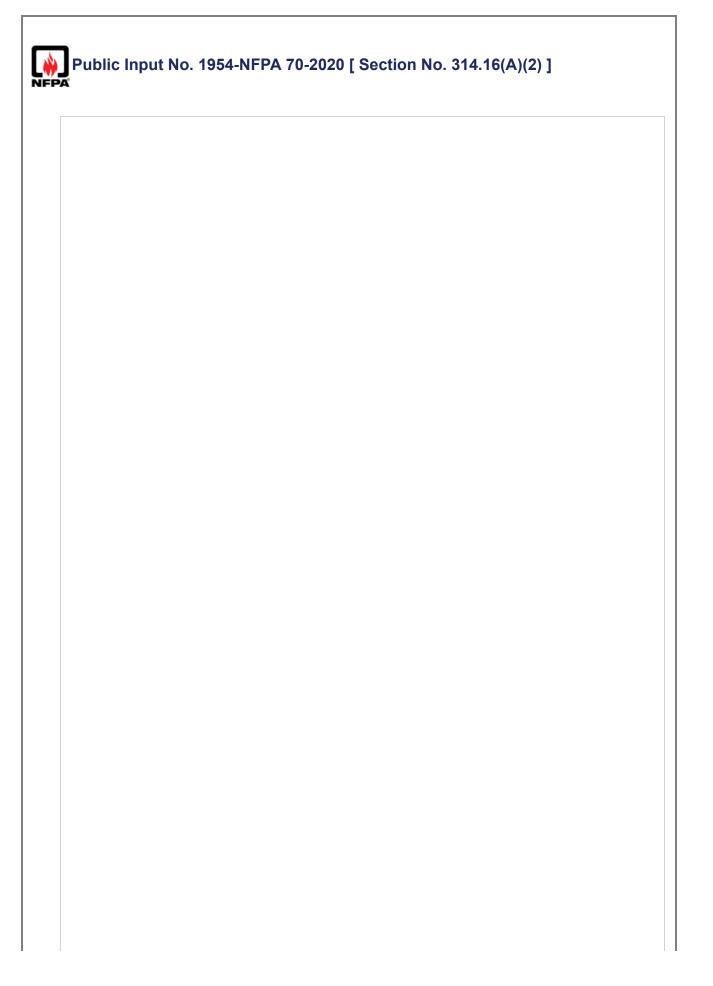
Only those conduit bodies that are durably and legibly marked by the manufacturer with their volume shall be permitted to contain splices, taps, or devices. The maximum number of conductors shall be calculated in accordance with 314.16(B). Conduit bodies shall be supported in a rigid and secure manner.

(3) Short Radius Conduit Bodies.

Conduit bodies such as capped elbows and service-entrance elbows that enclose conductors 6 AWG or smaller, and are only intended to enable the installation of the raceway and the contained conductors, shall not contain splices, taps, or devices and shall be of an approved size to provide free space for all conductors enclosed in the conduit body.

Statement of Problem and Substantiation for Public Input

The word "conductor" was revised and replaced with 'jumper" to be consistent with language used in this section. The Equipment Bonding Jumper is a defined term per Article 100.

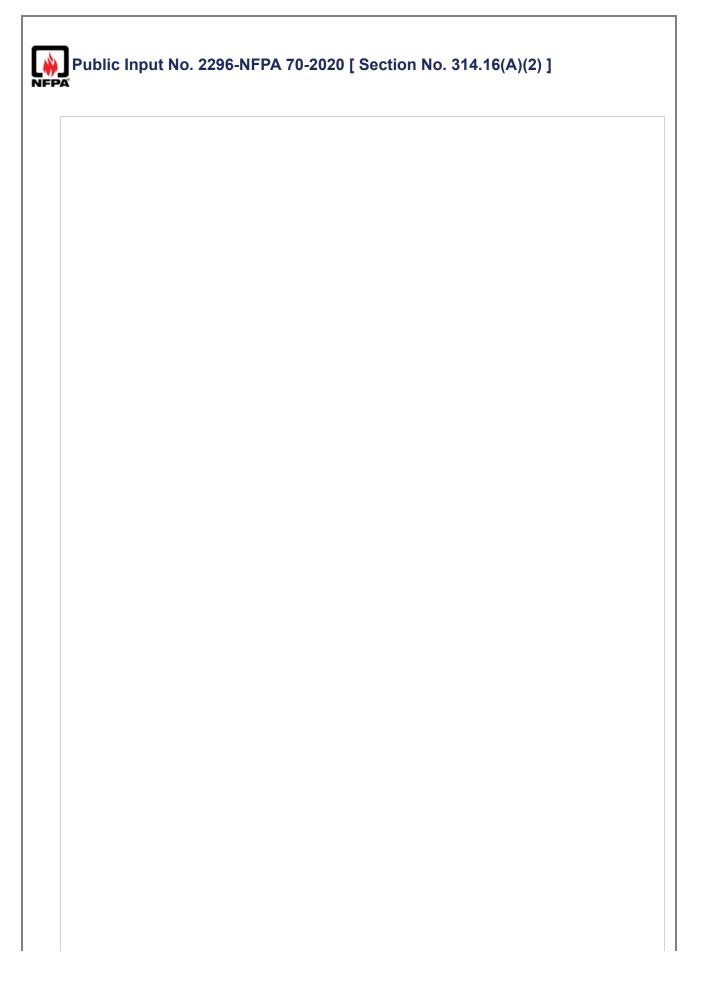

Submitter Information Verification

С

Submitter Full Name:	Megan Hayes
Organization:	Nema
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Thu May 28 11:29:24 EDT 2020
Committee:	NEC-P09
ommittee Statemen	t
Resolution: FR-7734	-NFPA 70-2020
Statement: CMP-9 h	as decided to revisit the action taken in the co

tatement: CMP-9 has decided to revisit the action taken in the comment period of the 1996 cycle, when the reference to equipment bonding jumpers was initially added (Comment 9-5). It was substantiated on the basis that these components can run within raceways. CMP-9 now concludes that any such application, if even possible, would constitute an extension of an equipment grounding conductor, and would be addressable as such. In general, such jumpers begin and end within the box. As such, counting them would conflict with the general principle of not counting such wires, as stated in the final sentence of 314.16(B)(1). Removal of this phrasing simplifies the wording of the paragraph, and increases usability.

CMP-9 is also clarifying how the ¼ volume allowance is applied when different sizes of equipment grounding conductors enter the box. The current wording bases the basic fill allowance on the largest EGC entering the box; the revised wording makes clear the logical extension of that concept when the ¼ volume adder applies. For example, the EGC allowance for eight 12 AWG EGCs is $(1+4\times1/4)^{21/4} = 41/2$ in3. If even one of those EGCs is a 10 AWG, then the allowance increases to $(1+4\times1/4)^{21/2} = 5$ in3.


(2) Other Boxes.

Boxes 1650 cm³ (100 in.³) or less, other than those described in Table 314.16(A), and nonmetallic boxes shall be durably and legibly marked by the manufacturer with their volume(s). Boxes described in Table 314.16(A) that have a volume larger than is designated in the table shall be permitted to have their volume marked as required by this section.

Table 314.16(A) Metal Boxes

	Box Trade	e Size		<u>iimum</u> lume		<u>c</u>	<u>Cond</u>	<u>ucto</u>	<u>nber</u> rs* NG s			
<u>mm</u>	<u>in.</u>	Ξ		<u>cm</u> 3	<u>in.³</u>	<u>18</u>	<u>16</u>	<u>14</u>	<u>12</u>	<u>10</u>	<u>8</u>	<u>6</u>
100 × 32	$(4 \times 1^{1}/_{4})$	round/octagonal	205	12.5	8	7	6	5	55	<u>4</u>	2	
100 × 38	(4 × 1½)	round/octagonal	254	15.5	10	8	7	6	6 5	<u>4</u>	3	
100 × 54	(4 × 21⁄8)	round/octagonal	353	21.5	14	12	10	9	8	7	4	
100 × 32	(4× 1¼)	square	295	18.0	12	10	9	8	7	6	3	-
100 × 38	(4 × 1½)	square	344	21.0	14	12	10	9	8	7	4	
100 × 54	(4 × 2 ¹ ⁄8)	square	497	30.3	20	17	15	13	12	10	6	_
120 × 32	(4 ¹¹ ⁄16 × 1 ¹ ⁄4)	square	418	25.5	17	14	12	11	10	8	5	
120 × 38	(4 ¹¹ ⁄ ₁₆ × 1 ¹ ⁄ ₂)	square	484	29.5	19	16	14	13	11	9	5	
120 × 54	(4 ¹¹ ⁄16 × 2 ¹ ⁄8)	square	689	42.0	28	24	21	18	16	14	8	_
75 × 50 × 38	(3 × 2 × 1½)	device	123	7.5	5	4	3	3	3	2	1	
75 × 50 × 50	(3 × 2 × 2)	device	164	10.0	6	5	5	4	4	3	2	
75× 50 × 57	(3× 2 × 2¼)	device	172	10.5	7	6	5	4	4	3	2	
75 × 50 × 65	(3 × 2 × 2½)	device	205	12.5	8	7	6	5	5	4	2	
75 × 50 × 70	(3 × 2 × 2 ³ ⁄4)	device	230	14.0	9	8	7	6	5	4	2	
75 × 50 × 90	(3 × 2 × 3½)	device	295	18.0	12	10	9	8	7	6	3	_
100 × 54 × 38	(4 × 2 ¹ ⁄ ₈ × 1 ¹ ⁄ ₂)	device	169	10.3	6	5	5	4	4	3	2	
100 × 54 × 48	(4 × 2 ¹ ⁄ ₈ × 1 ⁷ ⁄ ₈)	device	213	13.0	8	7	6	5	5	4	2	
100 × 54 × 54	(4 × 2 ¹ ⁄ ₈ × 2 ¹ ⁄ ₈)	device	238	14.5	9	8	7	6	5	4	2	_
95 × 50 × 65	(3¾ × 2 × 2½)	masonry box/gang	230	14.0	9	8	7	6	5	4	2	
95 × 50 × 90	(3¾ × 2 × 3½)	masonry box/gang	344	21.0	14	12	10	9	8	7	4	
min. 44.5 depth	FS — sir	ngle cover/gang (1¾)	221	13.5	9	7	6	6	5	4	2	

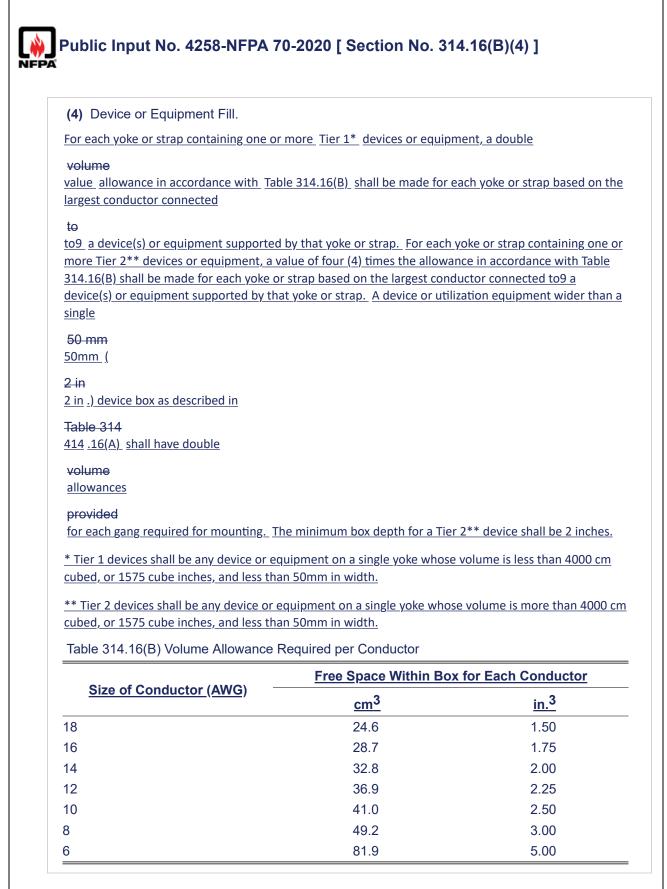
	Box Trade Size		nimum olume	<u>!</u>			Nun ucto		of		
			1	(<u>a</u>	<u>rranç</u>	g <u>ed k</u>	<u>by Al</u>	NG s	ize)		_
<u>mm</u>	<u>in.</u>		<u>cm</u> 3	<u>in.³</u>	<u>18</u>	<u>16</u>	<u>14</u>	<u>12</u>	<u>10</u>	<u>8</u>	<u>6</u>
min. 60.3 depth	FD — single cover/gang (2¾)	295	18.0	12	10	9	8	7	6	3	_
min. 44.5 depth	FS — multiple cover/gang (1¾)	295	18.0	12	10	9	8	7	6	3	
min. 60.3 depth	FD — multiple cover/gang (2¾)	395	24.0	16	13	12	10	9	8	4	
*Where n	o volume allowances are requir	ed by 31	4.16(B)(2	2) throu	gh (E	8)(5).					
uninvited edi ubmitter Infe	be capable of holding four of the ting. My intention is to change t ormation Verification										
	ull Name: Ryan Jackson										
Organization Street Addre	•										
City:	;55.										
State:											
Zip:											
Submittal Da	ate: Mon Jul 20 20:45:51	EDT 202	20								
Committee:	NEC-P09										
ommittee St	atement										
Resolution:	FR-7727-NFPA 70-2020										
Statement:	CMP-9 is correcting an error in column, by reducing it from 5 of rated volume (12.5 in3) by the column was correct until the m throughout the 2002 NEC to sh default method. CMP-9 was pr conversions. Every one of thes column, and dimensionless tra	onducto required etrication hift from esented se values	rs to 4 cc l volume a n task gro soft conv with a ne s needed	onductor allowan oup mac ersions ew table to be cl	rs. Th ce fo de co to ha (Pro hang	nis re r 8 A mpre ard co posa ed to	flects WG o hens onver al 9-1 soft	s the of 3 in sive c rsion: 4) se conv	divis n3. T chanç s as t up ersio	ion his ges the with ons	n har in or

(2) Other Boxes.

Boxes 1650 cm³ (100 in.³) or less, other than those described in Table 314.16(A), and nonmetallic boxes shall be durably and legibly marked by the manufacturer with their volume(s). Boxes described in Table 314.16(A) that have a volume larger than is designated in the table shall be permitted to have their volume marked as required by this section.

Table 314.16(A) Metal Boxes

	Box Trade	<u>) Size</u>		<u>imum</u> lume		<u>c</u>	<u>Cond</u>	<u>ucto</u>	<u>nber</u> rs* NG s			
mm	<u>in.</u>	Ξ		<u>cm</u> 3	<u>in.³</u>	<u>18</u>	<u>16</u>	<u>14</u>	<u>12</u>	<u>10</u>	<u>8</u>	<u>6</u>
100 × 32	$(4 \times 1^{1}/_{4})$	round/octagonal	205	12.5	8	7	6	5	5	5	2	
100 × 38	(4 × 1½)	round/octagonal	254	15.5	10	8	7	6	6	5	3	
100 × 54	(4 × 21⁄8)	round/octagonal	353	21.5	14	12	10	9	8	7	4	
100 × 32	(4× 1¼)	square	295	18.0	12	10	9	8	7	6	3	-
100 × 38	(4 × 1½)	square	344	21.0	14	12	10	9	8	7	4	
100 × 54	(4 × 21⁄8)	square	497	30.3	20	17	15	13	12	10	6	
120 × 32	(4 ¹¹ ⁄16 × 1 ¹ ⁄4)	square	418	25.5	17	14	12	11	10	8	5	-
120 × 38	(4 ¹¹ ⁄16 × 1 ¹ ⁄2)	square	484	29.5	19	16	14	13	11	9	5	
120 × 54	(4 ¹¹ ⁄16 × 2 ¹ ⁄8)	square	689	42.0	28	24	21	18	16	14	8	_
75 × 50 × 38	(3 × 2 × 1½)	device	123	7.5	5	4	3	3	3	2	1	
75 × 50 × 50	(3 × 2 × 2)	device	164	10.0	6	5	5	4	4	3	2	
75× 50 × 57	(3× 2 × 2¼)	device	172	10.5	7	6	5	4	4	3	2	
75 × 50 × 65	(3 × 2 × 2½)	device	205	12.5	8	7	6	5	5	4	2	
75 × 50 × 70	(3 × 2 × 2 ³ ⁄4)	device	230	14.0	9	8	7	6	5	4	2	
75 × 50 × 90	(3 × 2 × 3½)	device	295	18.0	12	10	9	8	7	6	3	-
100 × 54 × 38	(4 × 2 ¹ ⁄ ₈ × 1 ¹ ⁄ ₂)	device	169	10.3	6	5	5	4	4	3	2	
100 × 54 × 48	(4 × 2 ¹ ⁄ ₈ × 1 ⁷ ⁄ ₈)	device	213	13.0	8	7	6	5	5	4	2	
100 × 54 × 54	(4 × 2 ¹ ⁄ ₈ × 2 ¹ ⁄ ₈)	device	238	14.5	9	8	7	6	5	4	2	
95 × 50 × 65	(3 ³ ⁄ ₄ × 2 × 2 ¹ ⁄ ₂)	masonry box/gang	230	14.0	9	8	7	6	5	4	2	
95 × 50 × 90	(3¾ × 2 × 3½)	masonry box/gang	344	21.0	14	12	10	9	8	7	4	_
min. 44.5 depth	FS — sir	ngle cover/gang (1¾)	221	13.5	9	7	6	6	5	4	2	


		Box Trade S	Size		<u>iimum</u> lume		<u>Maxir</u> C	ond	ucto	<u>rs*</u>			
	<u>mm</u>	<u>in.</u>	:		<u>cm³</u>	<u>in.³</u>	<u>18</u>	<u>16</u>	<u>14</u>	<u>12</u>	<u>10</u>	<u>8</u>	<u>6</u>
	min. 60.3 depth		le cover/gang 2⅔)	295	18.0	12	10	9	8	7	6	3	
	min. 44.5 depth		ple cover/gang 1¾)	295	18.0	12	10	9	8	7	6	3	
	min. 60.3 depth		ple cover/gang 2¾)	395	24.0	16	13	12	10	9	8	4	
	*Where no	volume allowa	ances are require	d by 31	4.16(B)(2	2) throu	gh (B)(5).					
s C													
S	City: State: State:												
-	Submittal Da Committee:	te: Thu A NEC-	Aug 13 18:01:23 I P09	EDT 20	20								
om	mittee Sta	atement											
F		CMP-9 concluc produces a boy	les that the requi					A ma	nufac	turer	who		

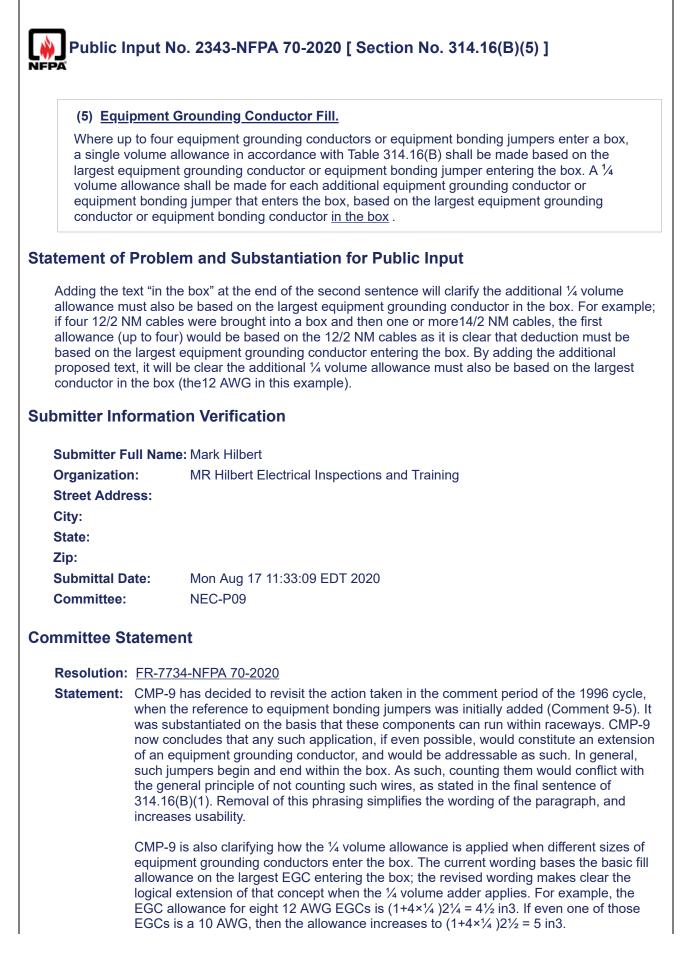
Public II	nput No. 2297-NFPA 70-2020 [Section No. 314.16(B)(2)]
(2) Clam	p Fill.
box, a sin largest co	e or more internal cable clamps, whether factory or field supplied, are present in the gle volume allowance in accordance with Table 314.16(B) shall be made based on the nductor present in the box. No allowance shall be required for a cable connector with ng mechanism outside the box.
and mark assembly entered fr volume o installatio	assembly that incorporates a cable termination for the cable conductors shall be listed ed for use with specific nonmetallic boxes. Conductors that originate within the clamp shall be included in conductor fill calculations covered in 314.16(B)(1) as though they om outside the box. The clamp assembly shall not require a fill allowance, but the the portion of the assembly that remains within- clamp inside the box after in shall be excluded from the box volume as marked in 314.16(A)(2) - shall count e fill allowance.
atement of	Problem and Substantiation for Public Input
fill allowance	" ormation Verification
Submitter F	ull Name: John Blissett
Organizatio	Bernhard TME
Street Addre	ISS:
City:	
State:	
Zip:	
Submittal Da	5
Committee:	NEC-P09
ommittee St	atement
Resolution:	FR-7731-NFPA 70-2020
Statement:	CMP-9 is deleting the second paragraph of 314.16(B)(2) because the product line it wa intended to cover is not being produced for market. It was incorporated in the 2014 NEG (Proposal 9-37) for this purpose, and the inclusion was made contingent on CMP 7 (nor CMP-6) accepting correlating language in Art. 334. The panel statement supporting this action concluded by saying "CMP-9 believes the principal responsibility for determining the technical merit of this new approach should rest with CMP-7."
	CMP-7 (now CMP-6) rejected that language in the 2014 cycle, with a statement to the effect that the code at that time in 334.30 did not disallow it. However, both the 2017 an

the 2020 NEC refer (in 334.30) to "every cable entry into enclosures", and this method

does not comply because it terminates NM cable on the outside of a box. To accomplish this, in the case of three-conductor applications, a special configuration of NM cable was developed. No challenges have been registered to this disqualifying wording (in Art. 334) to date.

CMP-9 will revisit this action during the comment period in the event there is credible reason to believe the method will actually come to market.

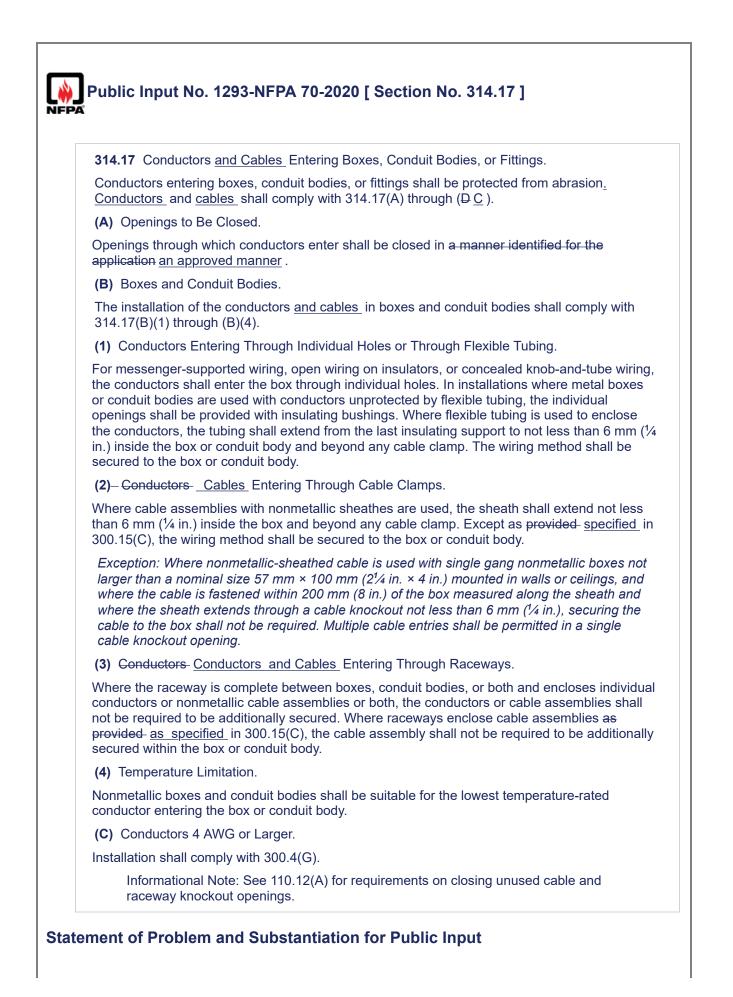
Statement of Problem and Substantiation for Public Input


I feel these changes are necessary due to the volume size of newer devices such as AFCI/GFCI receptacles, and the many new styles of electronic controls being utilized in Smart homes. These changes would allow the devices to be installed without fear of damage to the conductors serving the device.

Submitter Information Verification

Submitter Full Name	Doug Linger
Organization:	Ben Franklin Career Center
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Thu Sep 10 08:43:14 EDT 2020
Committee:	NEC-P09

Committee Statement


Resolution: The NEC already responds to the technical concerns raised in the substantiation. Similar suggestions have been made repeatedly, in every case due to a lack of understanding by the submitters as to why the NEC is worded as it is. The NEC successfully used a single allowance for any included device from the 1947 edition until the 1990 edition. GFCIs first appeared in the 1971 NEC (effective as of 1973), thus preceding the two-conductor allowance by 17 years. The double allowance was suggested in the 1987 NEC (Proposal 9-17), but limited to GFCIs, timers, and dimmers. This drew ten negative comments, and resulted in the issue being held and a task group created for the 1990 cycle. One of the critical objections (Comment 9-12) noted that an increased allowance conditioned on particular devices would be incapable of inspection during a rough inspection, because the configuration and device selections would be unknowable to an inspector at that time. In the 1990 cycle, the double allowance for devices entered the NEC (Proposal 9-24). The panel statement read as follows, and clearly informs the present language: "The panel believes it would be impractical to make one or two conductor deductions based on the size or type of device. Furthermore, marking devices with the volume they occupy would not be a practical solution either because boxes are generally selected and installed before the devices are selected. The panel believes a two (2) conductor deduction for all devices will ensure adequate capacity for all devices currently used in the industry." Over the intervening 30 years, many proposals and now public inputs have been received to increase the allowances for various types and configurations of devices. Every single one has been rejected because the substantiation consistently fails to address the reasons for the current language. In fact, inputs like PI 4258 substantiate a reduction in allowances for most devices, with the retention of the double allowance only for large devices. CMP- 9, for the reasons described in this statement, has consistently refused to take such a step, and continues this approach for the 2023 cycle.

Public li	nput No. 412-NFPA 70-2020 [Section No. 314.16(B) [Excluding any
Sub-Sections	3]
No allowa	mes in paragraphs 314.16(B)(1) through (B)(5), as applicable, shall be added together. ance shall be required for small fittings such as locknuts and bushings. Each space box installed with a barrier shall be calculated separately.
<u>B.</u>	
<u>6. Termin</u>	al blocks are to be counted as 2 conductor of the largest awg size.
Additional Pr	oposed Changes
CAB69DCE	File NameDescriptionApproved-DACD-4516-A530-C71196561900.jpegConduit body with terminal block
Statement of	Problem and Substantiation for Public Input
counted. The device. This	block takes a lot of space in a GUA or conduit body more than a strap but it is not e terminal block is bigger than small wirenuts, straps and is almost the same size as a cause for overfilling the conduit bodies. There is no rule for this and is it as safety issue wire can be pinched and arc.
Submitter Inf	ormation Verification
Submitter F	ull Name: Jose Franco
Organization	
Street Addre City:	ess.
State:	
Zip: Submittal D	ate: Mon Feb 03 17:17:44 EST 2020
Committee:	NEC-P09
Committee St	tatement
Resolution:	FR-7977-NFPA 70-2020
Statement:	CMP-9 is addressing the use of terminal blocks in outlet and device boxes. These are not commonly installed, but where provided, they take up enough volume to merit a conductor allowance. One example of this usage occurs in 680.23(F)(2)(b). CMP-9 concludes the double fill suggested in PI 412 is excessive, and is reducing it to a single allowance. In addition, CMP-9 is basing the allowance on the size of conductors actually landed in the terminal block; the size of an unterminated conductor should not be a factor in this calculation.
	CMP 9 notes that the reference to "a GUA or conduit body" may indicate a lack of understanding on the part of the submitter as to the distinction between boxes and conduit bodies, particularly in the realm of hazardous location enclosures. Terminal blocks are not located in conduit bodies, and the fact that GUA boxes have threaded hubs does not make them conduit bodies. In addition, if such terminal blocks are

attached by screws to a GUA box by drilling and tapping in the field, the continued suitability for use in hazardous locations would need to be reevaluated.

ions]]	
conducto fill calcula	d conduit bodies shall be of an approved size to provide free space for all enclosed rs. In no case shall the volume of the box, as calculated in 314.16(A), be less than the ation as calculated in 314.16(B). The minimum volume for conduit bodies shall be as d in 314.16(C).
The prov generato	sions of this section shall not apply to terminal housings supplied with motors or 's.
	rmational Note: For volume requirements of motor or generator terminal housings, 430.12.
	d conduit bodies enclosing conductors 4 AWG or larger shall also comply with the sof with_ 314.28. Outlet and device boxes shall also comply with 314.24.
	ormation Verification
ubmitter F Irganizatio	ull Name: David Williams n: Delta Charter Township
ubmitter F organizatio treet Addr	ull Name: David Williams n: Delta Charter Township
ubmitter F Irganizatio	ull Name: David Williams n: Delta Charter Township
ubmitter F organizatio treet Addre ity:	ull Name: David Williams n: Delta Charter Township
ubmitter F Prganizatio treet Addre ity: tate: ip: ubmittal D	ull Name: David Williams n: Delta Charter Township ess: ate: Wed Sep 09 21:40:57 EDT 2020
ubmitter F organizatio treet Addre tity: tate: ip:	ull Name: David Williams n: Delta Charter Township ess:
ubmitter F Prganizatio treet Addre ity: tate: ip: ubmittal D	ull Name: David Williams n: Delta Charter Township ess: ate: Wed Sep 09 21:40:57 EDT 2020 NEC-P09
ubmitter F organizatio treet Addre ity: tate: ip: ubmittal D committee S	ull Name: David Williams n: Delta Charter Township ess: ate: Wed Sep 09 21:40:57 EDT 2020 NEC-P09
ubmitter F organizatio treet Addre ity: tate: ip: ubmittal D committee: mittee S	ull Name: David Williams n: Delta Charter Township ess: ate: Wed Sep 09 21:40:57 EDT 2020 NEC-P09 tatement

The words "and cables" are being added to the charging paragraph and throughout 314.17 were appropriate. This change will provide clarification to users that the rule applies to single conductors and cable assemblies.

The reference to 314.17(A) through (D) was changed to 314.17(A) through (C) for editorial correlation.

314.17 (A) has been revised to correlate it with 312.5 (A) and 110.12(A).

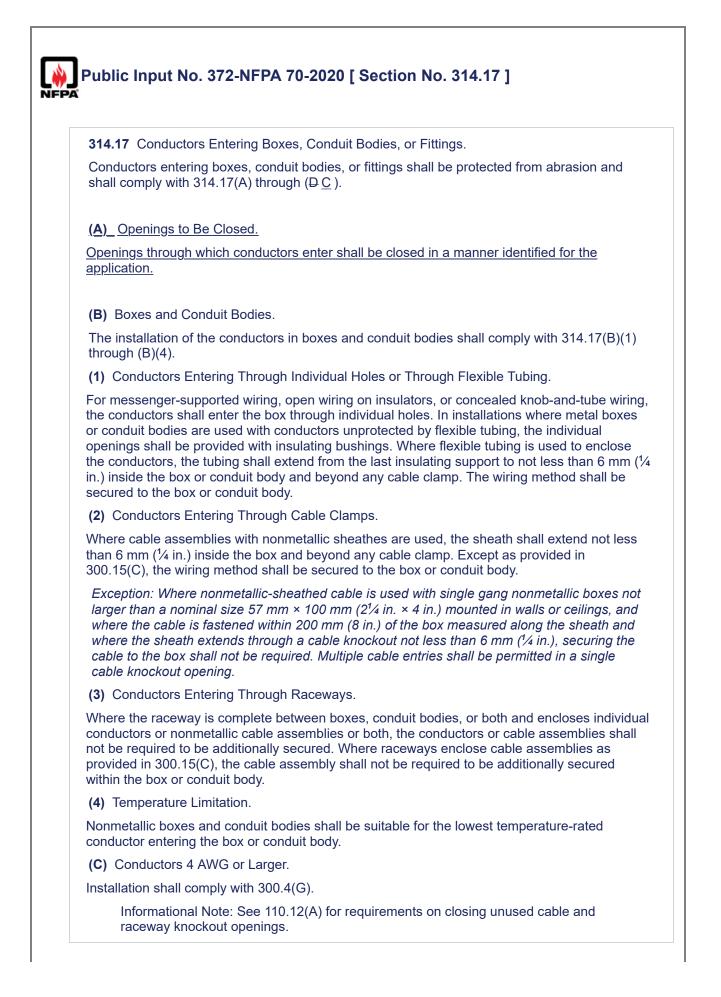
In accordance with Public Input No. 3453-NFPA 70-2017 [Global Input] to the 2020 NEC®, in two places overlooked in that Code cycle, "as provided in 300.15(C)" is replaced by "as specified in 300.15(C)". Nothing is being furnished (provided).

Spelling of "sheathes" is corrected to "sheaths", in accordance with 3.2.1.2 of Manual of Style for NFPA Technical Committee Documents.

Submitter Information Verification

Submitter Full Name: Megan Hayes		
Organization:	Nema	
Street Address:		
City:		
State:		

Zip:


Submittal Date:Thu May 28 11:40:26 EDT 2020Committee:NEC-P09

Committee Statement

Resolution: <u>FR-7738-NFPA 70-2020</u>

Statement: CMP-9 is making editorial corrections and improvements to this section. Specifically, the title and parent language now specifically include the usual application to cables, and the application is corrected to (A) through (C). The current reference to (D) is a typo left over from the 2020 NEC reorganization of this section. The standard of product acceptance is revised to "approved" allowing some flexibility on the part of an AHJ. The spelling error on the plural form of the word "sheath" is corrected to "sheaths". The reference in (B)(3) to "as provided" is changed to "as covered" which is more correct.

CMP-9 is also adjusting the wording regarding the length of cable sheaths to clarify that the ¼-inch dimension is taken from the point where the cable emerges from the clamping mechanism and not from the point where it enters the box.

Statement of Problem and Substantiation for Public Input

There is no (D).

Submitter Information Verification

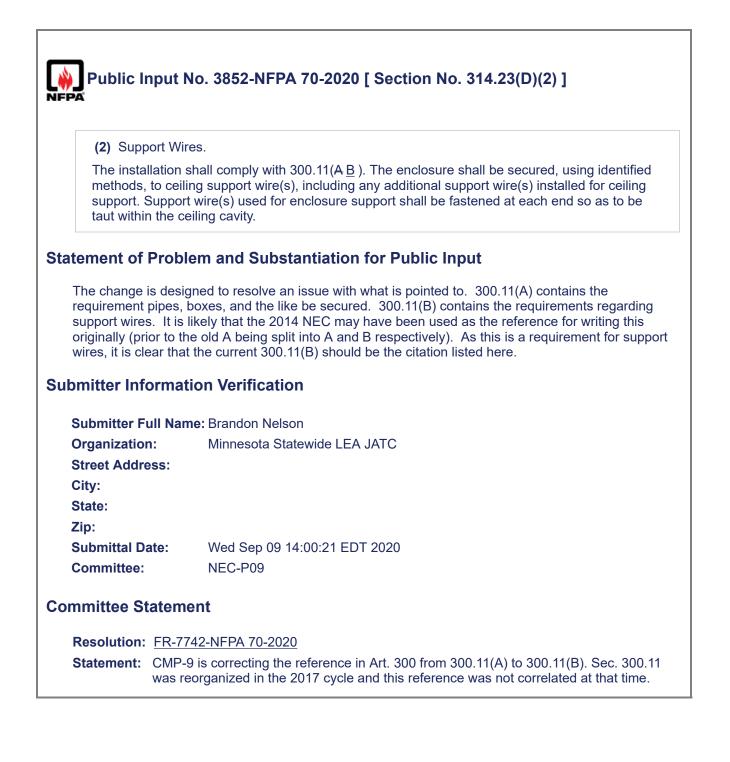
Submitter Full Name:	Scott Cameron
Organization:	True Electric LLC
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Mon Jan 27 03:05:10 EST 2020
Committee:	NEC-P09

Committee Statement

Resolution: FR-7738-NFPA 70-2020

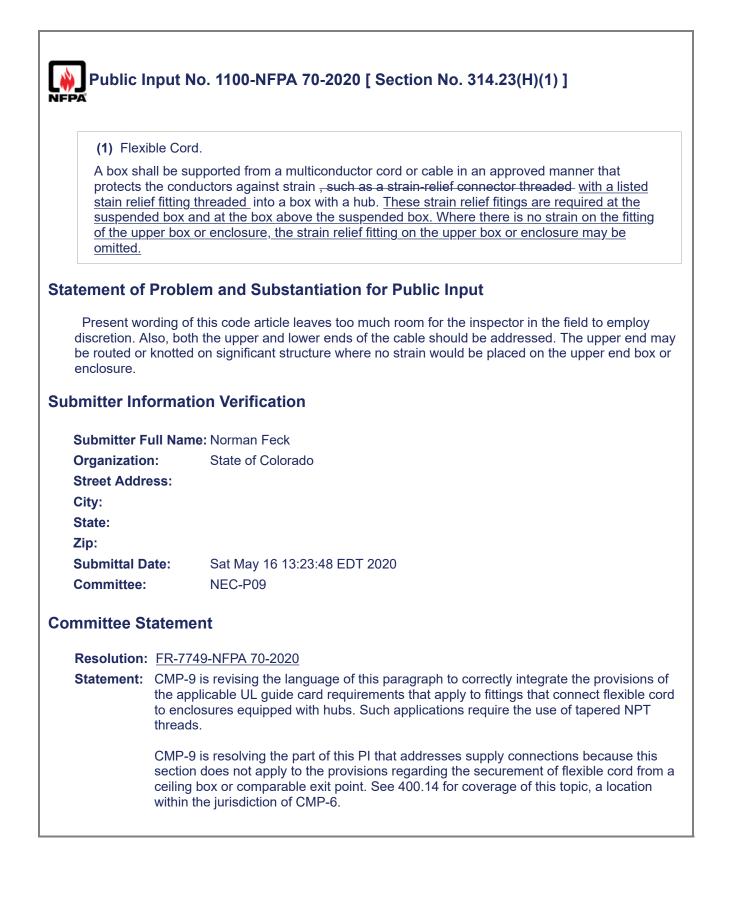
Statement: CMP-9 is making editorial corrections and improvements to this section. Specifically, the title and parent language now specifically include the usual application to cables, and the application is corrected to (A) through (C). The current reference to (D) is a typo left over from the 2020 NEC reorganization of this section. The standard of product acceptance is revised to "approved" allowing some flexibility on the part of an AHJ. The spelling error on the plural form of the word "sheath" is corrected to "sheaths". The reference in (B)(3) to "as provided" is changed to "as covered" which is more correct.

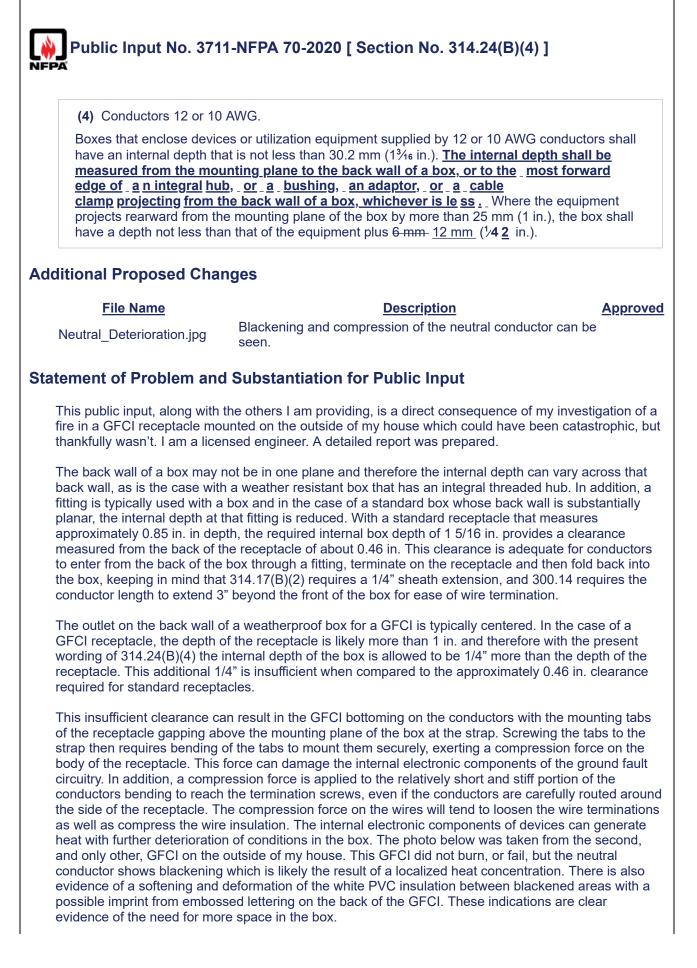
CMP-9 is also adjusting the wording regarding the length of cable sheaths to clarify that the ¼-inch dimension is taken from the point where the cable emerges from the clamping mechanism and not from the point where it enters the box.


Public In	put No. 1945-NFPA 70-2020 [Section No. 314.17(A)]
(A) Open	ings to Be Closed.
	not against a noncombustible surface through which conductors enter shall be a manner identified for the application.
Statement of I	Problem and Substantiation for Public Input
	kes it sound like the holes on the back of a surface mounted box need to be filled, even if noncombustible.
Submitter Info	ormation Verification
Submitter Fu	III Name: Jon Mitchell
Organization	: Garriott Electric
Affiliation:	Employee
Street Addre	SS:
City:	
State:	
Zip:	
Submittal Da	
Committee:	NEC-P09
Committee Sta	atement
	CMP-9 disagrees that a mounting hole is included within the openings described in this section. The scope of the section is clearly limited to cable entries, or conductor entries i the case of single-conductor wiring methods. See the editorial changes in this section that provide additional clarification.

	Entering Through Cable Clamps.
than 6 mm (¼ in.)	emblies with nonmetallic sheathes are used, the sheath shall extend not less inside the box and beyond any cable clamp. Except as provided in ring method shall be secured to the box or conduit body.
larger than a nor where the cable where the sheatl	e nonmetallic-sheathed cable is used with single gang nonmetallic boxes not ninal size 57 mm × 100 mm ($2^{1}/_{4}$ in. × 4 in.) mounted in walls or ceilings, and is fastened within 200 mm (8 in.) of the box measured along the sheath and in extends through a cable knockout not less than 6 mm ($^{1}/_{4}$ in.), securing the shall not be required. Multiple cable entries shall be permitted in a single opening.
	re of the NEC Handbook for the exception should be replaced. Exhibit 314.5 Exception. This was formerly 314.17C Exception. It violates 300.4D.
atement of Proble	m and Substantiation for Public Input
or it violates 300.4D.	ed parallel and side by side along a standard 2" x 4" must be butted tightly togethe For example: 12-2 NM-B is 7/16" wide and shall be stapled flat. A standard 2" x § 1/2" wide. A typical staple prong is 1/8" wide.
3 1/2" - (1 1/4" + 1 1/ 1" - (7/16" + 7/16" + 7	4" for both sides of the wood member) = 1" left to work with 1/8") = 0"
Noto: 1" would also b	the maximum size hale permitted to be bared but wouldn't recommand it
	be the maximum size hole permitted to be bored but wouldn't recommend it re to be precise which isn't likely as field work as opposed to operating a drill press
because it would hav in a shop condition. As an inspector, I do staples didn't stagger	
because it would hav in a shop condition. As an inspector, I dou staples didn't stagger maintained as require	re to be precise which isn't likely as field work as opposed to operating a drill press n't allow this 'railroad tracking' of NM on 2" x 4"s unless the cables are tight. If the r each other it would be a violation by 1/8". Usually though they are never ed. It isn't just the points of securing but must be maintained, as well.
because it would hav in a shop condition. As an inspector, I dou staples didn't stagger maintained as require	The to be precise which isn't likely as field work as opposed to operating a drill press in't allow this 'railroad tracking' of NM on 2" x 4"s unless the cables are tight. If the r each other it would be a violation by 1/8". Usually though they are never ed. It isn't just the points of securing but must be maintained, as well. On Verification
because it would hav in a shop condition. As an inspector, I do staples didn't stagger maintained as require Ibmitter Informatio Submitter Full Name Organization:	The to be precise which isn't likely as field work as opposed to operating a drill press in't allow this 'railroad tracking' of NM on 2" x 4"s unless the cables are tight. If the r each other it would be a violation by 1/8". Usually though they are never ed. It isn't just the points of securing but must be maintained, as well. On Verification
because it would hav in a shop condition. As an inspector, I don staples didn't staggen maintained as require Ibmitter Information Submitter Full Name Organization: Street Address:	re to be precise which isn't likely as field work as opposed to operating a drill press n't allow this 'railroad tracking' of NM on 2" x 4"s unless the cables are tight. If the r each other it would be a violation by 1/8". Usually though they are never ed. It isn't just the points of securing but must be maintained, as well. on Verification e: Norman Feck
because it would hav in a shop condition. As an inspector, I do staples didn't stagger maintained as require Ibmitter Informatio Submitter Full Name Organization: Street Address: City:	re to be precise which isn't likely as field work as opposed to operating a drill press n't allow this 'railroad tracking' of NM on 2" x 4"s unless the cables are tight. If the r each other it would be a violation by 1/8". Usually though they are never ed. It isn't just the points of securing but must be maintained, as well. on Verification e: Norman Feck
because it would hav in a shop condition. As an inspector, I don staples didn't stagger maintained as require Ibmitter Informatio Submitter Full Name Organization: Street Address: City: State:	re to be precise which isn't likely as field work as opposed to operating a drill press n't allow this 'railroad tracking' of NM on 2" x 4"s unless the cables are tight. If the r each other it would be a violation by 1/8". Usually though they are never ed. It isn't just the points of securing but must be maintained, as well. on Verification e: Norman Feck
because it would hav in a shop condition. As an inspector, I doust staples didn't stagger maintained as require Ibmitter Information Submitter Full Name Organization: Street Address: City: State: Zip:	re to be precise which isn't likely as field work as opposed to operating a drill press n't allow this 'railroad tracking' of NM on 2" x 4"s unless the cables are tight. If the r each other it would be a violation by 1/8". Usually though they are never ed. It isn't just the points of securing but must be maintained, as well. on Verification e: Norman Feck State of Colorado
because it would hav in a shop condition. As an inspector, I do staples didn't stagger maintained as require Ibmitter Informatio Submitter Full Name Organization: Street Address: City: State:	re to be precise which isn't likely as field work as opposed to operating a drill press n't allow this 'railroad tracking' of NM on 2" x 4"s unless the cables are tight. If the r each other it would be a violation by 1/8". Usually though they are never ed. It isn't just the points of securing but must be maintained, as well. on Verification e: Norman Feck

(2) Cond	ductors Entering Through Cable Clamps.
<u>box</u> not l	able assemblies with nonmetallic sheathes are used, the sheath shall extend <u>inside the</u> ess than 6 mm (¼ in.)- inside the box and beyond <u>beyond the end of</u> any cable accept as provided in 300.15(C), the wiring method shall be secured to the box or ody.
larger th where th where th cable to	on: Where nonmetallic-sheathed cable is used with single gang nonmetallic boxes not an a nominal size 57 mm × 100 mm ($2\frac{1}{4}$ in. × 4 in.) mounted in walls or ceilings, and be cable is fastened within 200 mm (8 in.) of the box measured along the sheath and be sheath extends through a cable knockout not less than 6 mm ($\frac{1}{4}$ in.), securing the the box shall not be required. Multiple cable entries shall be permitted in a single bockout opening.
tement of	Problem and Substantiation for Public Input
	wording could imply that the 1/4" measurement is taken from the back of the box and n
nom me proj	
	ection of the cable clamp which extends inside the box.
bmitter Inf	·
bmitter Inf	ormation Verification
	ormation Verification
Submitter F	ormation Verification ull Name: Thomas Milbury
	ormation Verification ull Name: Thomas Milbury n: [Not Specified]
Submitter F Organization Street Addre	ormation Verification ull Name: Thomas Milbury n: [Not Specified]
Submitter F Organization Street Addre City:	ormation Verification ull Name: Thomas Milbury n: [Not Specified]
Submitter F Organization Street Addro City: State:	ormation Verification ull Name: Thomas Milbury n: [Not Specified]
Submitter F Organization Street Addre City: State: Zip:	ormation Verification ull Name: Thomas Milbury n: [Not Specified] ess:
Submitter F Organization Street Addro City: State: Zip: Submittal D	ormation Verification ull Name: Thomas Milbury n: [Not Specified] ess: ate: Wed Sep 09 11:35:22 EDT 2020
Submitter F Organization Street Addre City: State: Zip:	ormation Verification ull Name: Thomas Milbury n: [Not Specified] ess: ate: Wed Sep 09 11:35:22 EDT 2020
Submitter F Organization Street Addro City: State: Zip: Submittal D	ormation Verification ull Name: Thomas Milbury n: [Not Specified] ess: ate: Wed Sep 09 11:35:22 EDT 2020 NEC-P09
Submitter F Organization Street Addre City: State: Zip: Submittal D Committee:	ormation Verification ull Name: Thomas Milbury n: [Not Specified] ess: ate: Wed Sep 09 11:35:22 EDT 2020 NEC-P09
Submitter F Organization Street Addro City: State: Zip: Submittal D Committee: mmittee St Resolution:	ormation Verification ull Name: Thomas Milbury n: [Not Specified] ess: ate: Wed Sep 09 11:35:22 EDT 2020 NEC-P09 tatement


314.20 Flush-M	Nounted Installations.			
noncombustible made so that th	nin or behind a surface material, including box e front edge of the box, inished surface more tl	es employing a plaster ring, ex	flush-type cover of tension ring, or lis	
rings, extension therefrom. <u>A m</u>	nin a surface of wood o rings, or listed extende <u>inimum of 6 mm (1/4 ir</u> ny point where a free co	ers shall extend <u>) clearance sha</u>	to the finished su all be maintained b	
ditional Propos	ed Changes			
	Name lic_Input-314.20.docx	PI with rele	Description vant field images	<u>Approved</u> added
atement of Prob	lem and Substant	iation for Pu	blic Input	
can put them at risk believe that we sho extender, which co extender, trimmed	k. The cable shown is equilated not have to rely on uld be metal or nonmet	entering through 110.12 to forbio allic. If an inspe uld hit the condu	h knockouts that w d this use, most es actor wants to acce	
bmitter Informa	tion Verification			
Submitter Full Na	ne: David Shapiro			
Organization: Street Address: City: State: Zip:	Safety First Electric	cal		
Zip: Submittal Date:	Sat Aug 22 16:04:3	8 EDT 2020		
Committee:	NEC-P09			
mmittee Statem	ent			
neces such instar sugge	entries would likely pre aces where a side entry ests the application of 1 to primarily result in un	ce with the devi vent the insertion was so perfect 10.7. Any atten intended conse	ce, and rarely con on of the device. F ily located as to cr npt to prescriptivel quences. In additi	front wiring entries beca or the freakishly rare


TITLE OF NEW	<u>CONTENT</u> n boxes for listed floor boxes shall not be required to be supported
atement of Proble	m and Substantiation for Public Input
a EMT conduit & fittin required additional susports per 314.23.	come as a assembly with a rectangle junction box that hangs below the floor with ng supporting it. It is manufactured as an assembly and in my experience never upports. We have had some inspectors that have been requiring the additional Personally I have never enforced additional supports but have not seen this ed. This exception would indeed address this installation one way or anothe
bmitter Informati	on Verification
Submitter Full Nam	e: James Dorsey
Organization:	Douglas County Electrical Insp
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Mon May 18 19:01:40 EDT 2020
Committee:	NEC-P09
mmittee Stateme	nt
manufa connect equippe a corect explana wiring r up on t box wit EMT ca were su to be su is silent that a fi does m been su enclosu volume bodies	is resolving PI-1147. CMP-9 understands, after some discussion with a cturer and testing laboratory personnel, that the PI refers to the point of supply tion to a Fire-Rated Poke Through (FRPT) installation that utilizes a factory- ed short vertical run of EMT that drops through a fire-rated concrete floor through or cast hole into a suspended ceiling cavity on the floor below. That is the ation for the PI pointing to suspended ceiling support wires on which the supply nay run, but that has no relevance to the rules for supporting a box that is made ne end of the EMT. The relevant requirement is 314.23(E), and EMT joined to a n a conventional EMT connector and a locknut does not comply with that rule. Innot be threaded, and therefore cannot be threaded into a box, even if the box upplied with hubs. CMP-9 does not now and has never permitted a box, in effect, upported by locknuts regardless of the number of entries so connected. UL 514A on requirements for independent support of FRPT assembly boxes. The result i eld connection to a listed FRPT assembly must comply with 314.23(E). This rule ake an exception for non-threaded conduit bodies for obvious reasons. This has uggested as an avenue for making connections. However, the usage of any such threquirements in 314.16(C)(2). As a practical matter, presently available conduit would generally fail that rule. However, in the event that the FRPT design allowe wiring to terminate directly on the FRPT device, then a conduit body supported

Public Input No	. 187-NFPA 70-2019 [Section No. 314.23(E)]
NFPA	
(E) Raceway-Sup Lampholders.	ported Enclosure and Conduit Bodies , Without Devices, Luminaires, or
(1) <u>Enclosure,</u>	
<u>luminaire(s), a lam</u>	loes not contain a device(s), other than splicing devices, or supports a pholder, or other equipment and is supported by entering ridged metalic
identified hubs. It s the enclosure or hu	<u>exceed 1650 cm $\frac{3}{(100 \text{ in.}} \frac{3}{)}$ in size. It shall have threaded entries or hall be supported by two or more ridged conduits threaded wrenchtight into ibs. Each ridged conduit shall be secured within 900 mm (3 ft) of the 1450 mm (18 in.) of the enclosure if all conduit entries are on the same side.</u>
Exception: (2) Conduit body	
The following wiring a conduit body con	<u>g methods shall be permitted to support a conduit body of any size, including structed with only one conduit entry, provided that the trade size of the larger than the largest trade size of the conduit or tubing:</u>
(1) Intermediate	metal conduit, Type IMC
(2) Rigid metal c	onduit, Type RMC
(3) Rigid polyvin	yl chloride conduit, Type PVC
(4) Reinforced th	nermosetting resin conduit, Type RTRC
(5) Electrical me	tallic tubing, Type EMT
raceway that does not definitions the curren also the way it is writte flexible conduit. I do no	is confusing, why there is an exception to an enclosure being supported by a address an enclosure. A conduit body and an Enclosure have two different t exception in this section is better suited as a general rule within this section. In this section includes all raceway conduits including Non-metallic and metallic of think this is the intent of this section. The change would make it clear only are allowed to support an enclosure
Submitter Informatio	n Verification
Submitter Full Name:	Alfio Torrisi
Organization:	Master Electrician
Street Address:	
City:	
State:	
Zip: Submittal Date:	Tue Dec 17 15:52:32 EST 2019
Committee:	NEC-P09
Committee Statemen	t
Resolution: The Cod	e is correctly written for enclosures without devices, luminaires or lampholders.

The first sentence limits the default reach of conduit support to 100 in3 enclosures. The requirements include wrenchtight threaded conduit entries (including entries into Myers hubs or equal), and limits on support distances and direction from the enclosure. Because large conduit bodies exceed the volume limit, and conduit bodies of all sizes are in general use on non-threaded raceways including PVC and EMT, the exception following allows them provided they do not exceed the size of the larger raceway entry.

In addition, in the case of an outdoor weather resistant GFCI with a cover, any distortion of the front mounting plane of the GFCI will be a problem for proper installation of the gasketed cover. If the mounting plane isn't flat the gasket will not uniformly compress around the perimeter of the box for a weather resistant seal. Therefore, to alleviate the crowding, compression forces, and gasketing concerns that are introduced because of the greater depth of a GFCI, it is necessary to increase the clearance from the back of the GFCI receptacle, and other receptacles having a depth greater than 1 inch, to 1/2" and not just 1/4". This requirement can easily be met by using a deep box where necessary.

Related Public Inputs for This Document

Related Input

Relationship

Public Input No. 3690-NFPA 70-2020 [Section No. 314.24 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name	: Thomas Milbury
Organization:	[Not Specified]
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Wed Sep 09 11:14:14 EDT 2020
Committee:	NEC-P09

Committee Statement

Resolution: FR-7869-NFPA 70-2020

Statement: CMP-9 is adjusting the language by broadening the reach of this section to address side entries. CMP-9 is aware of actual damage to conductors from installed devices or other equipment of sufficient size to create a conflict with entering conductors. The prevailing product standards create an acceptable size envelope for devices (or other equipment) mounted within boxes using yokes secured to customary gang points. This envelope is 1 3/4 in. wide by 2 13/16 in. high, with rounded corners having a radius of 7/16 in., and a plethora of devices take full advantage of this allotted profile. The same standards place no limitations on equipment depth. CMP 9 has informally surveyed available designs and found enormous depth variations in the market, very much complicating the creation of this requirement.

For nominal 3 by 2 device boxes, any side entrance at the level of the device is a nonstarter and will fail the new rule. For a 4-in. square box with two device yokes, either on internal gang mounts or the more usual case of a plaster ring (or raised cover), the rule gets interesting. The box interior will exceed the maximum device length by about 1 1/8 in, and therefore accommodate a top or bottom entry (considered in this statement as being in line with the yoke) at either end.

However, an entry at right angles to the yoke orientation (the standard gang spacing is 1 13/16 in.) would enter less than ¼-in. of available space to accommodate both a cable or raceway connection as well as wire manipulation. Attempts to force large devices into such spaces are what caused the loss experience cited in the substantiation for PI-2448. The NEC has not previously addressed this; the new rule will now prohibit such attempts.

CMP-9 does recognize that there are legitimate applications for which an entry,

particularly in the case of rigid raceway methods, is preferred in this orientation. One solution is to use a larger (presumably a 4 11/16 in. square) box. Another solution is to lower the entry point by using a deeper box. The rule compares the depth of the equipment under its mounting yoke to the centerline of the wiring entry. If that line is equal to or below the equipment limit, then the entry can be used.

This may seem odd, but it is based on a careful geometric analysis that positioned the NEC limit of 9 No. 12 THHN conductors in a cross-section of ½ trade size EMT, and they all fit below the horizontal diameter of the EMT. In fact, as long as half the connector opening is unobstructed, in practice the entire wire fill can be routed to safely enter the enclosure. There are listed raceway connectors that have a minimal (less than ¼ in. and no threads) extension inside a box and that make this approach practical.

CMP-9 is adjusting the wording to assure that the depth of boxes accommodates wiring method entries where those entry points line up with the backs of installed devices or equipment.

Public Input No. 2448-NFPA 70-2020 [Section No. 314.24(B) [Excluding any NFPA Sub-Sections]]

Outlet and device boxes that enclose devices or utilization equipment shall have a minimum internal depth <u>and side clearance</u>_that accommodates the rearward projection of the equipment and the size of the conductors that supply the equipment. The internal depth shall include, where used, that of any extension boxes, plaster rings, or raised covers. <u>A minimum of 6 mm (1/4 in) clearance shall be maintained between the device and any point where a free conductor enters the enclosure.</u> The internal depth shall comply with all applicable provisions of 314.24(B)(1) through (B)(5).

Statement of Problem and Substantiation for Public Input

The present wording," Outlet and device boxes shall have an approved depth to allow equipment installed within them to be mounted properly and without likelihood of damage to conductors within the box,"

goes on in (B) to require 6 mm /1/4 in behind a device in an enclosure. However, even the title and the parent language speak only of approved depth, not width. Where a deep device is installed in a snug box, even one with sufficient depth to satisfy the volume requirements of Section 314.16, that 6 mm/ 1/4 in. can be rearward of a side knockout where the conductors enter. This means shoving the device past them can push the wires to the point of insulation damage where they emerge from sheath, locknut or bushing. What if a box is not snug? Suppose side knockouts are used in a square box, and devices are installed using mud rings? This type of installation will not be affected by the proposed change, because there should be enough side clearance between the inner edge of the device ring and the side of the box.

Here's the problem in numbers:

NEMA WD6-2016 gives standard dimensions for receptacles. For a couple of types it gives maximum width as 1.625 in, but on P. 15 it gives maximum envelope width as 1.75 in.

UL 514A, Metal boxes, Clause 7.5.3.1, says standard flush device boxes have a minimum width of 1.75 in.

Let's say we have a 2 in wide box with minimum-legal-thickness walls, and a device whose body is only the 1.625 in wide. This still gives less than 1/4 in. on each side of the device, if it's reasonably centered. With 6 mm/1/4 in. of sheath entering from a side knockout, the device leaves no room for the free conductors entering that knockout to make a turn–unless by grace of the installer mounting the device as far off-center as possible.

I see nothing in NEMA WD6 limiting device depth, and I see no reason for limiting device depth, so long as the box is not overfilled and the conductors are not otherwise put at risk.

UL 498, Standard for Attachment Plugs and Receptacles, Clause 29.2.1, says Flush Receptacles' dead-metal parts shall not have sharp edges or points that may be forced against the wiring during installation. It says nothing about sharp parts of nonmetallic parts. These can be hard enough to scrape insulation off conductors–l've seen this more than once.

That's why we need to specify minimum clearance in every direction from knockouts that bring wires in and out.

Submitter Information Verification

: David Shapiro
Safety First Electrical
Sat Aug 22 16:19:56 EDT 2020
NEC-P09

Committee Statement

Resolution: FR-7869-NFPA 70-2020

Statement: CMP-9 is adjusting the language by broadening the reach of this section to address side entries. CMP-9 is aware of actual damage to conductors from installed devices or other equipment of sufficient size to create a conflict with entering conductors. The prevailing product standards create an acceptable size envelope for devices (or other equipment) mounted within boxes using yokes secured to customary gang points. This envelope is 1 3/4 in. wide by 2 13/16 in. high, with rounded corners having a radius of 7/16 in., and a plethora of devices take full advantage of this allotted profile. The same standards place no limitations on equipment depth. CMP 9 has informally surveyed available designs and found enormous depth variations in the market, very much complicating the creation of this requirement.

For nominal 3 by 2 device boxes, any side entrance at the level of the device is a nonstarter and will fail the new rule. For a 4-in. square box with two device yokes, either on internal gang mounts or the more usual case of a plaster ring (or raised cover), the rule gets interesting. The box interior will exceed the maximum device length by about 1 1/8 in, and therefore accommodate a top or bottom entry (considered in this statement as being in line with the yoke) at either end.

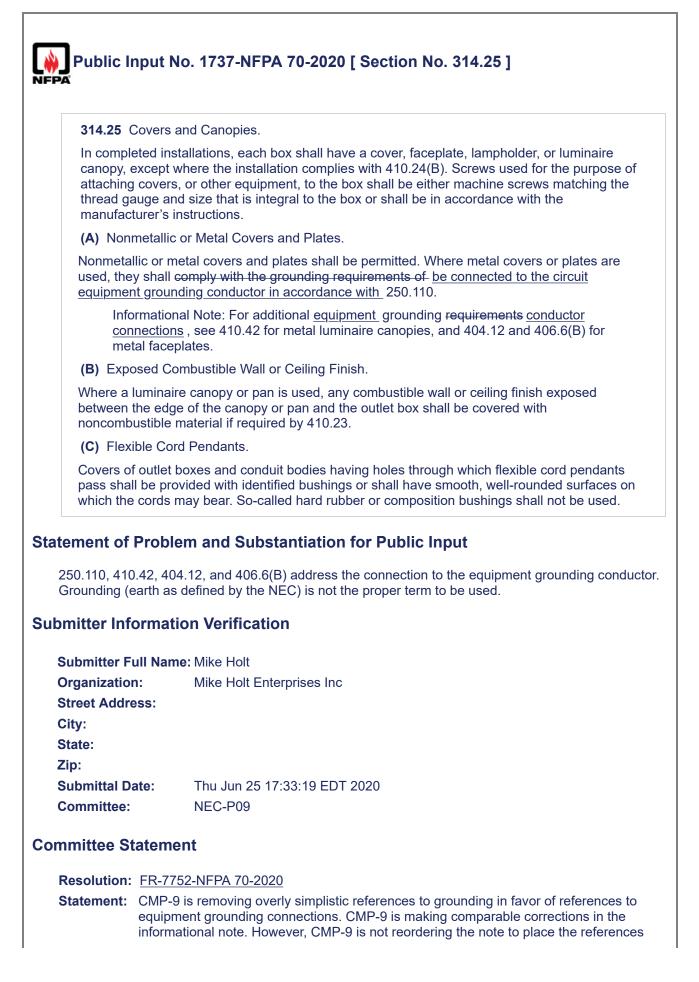
However, an entry at right angles to the yoke orientation (the standard gang spacing is 1 13/16 in.) would enter less than ¼-in. of available space to accommodate both a cable or raceway connection as well as wire manipulation. Attempts to force large devices into such spaces are what caused the loss experience cited in the substantiation for PI-2448. The NEC has not previously addressed this; the new rule will now prohibit such attempts.

CMP-9 does recognize that there are legitimate applications for which an entry, particularly in the case of rigid raceway methods, is preferred in this orientation. One solution is to use a larger (presumably a 4 11/16 in. square) box. Another solution is to lower the entry point by using a deeper box. The rule compares the depth of the equipment under its mounting yoke to the centerline of the wiring entry. If that line is equal to or below the equipment limit, then the entry can be used.

This may seem odd, but it is based on a careful geometric analysis that positioned the NEC limit of 9 No. 12 THHN conductors in a cross-section of ½ trade size EMT, and they all fit below the horizontal diameter of the EMT. In fact, as long as half the connector opening is unobstructed, in practice the entire wire fill can be routed to safely enter the enclosure. There are listed raceway connectors that have a minimal (less than ¼ in. and no threads) extension inside a box and that make this approach practical.

CMP-9 is adjusting the wording to assure that the depth of boxes accommodates wiring method entries where those entry points line up with the backs of installed devices or equipment.

A Public I	nput No. 3690-NFPA 70-2020 [Section No. 314.24 [Excluding any Sub-
Sections]]	
	d device boxes shall have an approved depth to allow equipment installed within them unted properly and without likelihood of damage to conductors within the box <u>or to the</u> <u>nt itself</u> .
Statement of	Problem and Substantiation for Public Input
fire in a GFC	nput, along with the others I am providing, is a direct consequence of my investigation of a I receptacle mounted on the outside of my house which could have been catastrophic, bu asn't. I am a licensed engineer. A detailed report was prepared.
too small, the components,	generally considered that conductors are at risk of physical damage within a box that is ere is also a possibility of damage to equipment that arises with devices having electronic , such as GFCI receptacles, AFCI receptacles, and receptacles with USB chargers, surge or electromagnetic filters.
Related Publi	c Inputs for This Document
	Related Input Relationship
Public Input	<u>No. 3711-NFPA 70-2020 [Section No. 314.24(B)(4)]</u>
ubmitter Inf	ormation Verification
Submitter E	ull Name: Thomas Milbury
Organizatio	
Street Addre	
City:	
State:	
Zip:	
Submittal Da	
Committee:	NEC-P09
ommittee St	atement
Resolution:	FR-7869-NFPA 70-2020
Statement:	CMP-9 is adjusting the language by broadening the reach of this section to address side
	entries. CMP-9 is aware of actual damage to conductors from installed devices or other equipment of sufficient size to create a conflict with entering conductors. The prevailing product standards create an acceptable size envelope for devices (or other equipment)


For nominal 3 by 2 device boxes, any side entrance at the level of the device is a nonstarter and will fail the new rule. For a 4-in. square box with two device yokes, either on internal gang mounts or the more usual case of a plaster ring (or raised cover), the rule gets interesting. The box interior will exceed the maximum device length by about 1 1/8 in, and therefore accommodate a top or bottom entry (considered in this statement as being in line with the yoke) at either end.

However, an entry at right angles to the yoke orientation (the standard gang spacing is 1 13/16 in.) would enter less than ¼-in. of available space to accommodate both a cable or raceway connection as well as wire manipulation. Attempts to force large devices into such spaces are what caused the loss experience cited in the substantiation for PI-2448. The NEC has not previously addressed this; the new rule will now prohibit such attempts.

CMP-9 does recognize that there are legitimate applications for which an entry, particularly in the case of rigid raceway methods, is preferred in this orientation. One solution is to use a larger (presumably a 4 11/16 in. square) box. Another solution is to lower the entry point by using a deeper box. The rule compares the depth of the equipment under its mounting yoke to the centerline of the wiring entry. If that line is equal to or below the equipment limit, then the entry can be used.

This may seem odd, but it is based on a careful geometric analysis that positioned the NEC limit of 9 No. 12 THHN conductors in a cross-section of ½ trade size EMT, and they all fit below the horizontal diameter of the EMT. In fact, as long as half the connector opening is unobstructed, in practice the entire wire fill can be routed to safely enter the enclosure. There are listed raceway connectors that have a minimal (less than ¼ in. and no threads) extension inside a box and that make this approach practical.

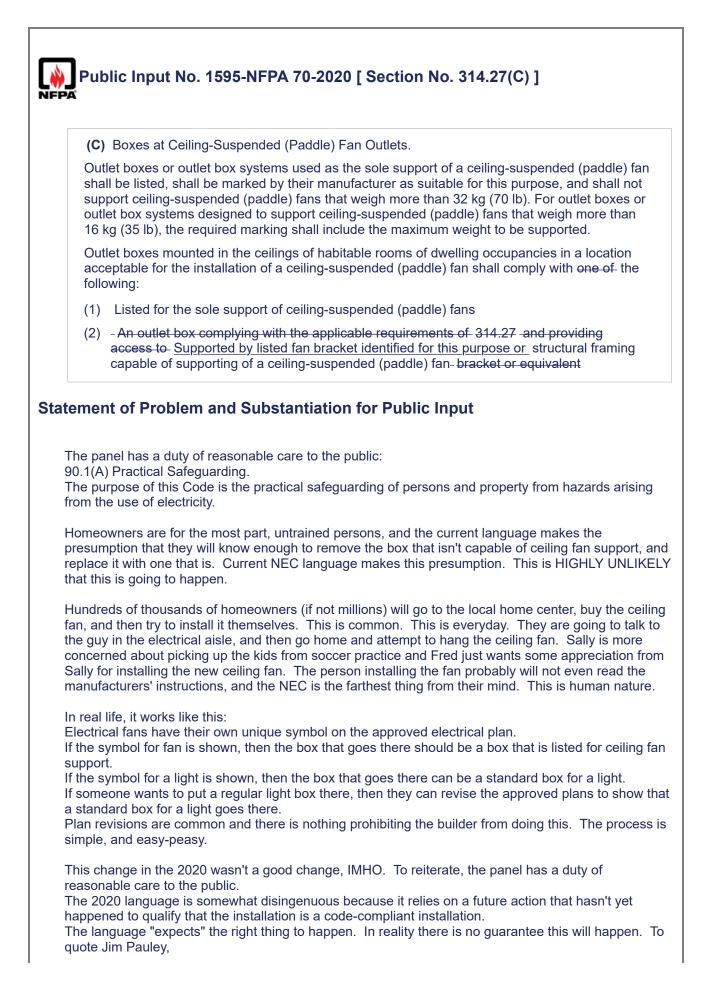
CMP-9 is adjusting the wording to assure that the depth of boxes accommodates wiring method entries where those entry points line up with the backs of installed devices or equipment.

first, as preferred in the Style Manual at Sec. 3.1.3.1, because the compound nature of this note is more clearly expressed, and with greater economy of wording, by having the common topic first, followed by the two references expressed sequentially. CMP-9 is also correcting the Art. 404 reference in the note.

Public Inp	out No. 1514-NFPA 70-2020 [New Section after 314.25(A)]		
TITLE OF I	NEW CONTENT		
	ontent here314.25(A)(1)		
	In other than dwelling units. The covers for junction boxes shall be labeled with the circuit numbers that are in or passing through the junction box		
Statement of P	roblem and Substantiation for Public Input		
This is common existing areas t would be a stro	What a pleasure when you look up in a ceiling and find a Junction box labeled with the circuit numbers. This is common practice for some but certainly not all. Often when inspecting emergency lights, in existing areas the only way to locate the lighting circuit is to hope that the boxes are labelled. This would be a strong code change in keeping the companies at the same playing field while it is not really at a cost impact		
Submitter Infor	mation Verification		
Submitter Full	Name: James Dorsey		
Organization:	Douglas County Electrical Insp		
Street Address	S:		
City:			
State:			
Zip: Submittal Date	e: Sun Jun 14 18:24:25 EDT 2020		
Committee:	NEC-P09		
Committee Stat	tement		
h ci si	he objective of the PI is to require "junction" box covers "in other than dwelling units" to ave labels applied to their covers that specify the "circuit numbers" within them. CMP-9 oncludes this may be a desirable design feature but does not address any minimum afety concern. In many cases it would be excessive, and is clearly beyond the scope of the Code as expressed in 90.1(B).		

	nput No. 1101-NFPA 70-2020 [New Section after 314.25(C)]
TITLE OI	F NEW CONTENT 314.26 Coarse Thread Scews.
<u>Type your</u>	r content here
Coarse th	nread screw(s) shall not enter a box or enclosure.
atement of	Problem and Substantiation for Public Input
added to an overy convenion	arse thread screws are added before conductors or electrical components are installed existing installation; they are a recipe for disaster. Coarse thread self-tapper screws are ent and are used this way and should be a violation. The closest The NEC comes to is 314.23B1 and doesn't provide the same message as this new public input.
electrical con	e new entry is worded allows coarse thread screws to exit enclosures. For instance, an nponent could be mounted in an electrical enclosure with coarse thread self-tapper ed from the inside to the outside of the enclosure.
ıbmitter Info	ormation Verification
Submitter Fu	ull Name: Norman Feck
Organization	n: State of Colorado
Street Addre	ess:
City:	
State:	
Zip:	
Submittal Da	ate: Sat May 16 13:34:26 EDT 2020
Committee:	NEC-P09
ommittee St	atement
Resolution:	FR-7821-NFPA 70-2020
Statement:	CMP-9 is inserting language to protect against damage to conductors resulting from sharp projections from exposed threads of screws run through covers or sides of boxes. The location in Part I will make the requirement apply throughout the entire article. For correlation, CMP-9 is also inserting references to this rule throughout 314.70(A).
	In all instances, the only permitted style of screw will be one with machine threads and blunt end. This eliminates sharp points and coarse threads with the attendant sharp-edged thread exposures of typical sheet metal screws. The penetrating length varies depending on the application and location. First, a cover screw is the customary ½ inch screw provided with boxes, expressed as the penetrating amount, or 7/16 inch. They penetrate adjacent to a box wall at or near a corner, which tends to offer additional protection to an enclosed conductor. Other screws penetrating the cover are limited to 5/16-inch penetration, which allows the customary 3/8-inch faceplate screws used to attach devices to raised covers. It is understood that work directly with a cover inherent affords greater control over wire positioning than elsewhere in the box.
	Large boxes, generally those covered in Sec. 314.28, have covers supplied with ½-in. long screws that enter close to an enclosure wall, and that therefore allow for a 7/16ths inch penetration. Outlet and device boxes (usually not over 100 in3) are more difficult

because they are often more tightly packed and with severe visual obstruction of how wires are arranging themselves against a wall of the box. For that reason, screws added to a wall of such boxes are prohibited from any extension beyond the interior wall surface. There is correlating language with 314.23(B)(1) that allows for protected screws to run through the rearward portion of such boxes for mounting purposes.


A similar limitation is imposed on screws applied to conduit bodies. A screw entering any part of a conduit bodies is likely to create damage during any stage of the process of pulling wires, and in such cases the objection stands even with a cap nut on a projecting screw end.

The second exception addresses the short gang screws that are shipped with most steel device boxes holding the sides in place; when such boxes are ganged the same screws hold the ganged boxes together. These screws are made long enough to hold the sides in place, and extend into the box by about 3/32 in. when securing adjacent gangs. They are supplied by the box manufacturers and cannot be easily shortened to the point of being flush. CMP-9 is excusing them as well.

Public In NFPA Sections]]	nput No. 458-NFPA 70-2020 [Section No. 314.25 [Excluding any Sub-					
lamphold used for t screws m	In completed installations, each box shall and conduit body shall have a cover, faceplate, lampholder, or luminaire canopy, except where the installation complies with 410.24(B). Screws used for the purpose of attaching covers, or other equipment, to the box shall be either machine screws matching the thread gauge and size that is integral to the box or shall be in accordance with the manufacturer's instructions.					
Statement of	Statement of Problem and Substantiation for Public Input					
present rules bodies to ren order keep a	Conduit bodies can contain splices, devices and terminations the same way a box can. Why are the present rules different for conduit bodies? There seems to be no logical reason to permit conduit bodies to remain uncovered, while boxes must be covered. Conduit bodies need to be covered too, in order keep any arcs and sparks contained within the enclosure, and to keep terminations protected.					
Submitter Info	ormation Verification					
Submitter F	ull Name: Russ Leblanc					
Organizatio	n: Leblanc Consulting Services					
Street Addre	9\$\$:					
City:						
State: Zip:						
Submittal Da	ate: Tue Feb 11 10:56:45 EST 2020					
Committee:	NEC-P09					
Committee Statement						
Resolution:	FR-7751-NFPA 70-2020					
Statement:	CMP-9 is inserting a requirement that conduit bodies must be covered after installation, and the covering options differ from those for boxes generally, as expressed in an added sentence on the topic.					

PA	
	es et Ceiling Suspended (Deddle) Fen Outlete
	es at Ceiling-Suspended (Paddle) Fan Outlets.
shall be li this purpo (70 lb). F	xes or outlet box systems used as the sole support of a ceiling-suspended (paddle) fan sted, shall be marked <u>on the interior of the box</u> by their manufacturer as suitable for ose, and shall not support ceiling-suspended (paddle) fans that weigh more than 32 kg or outlet boxes or outlet box systems designed to support ceiling-suspended (paddle) weigh more than 16 kg (35 lb), the required marking shall include the maximum weight ported.
	xes mounted in the ceilings of habitable rooms of dwelling occupancies in a location le for the installation of a ceiling-suspended (paddle) fan shall comply with one of the
(1) Liste	ed for the sole support of ceiling-suspended (paddle) fans
to sti	butlet box complying with the applicable requirements of 314.27 and providing access fuctural framing capable of supporting of a ceiling-suspended (paddle) fan bracket or valent
This change 314.27(A)(1)	Problem and Substantiation for Public Input is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2).
This change 314.27(A)(1) bmitter Inf	is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2).
This change 314.27(A)(1) bmitter Inf	is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2). ormation Verification ull Name: Gary Hein
This change 314.27(A)(1) bmitter Infe Submitter F	is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2). ormation Verification ull Name: Gary Hein n: Submission is independent of employer.
This change 314.27(A)(1) bmitter Inf Submitter F Organizatio	is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2). ormation Verification ull Name: Gary Hein n: Submission is independent of employer.
This change 314.27(A)(1) bmitter Infe Submitter F Organization Street Addre	is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2). ormation Verification ull Name: Gary Hein n: Submission is independent of employer.
This change 314.27(A)(1) bmitter Info Submitter F Organization Street Addre City:	is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2). ormation Verification ull Name: Gary Hein n: Submission is independent of employer. ess:
This change 314.27(A)(1) bmitter Info Submitter F Organization Street Addro City: State: Zip: Submittal D	 is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2). ormation Verification ull Name: Gary Hein n: Submission is independent of employer. ess:
This change 314.27(A)(1) bmitter Info Submitter F Organization Street Addro City: State: Zip:	is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2). ormation Verification ull Name: Gary Hein n: Submission is independent of employer. ess:
This change 314.27(A)(1) bmitter Info Submitter F Organization Street Addro City: State: Zip: Submittal D	 is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2). ormation Verification ull Name: Gary Hein n: Submission is independent of employer. ess: ate: Sat May 23 09:10:39 EDT 2020 NEC-P09
This change 314.27(A)(1) bmitter Info Submitter F Organization Street Addro City: State: Zip: Submittal D Committee St	 is consistent other NEC required manufacturer marking requirements such as and 314.27(A)(2). ormation Verification ull Name: Gary Hein n: Submission is independent of employer. ess: ate: Sat May 23 09:10:39 EDT 2020 NEC-P09

-4	
(C) Boxe	es at Ceiling-Suspended (Paddle) Fan Outlets.
shall be l support c outlet box	xes or outlet box systems used as the sole support of a ceiling-suspended (paddle) fan sted, shall be marked by their manufacturer as suitable for this purpose, and shall not eiling-suspended (paddle) fans that weigh more than 32 kg (70 lb). For outlet boxes or c systems designed to support ceiling-suspended (paddle) fans that weigh more than lb), the required marking shall include the maximum weight to be supported.
	xes mounted in the ceilings of habitable rooms of dwelling occupancies in a location le for the installation of a ceiling-suspended (paddle) fan shall comply with one of the
(1) Liste	ed for the sole support of ceiling-suspended (paddle) fans
acce acce fram	putlet box complying with the applicable requirements of 314.27 and providing ss to structural framing capable of supporting of <u>Be installed so as to allow direct</u> ss through the box to the structural framing without removing the box. The structural ing shall be capable of supporting a ceiling-suspended (paddle) fan-bracket or valent <u>a</u>
The intent of technical rec	Problem and Substantiation for Public Input this public input is strictly for clarity and usability. It is intended to maintain the original uirement without change.
The intent of technical rec	this public input is strictly for clarity and usability. It is intended to maintain the original uirement without change.
The intent of technical rec bmitter Inf Submitter F Organizatio Street Addre City: State:	this public input is strictly for clarity and usability. It is intended to maintain the original uirement without change. ormation Verification ull Name: Megan Hayes n: Nema
The intent of technical rec bmitter Inf Submitter F Organizatio Street Addre City:	this public input is strictly for clarity and usability. It is intended to maintain the original uirement without change. ormation Verification ull Name: Megan Hayes n: Nema
The intent of technical rec bmitter Inf Submitter F Organizatio Street Addre City: State: Zip:	this public input is strictly for clarity and usability. It is intended to maintain the original uirement without change. ormation Verification ull Name: Megan Hayes n: Nema
The intent of technical rec bmitter Inf Submitter F Organizatio Street Addro City: State: Zip: Submittal D Committee:	this public input is strictly for clarity and usability. It is intended to maintain the original uirement without change. ormation Verification ull Name: Megan Hayes n: Nema ess: ate: Thu May 28 11:33:04 EDT 2020 NEC-P09
The intent of technical rec bmitter Inf Submitter F Organizatio Street Addro City: State: Zip: Submittal D Committee:	this public input is strictly for clarity and usability. It is intended to maintain the original uirement without change. ormation Verification ull Name: Megan Hayes n: Nema ess: ate: Thu May 28 11:33:04 EDT 2020 NEC-P09

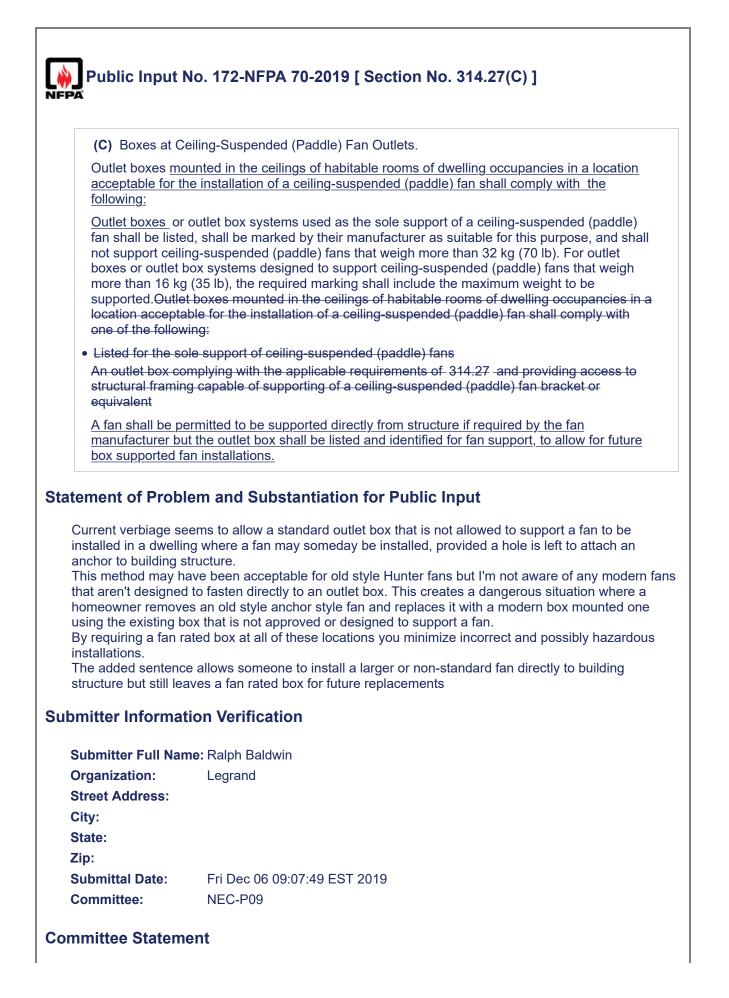
"We're inspectors - not expectors" NEC language should also reflect this train of thought, IMHO.

I don't think we should write code pertaining to a fan box, and say that a regular box can be used in that location.

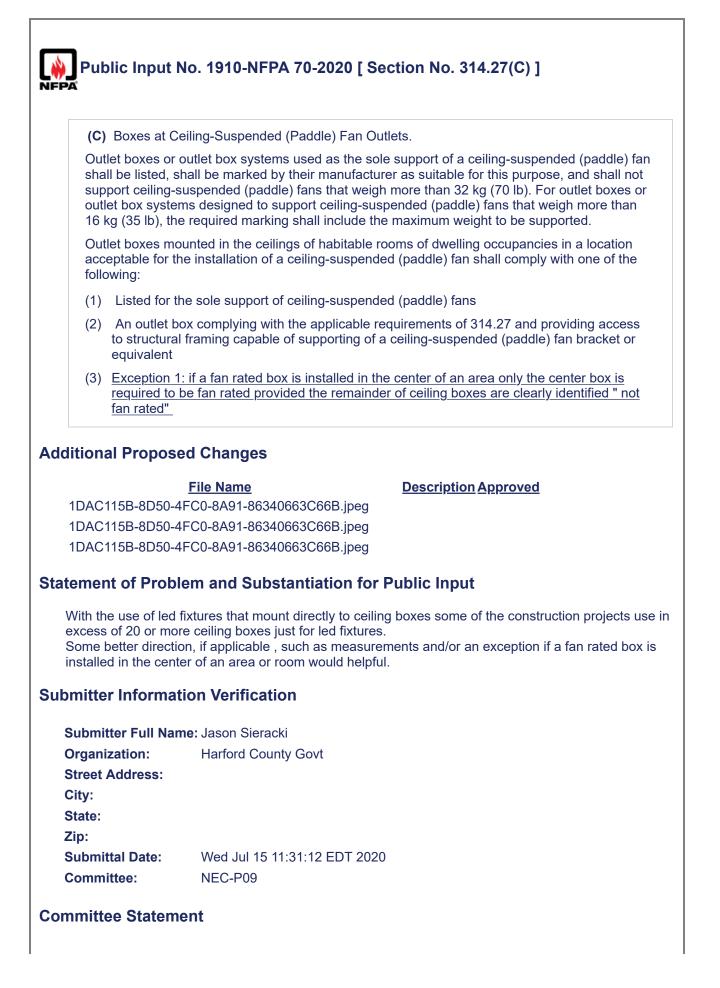
There is a right way and a wrong way to wire a home and despite what the home builder associations may want from the electrical panels, we need to remain neutral on this issue.

Builders have the right to revise plans in order to show the correct type of box for the installation. Inspectors inspect according to the approved plan set.

The proposed language codifies the box that is required to hang a fan.


Submitter Information Verification

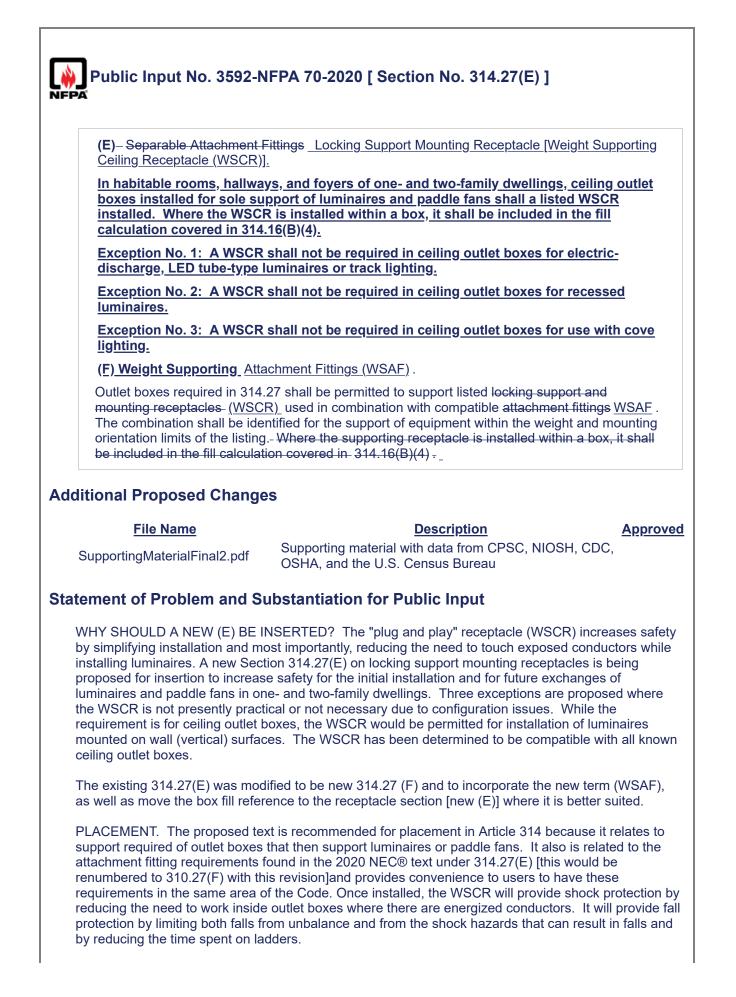
Submitter	Full	Name:	Nick Sasso	
-----------	------	-------	------------	--


Organization:	Clark County Building and Fire
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Mon Jun 22 18:53:10 EDT 2020
Committee:	NEC-P09

Committee Statement

Resolution: CMP-9 is not backing away from its consistent position that it is not necessary to supply a paddle fan from a listed fan box, as long as that box is not actually being used to provide fan support. That was the case when fan boxes came into the Code in the 1987 cycle, and that remains the case presently. In fact, CMP-9 unanimously reiterated this policy in the 2020 cycle, With exceptions that are vanishingly rare, the NEC is not, must not, and indeed cannot be written to regulate unqualified and uninspected practice. For these reasons, CMP-9 resolves PI-1595 and PI-172. CMP-9 resolves PI-1910 because there is no certainty that the specific outlet box chosen for fan support will be the suitable one. However, the installer may be able to make a case with the AHJ for an application of 90.4 equivalency in such cases. CMP-9 also resolves PI-830. The suggested informational note pointing to four sections in Art. 422 is not helpful, because the sections so identified only reiterate generally understood requirements.

Resolution: CMP-9 is not backing away from its consistent position that it is not necessary to supply a paddle fan from a listed fan box, as long as that box is not actually being used to provide fan support. That was the case when fan boxes came into the Code in the 1987 cycle, and that remains the case presently. In fact, CMP-9 unanimously reiterated this policy in the 2020 cycle, With exceptions that are vanishingly rare, the NEC is not, must not, and indeed cannot be written to regulate unqualified and uninspected practice. For these reasons, CMP-9 resolves PI-1595 and PI-172. CMP-9 resolves PI-1910 because there is no certainty that the specific outlet box chosen for fan support will be the suitable one. However, the installer may be able to make a case with the AHJ for an application of 90.4 equivalency in such cases. CMP-9 also resolves PI-830. The suggested informational note pointing to four sections in Art. 422 is not helpful, because the sections so identified only reiterate generally understood requirements.



Resolution: CMP-9 is not backing away from its consistent position that it is not necessary to supply a paddle fan from a listed fan box, as long as that box is not actually being used to provide fan support. That was the case when fan boxes came into the Code in the 1987 cycle, and that remains the case presently. In fact, CMP-9 unanimously reiterated this policy in the 2020 cycle, With exceptions that are vanishingly rare, the NEC is not, must not, and indeed cannot be written to regulate unqualified and uninspected practice. For these reasons, CMP-9 resolves PI-1595 and PI-172. CMP-9 resolves PI-1910 because there is no certainty that the specific outlet box chosen for fan support will be the suitable one. However, the installer may be able to make a case with the AHJ for an application of 90.4 equivalency in such cases. CMP-9 also resolves PI-830. The suggested informational note pointing to four sections in Art. 422 is not helpful, because the sections so identified only reiterate generally understood requirements.

Public Ir	put No. 830-NFPA 70-2020 [Section No. 314.27(C)]
(C) Boxe	s at Ceiling-Suspended (Paddle) Fan Outlets.
shall be lis support ce outlet box	tes or outlet box systems used as the sole support of a ceiling-suspended (paddle) fan sted, shall be marked by their manufacturer as suitable for this purpose, and shall not eiling-suspended (paddle) fans that weigh more than 32 kg (70 lb). For outlet boxes or systems designed to support ceiling-suspended (paddle) fans that weigh more than lb), the required marking shall include the maximum weight to be supported.
	tes mounted in the ceilings of habitable rooms of dwelling occupancies in a location e for the installation of a ceiling-suspended (paddle) fan shall comply with one of the
(1) Liste	d for the sole support of ceiling-suspended (paddle) fans
	utlet box complying with the applicable requirements of 314.27 and providing access uctural framing capable of supporting of a ceiling-suspended (paddle) fan bracket or alent
	national Note: For additional installation requirements for Ceiling-Suspended (Paddle) 422.18, 422.19, 422.20 and 422.21
Ceiling-Susp	ional note will assist the user with additional code articles specific to the installation of ended (Paddle) Fans.
Submitter Fu	III Name: David Hittinger
Organization	
Street Addre	SS:
City:	
State:	
Zip:	
Submittal Da	te: Fri Apr 03 09:46:18 EDT 2020
Committee:	NEC-P09
Committee St	atement
Resolution:	CMP-9 is not backing away from its consistent position that it is not necessary to supply a paddle fan from a listed fan box, as long as that box is not actually being used to provide fan support. That was the case when fan boxes came into the Code in the 1987 cycle, and that remains the case presently. In fact, CMP-9 unanimously reiterated this policy in the 2020 cycle, With exceptions that are vanishingly rare, the NEC is not, must not, and

However, the installer may be able to make a case with the AHJ for an application of 90.4 equivalency in such cases. CMP-9 also resolves PI-830. The suggested informational note pointing to four sections in Art. 422 is not helpful, because the sections so identified only reiterate generally understood requirements.

NAME CHANGE. The name of the "locking support mounting receptacle" is proposed to be simplified due to feedback from users and enforcers. It is proposed to be identified as "weight supporting ceiling receptacle (WSCR)", which better describes its function and features. Similarly, the attachment fitting is redesignated as "weight supporting attachment fitting (WSAF)", which also better describes its function and features and precludes confusion with unrelated fittings that attach, used elsewhere in the Code. See PIs 2690 and 2691 where the definitions are proposed.

DATA TO SUBSTANTIATE – SUMMARY OF SUPPORTING MATERIAL. A significant amount of information was collected and analyzed for this public input, including information from the U.S. Census Bureau, OSHA, NIOSH, CPSC, and CDC. It is included in the attached supporting material.

DIYers AND NON-ELECTRICIANS. A fundamental premise is that much of the home improvement work today is done by the do-it-yourselfer. The information on renovations is from the American Housing Survey, which is a report generated every two years by the U.S. Census Bureau. This report accumulates information on all aspects of housing. We have highlighted information that contrasts professional installations and do-it-yourself projects. It should be noted that licensing requirements vary among jurisdictions. A professional installer may not necessarily be licensed as an electrician. Information of the number of home improvement centers and hardware stores is provided to present a perspective on the size of the support network for home improvement. Home improvement stores are now a major factor in the US economy.

RENOVATION DATA. This report includes all of the residential renovations for each reporting period. Some of the larger renovation projects reported would have included electrical work, which was not separately categorized. Summary charts are provided on all renovations along with a single chart that reports on projects that were only classified as electrical.

DEATHS AND INJURIES REPORTED. Information from OSHA, NIOSH, CPSC, and CDC is based on reported accidents. OSHA and NIOSH data is reported in accordance with workplace accident reporting regulations. CPSC data is based on incidents that come to the attention of CPSC. Persons who are injured are not required to report their injuries to CPSC, so the information may be incomplete. The data on falls is based on reports from hospitals and clinics, which is contained in the WISQARS database. Two separate reports are presented, one for fatalities and one for non-fatal injuries.

<SEE ATTACHMENT FOR SUPPORTING DATA>

THAT NEXT HOME IMPROVEMENT – IS IT SAFE? People are always dreaming of that next home improvement or update. One of the most desirable ways to do that is by changing luminaires and adding or updating ceiling paddle fans.

As more DIYers are doing this improvement work, safety concerns grow exponentially. Some of the biggest safety issues are falls from ladders, electric shocks and electrocutions. A solution exists that you can employ in your products that mitigates all these very real hazards.

So, shouldn't the desires of the DIYers be accommodated safely? Benefits to you could be increased sales of luminaires or paddle fans – if we could just make it easier and safer.

...BECAUSE IT WAS ALWAYS DONE THAT WAY...? When overhead general lighting is going to be installed, why does the initial luminaire installation or future luminaire changes have to be hard-wired? Now technology exists to mitigate the hazards, as discussed here and should become mandatory for safety.

Safety in the NEC is a continuing evolution. When the screw shell lampholder design was standardized, why wasn't a weight supporting quick-connect option for luminaires and ceiling fans also included? Simply put, because the technology didn't exist. When looking around the home, most electrical equipment is plug and play, except ceiling luminaires and paddle fans. Furthermore, experience demonstrates that occupants would like to be able to change both luminaires and paddle fans.

One example of code and technology evolution is the use of a 2-wire lighting socket screw-shell adapter to power appliances. Evolution brought 2-wire receptacles for this purpose and these evolved to 3-wire grounded receptacles, some of which became GFCI-type receptacles. Advancements in

technology coupled with the need to improve safety is the fundamental principle of the NEC.

DANGERS OF DOING IT THE "OLD" WAY. From your own experience, you understand the dangers of working on a ladder (with or without the luminaire or paddle fan) while wiring. Do you realize that, excluding motor vehicle accidents, falls are the #1 cause of injuries in construction (US Census Bureau BLS, 2019), which includes electricians? The data in the attached report validates your own experiences of strains and falls. Shouldn't the wiring be done once, similar to any other receptacle, and the luminaire or paddle fan simply plugged in afterwards?

IT IS TIME TO TAKE ANOTHER STEP IN THE EVOLUTION TO FURTHER IMPROVE SAFETY.

DIYS ARE A LARGE SEGMENT OF RESIDENTIAL REMODELING

-- DIYers do between 36 - 38% of all home improvement projects (US Census Bureau, 2017)

-- DIYers do between 35.2 - 35.9% of all electrical home improvement projects (US Census Bureau, 2017).

-- Luminaires and paddle fans are two of the most popular electrical improvements.

-- HGTV, DIY Network, YouTube encourage DIY projects.

- -- House flipping is popular among DIYers, encouraged by HGTV programming.
- -- There are several thousand home improvement stores nationwide to support DIY projects

HAZARDS FROM THE DIY INSTALLATION

-- Incorrect installations go undetected

- -- Incorrect wiring causing shorts and shocks
- -- Incorrect support causing luminaires/paddle fans to fall or damage wires
- -- Loss of grounding/bonding connection
- -- Falls from ladders during installation from:
 - -- Shocks
 - -- Unsteadiness and losing balance
 - -- Awkwardness of handling luminaires/paddle fans while connecting wires
- -- Shocks during installation of replacement luminaires/paddle fans due to exposure of live wires

The extent of the DIY problem installations is not really known. There is rarely an electrical inspection initially, and subsequent real estate home inspectors often have a low level of electrical training. Also, there is no one or entity that is keeping statistics.

SIMPLER MAINTENANCE

- -- Easy removal for cleaning luminaires/paddle fans and bulb replacement
- -- Easy removal and reinstallation for painting the ceiling
- -- Quick install/removal of luminaires/paddle fans

IF THE WORK IS DONE BY PROFESSIONALS, WHO ARE "PROFESSIONALS" INSTALLING LIGHTING/CEILING FANS? How many of the professional home improvement projects include an electrical professional on the team? Is the electrical work being performed by painters? Carpenters? Drywallers? Home handymen?

-- The CPSC estimates there are 4 electrocution deaths per year associated with lighting products (Hnatov, 2009) that they have been able to identify. One death is one too many.

-- CPSC data from the National Electronic Injury Surveillance System (NEISS) database (CPSC, 2019) from 2009 to 2013 revealed 38 incidents resulting in hospital emergency room visits involving the

installation of luminaires; 32 of those incidents involved falls and at least four of those incidents involved the victims being shocked.

CEILING FAN RECALLS

The CPSC website lists a number of ceiling fan and luminaire recalls (CPSC, 2018). If the new technology receptacle had been installed, the luminaire could be easily replaced by the homeowner, minimizing shock and fall hazards.

THE SOLUTION

The proposed solution is an innovative advance that makes the installation of luminaires/paddle fans safer not just for the current installation, but for future replacements. With this new technology installed during initial construction by electrical professionals there is:

- -- a quick connect/disconnect capability (similar to a standard receptacle)
- -- support of the weight of the luminaire/paddle fan
- -- no supporting the weight or bulk of the luminaire/paddle fan during the receptacle installation
- -- no additional rewiring necessary to install the new luminaire/paddle fan
- -- no shock hazard during the quick connect of the luminaire/paddle fan

The WSCR is an advance that makes the installation of luminaires and paddle fans safer not just for the current installation, but for future replacements. For the initial installation, the only "weight" the installer has to deal with is the WSCR which is ounces not pounds.

Without the weight/bulk, the falls may not have occurred. With the new technology WSCR in place, the initial installation of the luminaire and any replacement is a quick connect and no shock would have occurred.

If the WSCR and WSAF are required, homeowners and other installers would be protected from shock and fall accidents. They would also be more able to change luminaires/paddle fans at will, which would significantly increase the market.

The solution makes the initial installation safer and provides that future lighting replacements do not require the homeowner to come in contact with potentially live wiring. The WSCR and WSAF configurations protect homeowners and other DIY installers and make lighting replacements simple.

PUBLIC SAFETY.

The WSCR and WSAF would increase overall public safety; a previously installed WSCR (female portion in the ceiling) will:

- -- REDUCE installation time and time on ladders (due to ease of installation)
- -- REDUCE time standing on something substituting for a ladder (chair, table, sofa, etc.)
- -- ELIMINATE homeowners splicing of wiring especially while on ladders
- -- REDUCE incorrect installations that could lead to fires or shock hazards
- -- REDUCE injuries and deaths from
 - shock and electrocution
 - -- falls
- -- PROMOTES robust and safe first-time installation by professionals
- -- ALLOWS quick connect for initial and future installations
- -- ELIMINATE straining of conductors and connectors holding the weight of luminaire during installation
- -- ELIMINATE the need to support the weight of the luminaire or ceiling paddle fan during wiring; the WSCR weighs ounces.

-- FACILITATES safety when the inspector verifies polarity of the wiring to the WSCR via a circuit tester (versus no polarity verification of luminaires/paddle fans currently).

ADDITIONAL BENEFITS TO MANUFACTURERS WHO LICENSE TECHNOLOGY. This submission complies with the ANSI/NFPA Essential Patent Policy, and the necessary documentation has been provided to NFPA. The WSCR and WSAF would benefit manufacturers as follows:

- -- REDUCE liability exposure
- -- INCREASE purchasing of luminaires/paddle fans due to
 - -- reduced installation costs
 - -- ease of installation

-- INCREASE purchasing of different types or themed luminaires/paddle fans could be easily quick connected/disconnected based on events/holidays/formality

-- DECREASE time get a certificate of occupancy once WSCR is installed in ceiling

-- INCREASE purchasing of WSCR by homebuilders who wish to maximize spec homes (easy switch out of luminaires/paddle fans based on customer preference)

- -- REDUCE procrastination of remodeling (entire construction industry benefits)
- -- INCREASE interchangeability by promoting standardization

-- INCREASED business - interchangeability that anyone's luminaire/paddle fan can be replaced with yours

-- DECREASE costs since multiple designs of connectors are not necessary

-- INCREASE product lines containing the "quick connect/disconnect" feature

CROSS REFERENCE. Cross-reference PIs 2690 and 2691, definitions for "Weight Supporting Ceiling Receptacle" and "Weight Supporting Attachment Fittings", respectively.

REFERENCES

American Housing Survey, (2011, 2013, 2015, 2017) https://www.census.gov/programs-surveys /ahs/data/interactive/ahstablecreator.html?s_areas=00000&s_year=2017&s_tablename=TABLE1& s_bygroup1=1&s_bygroup2=1&s_filtergroup1=1&s_filtergroup2=1

Fan Recalls U.S. Consumer Products Safety Commission. (2018, September 6). Retrieved May 19, 2020, from https://www.cpsc.gov/search?site=cpsc_site&output=xml_no_dtd&getfields=*&tlen=120& client=ek_drupal_01&proxystylesheet=ek_drupal_01&filter=p&query=fans

Hnatov, Matthew V. 2004 Electrocutions Associated with Consumer Products, Hazard Analysis Division, Directorate for Epidemiology, Consumer Products Safety Commission. April (2009, April)

National Census of Fatal Occupational Injuries in 2018 (17 Dec. 2019) https://www.bls.gov /news.release/pdf/cfoi.pdf. Accessed 20 May 2020.

National Electronic Injury Surveillance System On-Line Query System U.S. Consumer Products Safety Commission. (2019, July 08). Retrieved July 09, 2020, from https://www.cpsc.gov/cgibin/NEISSQuery/home.aspx

Submitter Information Verification

Submitter Full Name:	Amy Cronin
Organization:	Strategic Code Solutions LLC
Affiliation:	Sky Technologies (formerly Safety Quick Lighting and Fans)
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Wed Sep 09 08:28:25 EDT 2020
Committee:	NEC-P09

Committee Statement

Resolution: FR-7761-NFPA 70-2020

Statement: CMP-9 is updating the names for the existing terminology "locking support and mounting receptacles" and "attachment fitting" to correlate with newly defined terminology in Article 100, terminology that will include associated acronyms. Although optional, CMP-9 is electing to repeat the full names of the terms ["Weight Supporting Ceiling Receptacle (WSCR) and "Weight Supporting Attachment Fittings (WSAF)] in this section, their first such use in Article 314, in order to support usability.

CMP-9 is resolving all other portions of PI- 3592. The mandatory requirement for these receptacles cannot move forward here until luminaires that incorporate the attachment fittings are mandated in Art. 410. CMP-9 understands that CMP--18 is resolving PI 3423 that would accomplish this, due in part to a lack of industry standards. Optional usage of this equipment will remain acceptable under the new text.

PROBLEMS AND SOLUTIONS SUMMARY

Problem: Traditional wiring

Existing practices allow wiring of luminaires and paddle fans that can result in faulty installations or hazards that can include:

- Shocks, electrocutions, injuries & death
- Fires & shorts
- Exposure & contacting energized conductors
- Incorrect & sloppy wiring
- Splicing wires while on a ladder
- Straining of conductors & connectors holding the weight of luminaire during installation
- Incorrect installations go undetected
 Loss of grounding/bonding connections
- Incorrect support causing luminaires/paddle fans to fall or damage wires
- > Falls from ladders during installation from:
 - Shocks
 - Unsteadiness and losing balance
 - Awkwardness handling while connecting wires

Solution: Weight Supporting Ceiling Receptacle (WSCR)

Plugging-in luminaires & paddle fans using the WSCR & Weight Supporting Attachment Fitting (WSAF) will eliminate and/or reduce risk of faulty wire installations and can:

- Reduce shocks, electrocutions, injuries & deaths
- > Eliminate the need to touch wires; no exposed wires
- > Prevent fires due to incorrect or sloppy wiring
- Provide a means to check polarity
- Eliminate straining of conductors & connectors holding the weight of luminaire during installation
- > Eliminate splicing wires while on a ladder
- Reduce majority of time on ladders (unsteadiness & losing balance
- Reduce awkwardness of handling luminaires/paddle fans while connecting wires

Supporting Data for Public Input

REQUIREMENTS FOR WEIGHT SUPPORTING CEILING RECEPTACLE (WSCR) AND WEIGHT SUPPORTING ATTACHMENT FITTING (WSAF)

> formerly Locking Support and Mounting Receptacle and Attachment Fitting

Table of Contents

Do It Yourselfers	1
Renovation Statistics	1
Home Improvement DIY vs Professional Percentages, 2011 through 2017	2
Electrical Home Improvement Projects	3
NFPA Residential Fire Statistics	3
Injury Reports	5
OSHA Reports	5
NIOSH Reports	5
CPSC Statistics	6
CDC Data	6
Annex A: Home Renovations Reported in the American Housing Survey	8
2015-2016 DIY vs Professional by Renovation Type 2013-2014 DIY vs Professional by Renovation Type 2011-2012 DIY vs Professional by Renovation Type 2009-2010 DIY vs Professional by Renovation Type	14 20
Annex B: CDC Injury Data	
Fall Deaths, 2001-2017	
10 Leading Causes of Nonfatal ER Visits, 2001-2017	

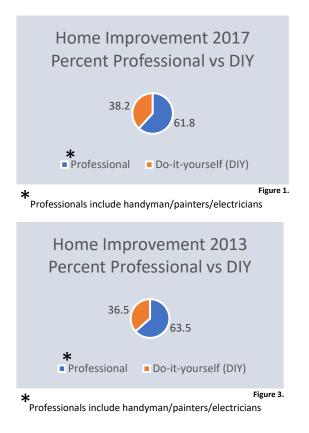
MANY DIY'ERS MAKE THIS TECHNOLOGY CRUCIAL FOR SAFETY Large Support Network for Do It Yourselfers

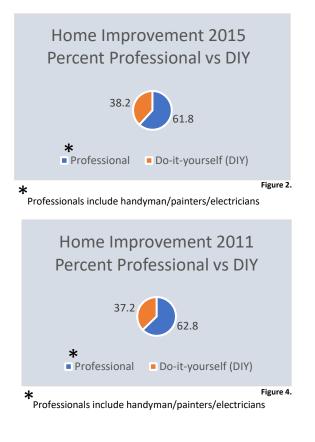
There is a significant market for do-it-yourself home improvement. Big-box retailers have sprung up across North America that supply products directly to the consumer. There are 2,286 North American Home Depot stores, 2155 Lowe's Stores, 5000 Ace Hardware stores, 3800 True Value stores, 4500 Do it Best stores, 1000 Harbor Freight stores and others that supply inexpensive tools to many of the DIYers. The DIY market is also supported by all sorts of You Tube videos, some of which is vendor supported, but much of which is generated by someone who may not be an expert. In addition, the Home and Garden TV Network (HGTV) has convinced many that they can make large profits by buying distressed existing home and flipping them. This has also encouraged homeowners to improve their own homes.

The big box stores are known for having large lighting departments that have extensive displays of fixtures. Many can arrange for a local contractor to do the installation. However, many consumers are taking on the project themselves or having some unlicensed handyman do the installation work.

The public inputs will propose to require that lighting outlets utilize listed WSCR and WSAF (locking support-type receptacles to connect to compatible attachment fittings) on luminaires and paddle fans. The use of the WSCR and WSAF simplify the replacement of luminaires and paddle fans. The use of the WSCR and WSAF limits the exposure to energized parts for future fixture replacements. Falls from ladders are a safety problem for professionals in the workplace. They are also a safety problem in the home. Simplifying the replacement process limits the time spent on ladders, and reduces the extended reach from higher ladder steps, minimizing the number of falls.

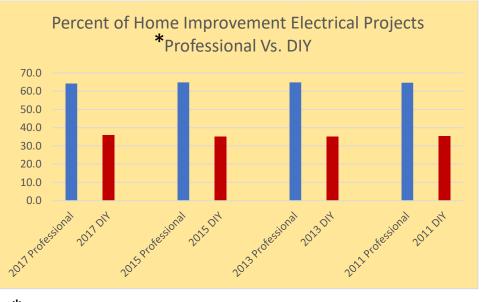
Fixtures have varying degrees of installation complexity and a variety of fastening means. There is also a lot of variety of degrees of assembly that is required. Some of assembly might take place on the ladder. With WSCR and WSAF, all of the assembly can take place off the ladder and the completed assembly can simply be raised into position and plugged in.


Renovation Statistics


The American Housing Survey, produced by the Census Bureau is generated every two years¹. One of the many factors analyzed is home renovations. The survey analyzes professional and DIY renovations. The statistics appear to show a level percentage of DIY renovations out of the total number of renovations for each reporting period. Some renovations can easily be

¹ U. S. Census Bureau, American Housing Survey. (n.d.). Retrieved July 20, 2020, from https://www.census.gov/programssurveys/ahs/data/interactive/ahstablecreator.html?s_areas=00000&s_year=2011&s_tablename=TABLE16&s_bygroup1=24&s_bygrou p2=1&s_filtergroup1=1&s_filtergroup2=1.

performed by the homeowner. Surprisingly, the statistics also show a fairly consistent percentage of electrical renovations that are DIY. Permits are rarely taken out for DIY equipment replacements or renovations. That is sometimes the case with flipped homes. As a result, DIY work is rarely inspected by jurisdictional electrical inspectors. Even when permits are taken out, there is no guarantee that the work will be performed by professionals or that it will be inspected. Many jurisdictions will only spot check the work of homeowners because inspections cost money and if there is no inspection, the jurisdiction can just collect the permit fee. For those who are classified as professional, how many of the practitioners are electricians? How many are just handymen? Figures 1 through 4 illustrate the percentages of home improvement projects for a two-year period ending in 2017, 2015, 2013, and 2011. Figure 5 illustrates all of the electrical home improvement projects reported by the survey from 2010 through 2017. The background data is in Annex A.


FIGURES 1-4: LARGE PERCENTAGE OF HOME IMPROVEMENTS DONE BY DIY'ers; "PROFESSIONALS" CAN INCLUDE PAINTERS AND HANDYMEN, NOT ALWAYS ELECTRICIANS.

Electrical Home Improvement Projects

The number of people who are willing to do electrical work themselves has been a similar percentage to that of all DIY projects. It has also remained steady over the study periods of the survey. The raw statistics are included to provide a clearer picture of the types of home improvement projects undertaken. Many of the interior renovations likely include some electrical work, which may or may not be included separately as electrical work.

*Professionals include handyman/painters/electricians

Figure 5.

NFPA Residential Fire Statistics

NFPA estimates that 17,600 home fires in the US that are caused by faulty wiring connected with ceiling fans and lights (https://www.nfpa.org/-/media/Files/News-and-Research/Fire-statistics-and-reports/Building-and-life-safety/oshomes.pdf) The report notes "Electrical distribution or lighting equipment was the leading cause of home fire property damage. An average of 35,000 such fires caused 500 deaths; 1,130 injuries; and \$1.4 billion in direct property damage per year. Wiring and related equipment accounted for 7 percent of all home fire deaths. Cords or plugs were involved in only 1 percent of the fires but 6 percent of the deaths. Extension cords dominated the cord or plug category. More information is available in the NFPA report, *Electrical Fires*²."

² Campbell, R. (2019, March). *Electrical Fires* (Tech.). Retrieved July 20, 2020, from National Fire Protection Association website: https://www.nfpa.org/News-and-Research/Data-research-and-tools/Electrical/Electrical

The following table notes fire statistics for lighting and distribution equipment. This is a rather broad category. There is a separate category for ceiling fans. It appears that fans category includes bathroom vent fans. It may also include kitchen exhaust fans.

Equipment Involved	Fi	es.	Civilian	Deaths	Civilian	Injuries	Direct Prope (in Mil	
Electrical distribution and lighting equipment	22,620	(50%)	310	(71%)	700	(56%)	\$786	(62%)
Wiring and related equipment	17,600	(39%)	190	(43%)	440	(35%)	\$588	(46%)
Cord or plug	2,080	(5%)	100	(23%)	130	(11%)	\$85	(7%)
Lamp, bulb or lighting	1,850	(4%)	10	(3%)	70	(5%)	\$64	(5%)
Transformers and power supplies	1,080	(2%)	10	(2%)	60	(5%)	\$49	(4%)

Table 5. Home Fires Involving Electrical Failure or Malfunction as Factor Contributing to Ignition by Equipment Involved in Ignition, 2012-2016 Annual Averages

Later on, NFPA's *Electrical Fires* report contains the following table, which, for the same time period has different and larger numbers:

Equipment Involved	Fii	·es	Civilian	Deaths	Civilian	Injuries	Direct P Damage (in	
Wiring and related equipment	24,780	(67%)	270	(55%)	640	(53%)	\$853	(67%)
Lamp, bulb or lighting	4,970	(13%)	40	(9%)	200	(17%)	\$164	(13%)
Cord or plug	3,330	(11%)	160	(33%)	230	(19%)	\$143	(11%)
Transformers and power supplies	2,060	(9%)	20	(3%)	130	(11%)	\$108	(9%)
Other known equipment involved in ignition	20	(0%)	0	(0%)	0	(0%)	\$0	(0%)
Total	35,150	(100%)	490	(100%)	1,200	(100%)	\$1,270	(100%)

 Table 14.

 Home Fires Involving Electrical Distribution and Lighting Equipment, by Equipment Involved in Ignition

 2012-2016 Annual Averages

Injury Reports

OSHA Reports. Falls from ladders are a frequent hazard. They happen in commercial and industrial settings as well as in residential situations. For example: in the OSHA electrocution training materials, an OSHA Fatal Fact is presented³ that details a union electrician's death by electrocution during trouble shooting with lamps. The shock caused the electrician to fall off the ladder (OSHA Incident Report #0418800).⁴

Another example: in 2011, an electrician was electrocuted when the wires of a light fixture he was attempting to hang became stripped energizing the light fixture. As he grabbed one of the attached steel hanging cables, he received a fatal shock (OSHA Incident Report #0317700).⁵ It is reasonable to conclude that this incident could have been avoided if the new technology receptacle/attachment fitting technology had been used because the fixture could not have become energized, as there would be no access to electricity through the disconnected fixture.

NIOSH Reports. The National Institute for Occupational Safety and Health (NIOSH) conducts the Fatal Accident Circumstances and Epidemiology (FACE) Project. Data are collected from a sample of fatal accidents, including electrical-related fatalities.

For example: NIOSH FACE Report 87-55⁶ summarized a 1987 electrocution of a North Carolina electrician. While repairing a fluorescent light fixture over a kitchen sink in a single-family residence, a 33-year-old journeyman electrician was electrocuted when he contacted an energized wire on the load side of the ballast (400 volts). The ballast had been replaced. However, he could not get the light to operate properly. The electrician was sitting on the sink when he apparently contacted an energized wire on the load side of the ballast. The circuit had not been de-energized at the panel box or at the single-pole switch on the wall beside the sink.

It is reasonable to conclude that this incident might have been avoided if the WSCR/WSAF technology had been used. The receptacle would've already been installed, and the fixture could've been taken down through a simple quick disconnect for examination. If the fixture was determined to be in working order, additional work could be completed with the fixture

³ Construction Focus Four: Electrocution Hazards, Instructor Guide. OSHA Training Institute, OSHA Directorate of Training and Education, April 2011. Document can be found online at https://www.osha.gov/dte/outreach/construction/focus_four/electrocution/electr_ig.pdf

⁴ OSHA Report ID: 0418800 can be found at https://www.osha.gov/pls/imis/establishment.inspection_detail?id=18396960

⁵ OSHA Report ID: 0317700 can be found at https://www.osha.gov/pls/imis/establishment.inspection_detail?id=314163627⁶ NIOSH Face Reports 1982 to 2005 including 87-55 can be found at http://wwwn.cdc.gov/NIOSH-

FACE/Default.cshtml?state=ALL&Incident_Year=ALL&Category2=0006&Submit=Submit#.VFjs8y7-DK0.email. This particular report can be located directly at http://www.cdc.gov/niosh/face/In-house/full8755.html

⁶ NIOSH Face Reports 1982 to 2005 including 87-55 can be found at http://wwwn.cdc.gov/NIOSH-FACE/Default.cshtml?state=ALL&Incident_Year=ALL&Category2=0006&Submit=Submit#.VFjs8y7-DK0.email. This particular report can be located directly at http://www.cdc.gov/niosh/face/In-house/full8755.html

⁷ 2004 Electrocutions Associated with Consumer Products, By Matthew V. Hnatov. Hazard Analysis Division, Directorate for Epidemiology, Consumer Products Safety Commission. April 2009

quickly disconnected and out of the vicinity so full attention could be given to the wiring. If the new technology had been used, the electrocution might have been avoided.

CPSC Data. It is important to note that CPSC data includes only the data the CPSC becomes aware of, and it is understood that there are many other incidents that are not reported or do not come to their attention. Consumers are not obligated to report incidents to the CPSC. The research from the National Electronic Injury Surveillance System (NEISS) database from 2009 to 2013 included the following:

- CPSC estimates 4 electrocution deaths per year associated with lighting products.⁷
- There were 38 incidents involving the installation of light fixtures that resulted in hospital emergency room visits;
- 32 of those incidents involved falls and at least four of those incidents involved the victims being shocked.

With the new technology, after the receptacle is installed in the ceiling, there is no additional wiring necessary, no weight or bulk of the fixture during the initial receptacle installation, certainty of connection of the fixture to the equipment grounding conductor, and no shock hazard during the quick connect of the fixture. Without the weight/bulk, the falls may not have occurred. With the new technology receptacle in place, installation of the luminaire is a quick connect and no shock would have occurred.

- There were 418 incidents involving changing light bulbs that resulted in hospital emergency room visits;
- 390 involved falls and at least six of those incidents involved the victims being shocked.
- There were 9 additional incidents associated with cleaning the light fixture that resulted in hospital emergency room visits; 8 of those involved falls.

Many of these incidents could have been avoided or minimized if the new technology receptacle/attachment fitting technology had been used. The fixture is simply disconnected and any bulb or fixture maintenance or cleaning can be done on a table, not at an elevation, thereby reducing the time at an elevated level, thereby reducing the hazard.

• There were 55 incidents involving a luminaire falling from the ceiling onto the victim that resulted in hospital emergency room visits.

If the receptacle/attachment fitting (WSCR/WSAF) technology had been used, many of these incidents could have been avoided or minimized. The new technology must pass weight support requirements in the UL product safety standards well beyond what the NEC permits.

⁷ 2004 Electrocutions Associated with Consumer Products, By Matthew V. Hnatov. Hazard Analysis Division, Directorate for Epidemiology, Consumer Products Safety Commission. April 2009

The NEC does not permit the assembly to support a luminaire weighing more than 50 lbs or a ceiling fan weighing more than 70 lbs, therefore the fixtures would not fall.

CDC Data. According to the Centers for Disease Control and Prevention (CDC), falls are the number one cause of injury. From 2001-2017, there were 144,895,242 falls reported to CDC. During the same period, there were 443,576 deaths from falls. It is not unreasonable to assume that many of these falls involved working on a luminaire. Ladder related accidents are common. In addition, some will resort to stools, chairs, and chairs with boxes or books on them to get to the right height. Detailed information can be found in Annex B. There is little information on what the victims were doing when they fell.

In 1997, Industrial Safety and Hygiene News (ISHN) noted "According the American Academy of Orthopedic Surgeons, every year 500,000 people are treated for ladder-related injuries and approximately 300 of these incidents prove to be fatal. The Liberty Mutual Research Institute for Safety found that in 2007 alone, more than 400 people died as a result of falls on or from ladders or scaffolding⁸.

Summary

When viewing data contained in the Annexes, it is important to note that there is no way to know the exact number of improper installations. For example, if there were one million annual installations of luminaires (it could be argued that there are significantly *more* annual installations per Annex A) and just 2% of them were improperly installed by an untrained do-it-yourselfers, that would result in 20,000 improperly installed luminaires.

^{8 500,000} Falls from Ladders Annually; 97 Percent Occur at Home or on Farms. (July 6, 2017). Industrial Safety and Hygiene News. Retrieved July 20, 2020, from https://www.ishn.com/articles/106830-000-falls-from-ladders-annually-97-percent-occur-at-home-or-on-farms

Annex A. Home Renovations Reported in the American Housing Survey

Survey Notes: Estimates and Margins of Error in thousands of housing units, except as indicated. Medians are rounded to four significant digits as part of disclosure avoidance protocol. Margin of Error is calculated at the 90% confidence interval. Weighting consistent with Census 2010. Blank cells represent zero; Z rounds to zero; '.' Represents not applicable or no cases in sample; S represents estimates that did not meet publication standards or withheld to avoid disclosure.

Characteristics	Professional/Do- It-Yourself Total Estimate	Professional Estimate	Do-It-Yourself Estimate
HOME IMPROVEMENT ACTIVITY IN LAST TWO YEARS (2017)	Lotiniate	Lotinuto	Lotinuto
Total			
Number of projects (1,000)	113,155	69,975	43,181
Median expenditures (\$)	1,364	2,408	600
Total expenditures (1,000)	450,089,818	368,366,827	81,722,991
Disaster Repairs			
Earthquake			
Number of projects (1,000)	S	S	S
Median expenditures (\$)	S	S	300
Total expenditures (1,000)	S	S	S
Tornado/hurricane			
Number of projects (1,000)	418	303	115
Median expenditures (\$)	7,000	7,000	S
Total expenditures (1,000)	4,490,105	3,276,862	S
Landslide			
Number of projects (1,000)	S	S	
Median expenditures (\$)	6,020	6,020	
Total expenditures (1,000)	S	S	
Fire			

Number of projects (1,000)	113	85	S
Median expenditures (\$)	10,000	10,000	S
Total expenditures (1,000)	S	S	S
Flood			
Number of projects (1,000)	197	121	76
Median expenditures (\$)	S	13,500	S
Total expenditures (1,000)	5,283,698	S	S
Other			
Number of projects (1,000)	867	734	133
Median expenditures (\$)	9,500	10,500	3,800
Total expenditures (1,000)	10,898,601	10,190,039	708,562
Room Additions and Renovations			
Bedroom			
Number of projects (1,000)	419	184	235
Median expenditures (\$)	7,000	23,000	2,000
Total expenditures (1,000)	7,289,971	6,000,692	1,289,280
Bath			
Number of projects (1,000)	274	162	112
Median expenditures (\$)	6,400	10,000	4,000
Total expenditures (1,000)	3,258,882	2,493,137	765,746
Recreation Room			
Number of projects (1,000)	196	105	91
Median expenditures (\$)	S	24,000	3,750
Total expenditures (1,000)	4,880,565	3,875,457	S
Kitchen			
Number of projects (1,000)	159	94	65
Median expenditures (\$)	S	30,000	S
Total expenditures (1,000)	4,559,506	3,686,182	S
Other			

Number of projects (1,000) Median expenditures (\$)	827 6,500	444 12,500	383 S
Total expenditures (1,000)	13,508,584	11,125,843	2,382,741
Remodeling			
Bath			
Number of projects (1,000)	5,739	3,001	2,738
Median expenditures (\$)	3,000	5,250	1,500
Total expenditures (1,000)	35,305,520	26,856,855	8,448,665
Kitchen			
Number of projects (1,000)	4,184	2,358	1,826
Median expenditures (\$)	6,000	10,000	3,000
Total expenditures (1,000)	49,553,906	37,772,420	11,781,486
Exterior Additions and Replacements			
Attached garage/carport			
Number of projects (1,000)	736	389	347
Median expenditures (\$)	2,800	4,500	2,200
Total expenditures (1,000)	6,120,015	4,365,016	1,754,999
Porch/deck/patio/terrace			
Number of projects (1,000)	3,331	1,798	1,533
Median expenditures (\$)	2,500	4,400	1,000
Total expenditures (1,000)	18,805,519	14,757,663	4,047,856
Roofing			
Number of projects (1,000)	6,766	5,656	1,110
Median expenditures (\$)	6,000	6,800	2,200
Total expenditures (1,000)	50,222,041	45,937,650	4,284,391
Siding			
Number of projects (1,000)	1,937	1,264	672
Median expenditures (\$)	3,000	4,800	920

Total expenditures (1,000)	9,468,686	8,030,873	1,437,813
Windows/doors			
Number of projects (1,000)	7,443	4,799	2,644
Median expenditures (\$)	1,400	2,300	500
Total expenditures (1,000)	24,777,309	21,119,910	3,657,399
Chimney/stairs/other exterior additions			
Number of projects (1,000)	1,531	1,087	444
Median expenditures (\$)	1,072	1,440	480
Total expenditures (1,000)	3,856,308	3,133,861	722,448
Interior Additions and Replacements			
Insulation			
Number of projects (1,000)	2,712	1,451	1,261
Median expenditures (\$)	750	1,250	400
Total expenditures (1,000)	3,886,216	2,948,857	937,359
Water pipes			
Number of projects (1,000)	3,014	1,792	1,221
Median expenditures (\$)	550	1,000	200
Total expenditures (1,000)	4,549,002	3,972,440	576,562
Plumbing fixtures			
Number of projects (1,000)	8,192	3,924	4,268
Median expenditures (\$)	400	700	250
Total expenditures (1,000)	10,766,188	8,227,445	2,538,743
Electrical wiring/fuse boxes/breaker			
switches			
Number of projects (1,000)	4,487	2,879	1,609
Median expenditures (\$)	600	1,000	300
Total expenditures (1,000)	6,388,526	5,088,660	1,299,866
Security system			
Number of projects (1,000)	4,286	2,933	1,353

Median expenditures (\$)	400	400	400
Total expenditures (1,000)	2,605,279	1,732,909	872,370
Flooring/carpeting/paneling/ceiling tiles	2,000,210	.,,,	0. 2,0. 0
Number of projects (1,000)	10,438	6,364	4,074
Median expenditures (\$)	2,000	2,875	920
Total expenditures (1,000)	33,135,645	26,515,795	6,619,850
HVAC	00,100,010	20,010,100	0,010,000
Number of projects (1,000)	9,930	8,571	1,359
Median expenditures (\$)	3,600	4,000	2,000
Total expenditures (1,000)	43,413,330	39,616,745	3,796,585
Septic tank	-, -,		-, -,
Number of projects (1,000)	355	300	55
Median expenditures (\$)	3,000	3,000	S
Total expenditures (1,000)	1,474,779	1,387,439	S
Water heater/dishwasher/garbage			
disposal			
Number of projects (1,000)	14,569	8,457	6,113
Median expenditures (\$)	500	700	400
Total expenditures (1,000)	10,813,487	7,882,752	2,930,735
Other interior			
Number of projects (1,000)	1,901	1,250	651
Median expenditures (\$)	1,700	2,143	1,000
Total expenditures (1,000)	S	S	1,348,948
Lot or Yard Additions & Replacements			
Driveways/walkways			
Number of projects (1,000)	3,858	2,627	1,231
Median expenditures (\$)	1,800	2,640	550
Total expenditures (1,000)	12,015,598	10,545,199	1,470,399
Fencing/walls			

Number of projects (1,000)	4,449	2,303	2,146
Median expenditures (\$)	1,300	2,600	601
Total expenditures (1,000)	10,140,802	7,603,533	2,537,269
Swimming pool/tennis court/recreational			
structures			
Number of projects (1,000)	967	537	431
Median expenditures (\$)	3,500	7,500	748
Total expenditures (1,000)	11,131,910	10,170,999	960,911
Shed/detached garage/other building			
Number of projects (1,000)	2,337	1,095	1,243
Median expenditures (\$)	2,000	3,100	1,000
Total expenditures (1,000)	11,680,657	7,570,385	4,110,272
Landscaping/sprinkler system			
Number of projects (1,000)	5,541	2,279	3,262
Median expenditures (\$)	900	2,000	500
Total expenditures (1,000)	13,390,741	9,353,303	4,037,438
Other			
Number of projects (1,000)	964	612	352
Median expenditures (\$)	2,000	3,000	500
Total expenditures (1,000)	4,583,936	4,169,719	414,217

Characteristics	Profes Total Estimate	ssional/Do-It-Yourse Professional Estimate	lf Do-lt-Yourself Estimate
HOME IMPROVEMENT ACTIVITY IN LAST TWO YEARS (2015)			
Total			
Number of projects (1,000)	123,481	76,277	47,204
Median expenditures (\$)	1,200	2,000	600
Total expenditures (1,000)	431,497,494	347,110,853	84,386,641
Disaster Repairs			
Earthquake			
Number of projects (1,000)	23	13	S
Median expenditures (\$)	S	S	S
Total expenditures (1,000)	194,698	172,620	S
Tornado/hurricane	,	,	
Number of projects (1,000)	339	263	76
Median expenditures (\$)	6,000	7,000	S
Total expenditures (1,000)	3,171,864	2,692,720	S
Lightning/fire	- , , ,	, , -	_
Number of projects (1,000)	142	92	50
Median expenditures (\$)	S	S	S
Total expenditures (1,000)	5,161,751	S	S
Flood		-	-
Number of projects (1,000)	211	139	72
Median expenditures (\$)	8,150	8,685	S
Total expenditures (1,000)	2,999,016	S	S
Other	_,,	C C	Ū
Number of projects (1,000)	823	708	115

Median expenditures (\$)	8,550	9,000	3,000
Total expenditures (1,000)	10,029,780	9,309,961	S
Room Additions and Renovations			
Bedroom			
Number of projects (1,000)	516	259	257
Median expenditures (\$)	5,000	17,000	2,000
Total expenditures (1,000)	10,997,017	8,903,760	2,093,257
Bath			
Number of projects (1,000)	303	162	141
Median expenditures (\$)	S	10,000	2,500
Total expenditures (1,000)	3,463,143	2,847,832	615,311
Recreation Room			
Number of projects (1,000)	253	124	130
Median expenditures (\$)	S	15,000	2,800
Total expenditures (1,000)	3,036,052	2,510,855	525,197
Kitchen			
Number of projects (1,000)	198	133	65
Median expenditures (\$)	12,110	15,000	5,000
Total expenditures (1,000)	4,355,845	3,925,883	S
Other			
Number of projects (1,000)	861	453	408
Median expenditures (\$)	5,000	8,000	2,000
Total expenditures (1,000)	9,920,768	7,905,575	2,015,193
Remodeling			
Bath			
Number of projects (1,000)	6,547	3,406	3,141
Median expenditures (\$)	3,000	5,000	1,500
Total expenditures (1,000)	37,537,408	28,304,879	9,232,529

Kitchen			
Number of projects (1,000)	4,740	2,595	2,145
Median expenditures (\$)	5,000	7,000	3,000
Total expenditures (1,000)	47,380,831	34,471,023	12,909,808
Exterior Additions and Replacements			
Attached garage/carport			
Number of projects (1,000)	717	403	314
Median expenditures (\$)	4,000	5,000	2,500
Total expenditures (1,000)	5,304,691	3,745,563	1,559,127
Porch/deck/patio/terrace			
Number of projects (1,000)	3,616	1,953	1,663
Median expenditures (\$)	2,500	4,000	1,200
Total expenditures (1,000)	18,899,196	14,824,455	4,074,741
Roofing			
Number of projects (1,000)	8,035	6,543	1,492
Median expenditures (\$)	5,500	6,000	2,500
Total expenditures (1,000)	52,948,893	47,088,310	5,860,584
Siding			
Number of projects (1,000)	2,275	1,607	667
Median expenditures (\$)	3,000	4,000	1,000
Total expenditures (1,000)	12,524,667	10,787,609	1,737,057
Windows/doors			
Number of projects (1,000)	8,693	5,580	3,114
Median expenditures (\$)	1,500	2,000	600
Total expenditures (1,000)	27,257,002	22,199,593	5,057,410
Chimney/stairs/other exterior additions			
Number of projects (1,000)	1,479	983	496
Median expenditures (\$)	1,050	1,500	450
Total expenditures (1,000)	3,427,485	2,944,792	482,694

Interior Additions and Replacements			
Insulation			
Number of projects (1,000)	3,531	1,862	1,669
Median expenditures (\$)	750	1,200	400
Total expenditures (1,000)	4,991,329	3,779,128	1,212,201
Water pipes			
Number of projects (1,000)	3,540	2,080	1,461
Median expenditures (\$)	500	900	200
Total expenditures (1,000)	5,259,795	4,233,234	1,026,561
Plumbing fixtures			
Number of projects (1,000)	9,116	4,313	4,804
Median expenditures (\$)	400	550	250
Total expenditures (1,000)	9,667,129	6,882,298	2,784,831
Electrical wiring/fuse boxes/breaker switches			
Number of projects (1,000)	5,018	3,249	1,769
Median expenditures (\$)	600	916	240
Total expenditures (1,000)	7,302,161	6,141,821	1,160,340
Security system			
Number of projects (1,000)	3,707	2,943	764
Median expenditures (\$)	350	300	400
Total expenditures (1,000)	2,194,706	1,705,733	488,973
Flooring/carpeting/paneling/ceiling tiles			
Number of projects (1,000)	12,051	7,224	4,827
Median expenditures (\$)	1,674	2,300	800
Total expenditures (1,000)	32,026,087	24,970,431	7,055,656
HVAC			
Number of projects (1,000)	10,301	8,915	1,387
Median expenditures (\$)	3,150	3,429	1,800
Total expenditures (1,000)	40,379,006	36,507,489	3,871,517

Septic tank			
Number of projects (1,000)	387	319	68
Median expenditures (\$)	3,000	3,000	900
Total expenditures (1,000)	1,584,211	1,255,016	S
Water heater/dishwasher/garbage disposal			
Number of projects (1,000)	15,838	9,316	6,522
Median expenditures (\$)	500	700	400
Total expenditures (1,000)	11,087,649	7,899,118	3,188,531
Other interior			
Number of projects (1,000)	1,661	1,192	469
Median expenditures (\$)	1,200	1,500	754
Total expenditures (1,000)	4,660,744	3,947,101	713,642
Lot or Yard Additions and			
Replacements.			
Driveways/walkways	4.000	0.740	4 007
Number of projects (1,000)	4,099	2,712	1,387
Median expenditures (\$)	1,500	2,000	500
Total expenditures (1,000)	10,744,436	9,123,787	1,620,649
Fencing/walls	4.260	2 200	2 0 0 0
Number of projects (1,000)	4,369	2,289	2,080
Median expenditures (\$)	1,000	2,000	600
Total expenditures (1,000)	9,239,951	6,722,489	2,517,462
Swimming pool/tennis court/recreational str		445	004
Number of projects (1,000)	806	445	361
Median expenditures (\$)	4,000	7,000	800
Total expenditures (1,000)	8,864,172	7,345,981	1,518,191
Shed/detached garage/other building	0.050	4 000	4 0 0 7
Number of projects (1,000)	2,359	1,023	1,337
Median expenditures (\$)	1,500	2,500	1,000

Total expenditures (1,000)	9,333,571	5,637,621	3,695,950
Landscaping/sprinkler system			
Number of projects (1,000)	6,096	2,467	3,630
Median expenditures (\$)	800	2,000	500
Total expenditures (1,000)	12,123,260	8,640,867	3,482,393
Other			
Number of projects (1,000)	829	514	315
Median expenditures (\$)	1,500	2,250	S
Total expenditures (1,000)	3,429,179	2,945,964	483,215

	Professional/Do-It-Yourself		
Characteristics	Total Estimate	Professional Estimate	Do-lt-Yourself Estimate
HOME IMPROVEMENT ACTIVITY IN LAST TWO YEARS (2013)			
Total			
Number of projects (1,000)	93,558	59,411	34,147
Median expenditures (\$)	1,000	2,000	500
Total expenditures (1,000)	300,831,306	246,338,538	54,492,768
Remodeling			
Kitchen			
Number of projects (1,000)	2,954	1,700	1,253
Median expenditures (\$)	5,000	6,200	3,000
Total expenditures (1,000)	26,626,680	18,827,473	7,799,207
Bath			
Number of projects (1,000)	4,064	2,168	1,896
Median expenditures (\$)	2,500	4,000	1,500
Total expenditures (1,000)	18,685,777	13,962,662	4,723,115
Room Additions and Renovations			
Kitchen			
Number of projects (1,000)	45	34	11
Median expenditures (\$)	35,000	35,821	15,000
Total expenditures (1,000)	1,584,009	1,441,692	142,317
Bath			
Number of projects (1,000)	546	293	253
Median expenditures (\$)	5,000	8,221	3,000
Total expenditures (1,000)	4,600,965	3,556,359	1,044,605

Bedroom			
Number of projects (1,000)	907	451	456
Median expenditures (\$)	3,343	8,500	1,600
Total expenditures (1,000)	12,578,231	10,045,582	2,532,649
Recreation Room			
Number of projects (1,000)	320	136	184
Median expenditures (\$)	5,000	6,627	3,700
Total expenditures (1,000)	2,899,929	1,581,672	1,318,257
Other			
Number of projects (1,000)	1,624	798	826
Median expenditures (\$)	3,500	6,866	1,848
Total expenditures (1,000)	14,945,765	11,958,530	2,987,235
Systems and Equipment			
Plumbing/pipes			
Number of projects (1,000)	2,767	1,716	1,051
Median expenditures (\$)	500	800	200
Total expenditures (1,000)	3,604,401	3,009,925	594,475
Electrical system			
Number of projects (1,000)	3,716	2,409	1,307
Median expenditures (\$)	500	800	200
Total expenditures (1,000)	4,269,937	3,549,517	720,420
Plumbing fixtures			
Number of projects (1,000)	6,881	3,437	3,444
Median expenditures (\$)	331	500	200
Total expenditures (1,000)	5,957,561	4,210,317	1,747,244
HVAC			
Number of projects (1,000)	7,250	6,340	910
Median expenditures (\$)	3,000	3,200	1,500
Total expenditures (1,000)	26,516,143	24,496,257	2,019,885

Appliances/major equipment			
Number of projects (1,000)	14,838	9,177	5,661
Median expenditures (\$)	400	500	334
Total expenditures (1,000)	8,617,672	6,333,578	2,284,094
Exterior Additions and Replacements			
Roofing			
Number of projects (1,000)	5,851	4,876	975
Median expenditures (\$)	5,000	5,500	1,800
Total expenditures (1,000)	36,079,462	33,223,391	2,856,071
Siding			
Number of projects (1,000)	1,677	1,219	458
Median expenditures (\$)	3,000	4,200	500
Total expenditures (1,000)	7,437,346	6,749,185	688,161
Windows/doors			
Number of projects (1,000)	6,491	4,108	2,383
Median expenditures (\$)	1,100	1,800	500
Total expenditures (1,000)	16,670,157	13,622,788	3,047,369
Interior Additions and Replacements			
Insulation			
Number of projects (1,000)	2,681	1,617	1,065
Median expenditures (\$)	573	955	300
Total expenditures (1,000)	3,060,617	2,498,934	561,683
Flooring/paneling/ceiling			
Number of projects (1,000)	14,241	8,534	5,706
Median expenditures (\$)	1,000	1,647	500
Total expenditures (1,000) Other interior	27,522,730	21,585,632	5,937,098
Number of projects (1,000)	1,761	1,236	524

Median expenditures (\$)	1,200	1,500	800
Total expenditures (1,000)	5,620,345	4,070,664	1,549,681
Other Additions and Replacements			
Deck/porch			
Number of projects (1,000)	489	282	207
Median expenditures (\$)	3,000	5,373	1,200
Total expenditures (1,000)	2,625,615	2,236,047	389,568
Patio/terrace/detached deck			
Number of projects (1,000)	2,737	1,534	1,203
Median expenditures (\$)	2,000	3,500	1,000
Total expenditures (1,000)	11,324,775	9,034,084	2,290,691
Garage			
Number of projects (1,000)	94	73	21
Median expenditures (\$)	18,000	24,000	500
Total expenditures (1,000)	2,206,566	2,140,830	65,736
Carport			,
Number of projects (1,000)	94	58	37
Median expenditures (\$)	1,400	2,269	500
Total expenditures (1,000)	440,123	381,558	58,565
Shed			,
Number of projects (1,000)	1,547	746	801
Median expenditures (\$)	1,400	2,500	800
Total expenditures (1,000)	8,344,883	6,885,567	1,459,315
Swimming pool/tennis court/recreational			
Number of projects (1,000)	628	359	269
Median expenditures (\$)	3,000	5,075	600
Total expenditures (1,000)	4,951,069	4,436,168	514,901
Other exterior	-,,	-,,	
Number of projects (1,000)	7,548	4,620	2,928
)	, - -	,

Median expenditures (\$)	1,500	2,000	500
Total expenditures (1,000)	19,708,734	16,325,326	3,383,408
Disaster Repairs			
Number of projects (1,000)	1,807	1,490	316
Median expenditures (\$)	7,000	7,600	2,000
Total expenditures (1,000)	23,951,815	20,174,799	3,777,017
Other interior			
Number of projects (1,000)	1,661	1,192	469
Median expenditures (\$)	1,200	1,500	754
Total expenditures (1,000)	4,660,744	3,947,101	713,642
Lot or Yard Additions and Replacements			
Driveways/walkways			
Number of projects (1,000)	4,099	2,712	1,387
Median expenditures (\$)	1,500	2,000	500
Total expenditures (1,000)	10,744,436	9,123,787	1,620,649
Fencing/walls		0,120,101	.,020,010
Number of projects (1,000)	4,369	2,289	2,080
Median expenditures (\$)	1,000	2,000	600
Total expenditures (1,000)	9,239,951	6,722,489	2,517,462
Swimming pool/tennis court/recreational s	tructures		
Number of projects (1,000)	806	445	361
Median expenditures (\$)	4,000	7,000	800
Total expenditures (1,000)	8,864,172	7,345,981	1,518,191
Shed/detached garage/other building			
Number of projects (1,000)	2,359	1,023	1,337
Median expenditures (\$)	1,500	2,500	1,000
Total expenditures (1,000)	9,333,571	5,637,621	3,695,950

Landscaping/sprinkler system			
Number of projects (1,000)	6,096	2,467	3,630
Median expenditures (\$)	800	2,000	500
Total expenditures (1,000)	12,123,260	8,640,867	3,482,393
Other			
Number of projects (1,000)	829	514	315
Median expenditures (\$)	1,500	2,250	S
Total expenditures (1,000)	3,429,179	2,945,964	483,215

Characteristics	Professional/Do-It-Yourself		
Unaracteristics	Total	Professional	Do-It-Yourself
HOME IMPROVEMENT ACTIVITY IN LAST TWO YEARS (2011) Total			
Number of projects (1,000)	116,263	73,015	43,248
Median expenditures (\$)	1,000	1,999	500
Total expenditures (1,000)	348,536,558	287,026,972	61,509,586
Remodeling.			
Kitchen			
Number of projects (1,000)	3,608	2,081	1,527
Median expenditures (\$)	5,000	7,993	3,000
Total expenditures (1,000)	34,661,061	26,886,023	7,775,039
Bath			
Number of projects (1,000)	4,825	2,503	2,323
Median expenditures (\$)	2,500	4,000	1,500
Total expenditures (1,000)	22,723,885	16,388,045	6,335,840
Room Additions and Renovations			
Kitchen			
Number of projects (1,000)	63	52	11
Median expenditures (\$)	27,353	30,000	8,000
Total expenditures (1,000)	1,830,275	1,683,443	146,832
Bath			
Number of projects (1,000)	713	392	321
Median expenditures (\$)	3,500	5,882	2,000
Total expenditures (1,000) Bedroom	4,523,881	3,460,385	1,063,497

Number of projects (1,000)	1,142	506	636
Median expenditures (\$)	2,500	5,000	1,500
Total expenditures (1,000)	8,537,461	5,954,937	2,582,524
Recreation Room			
Number of projects (1,000)	490	202	288
Median expenditures (\$)	3,000	6,882	1,600
Total expenditures (1,000)	3,486,584	2,662,713	823,871
Other			
Number of projects (1,000)	1,978	997	981
Median expenditures (\$)	3,000	5,000	1,500
Total expenditures (1,000)	16,627,399	13,298,699	3,328,700
Systems and Equipment			
Plumbing/pipes			
Number of projects (1,000)	2 212	2,082	1,231
	3,312 500	•	180
Median expenditures (\$),		900	
Total expenditures (1,000)	4,506,681	3,955,534	551,146
Electrical system			
Number of projects (1,000)	4,434	2,864	1,569
Median expenditures (\$)	500	800	200
Total expenditures (1,000)	4,976,258	4,231,366	744,892
Plumbing fixtures			
Number of projects (1,000)	7,944	3,811	4,133
Median expenditures (\$),	305	500	200
Total expenditures (1,000)	6,207,328	4,125,458	2,081,870
HVAC			
Number of projects (1,000)	9,574	8,365	1,209
Median expenditures (\$)	3,000	3,176	1,500
Total expenditures (1,000)	33,214,557	30,498,058	2,716,499
Appliances/major equipment		,	_,0, .00
,			

Number of projects (1,000) Median expenditures (\$) Total expenditures (1,000)	17,913 400 10,213,056	11,276 500 7,588,909	6,637 320 2,624,147
Exterior Additions and Replacements			
Roofing			
Number of projects (1,000)	7,269	5,950	1,319
Median expenditures (\$)	4,800	5,276	1,807
Total expenditures (1,000)	42,534,922	38,896,570	3,638,351
Siding			-,,
Number of projects (1,000)	2,154	1,444	710
Median expenditures (\$)	3,000	4,500	762
Total expenditures (1,000)	10,342,508	8,965,278	1,377,230
Windows/doors			
Number of projects (1,000)	8,676	5,629	3,047
Median expenditures (\$)	1,282	2,000	500
Total expenditures (1,000)	23,145,692	19,648,147	3,497,546
Interior Additions and Replacements			
Insulation			
Number of projects (1,000)	4,085	2,116	1,970
Median expenditures (\$)	500	1,000	300
Total expenditures (1,000)	4,287,875	3,214,117	1,073,757
Flooring/paneling/ceiling			
Number of projects (1,000)	18,320	10,907	7,413
Median expenditures (\$)	1,000	1,510	500
Total expenditures (1,000)	31,910,709	25,087,900	6,822,809
Other interior			
Number of projects (1,000)	1,780	1,218	561
Median expenditures (\$)	1,000	1,500	500

Total expenditures (1,000)	4,129,829	3,416,024	713,805
Other Additions and Replacements			
Deck/porch			
Number of projects (1,000)	505	287	217
Median expenditures (\$)	2,000	3,000	1,342
Total expenditures (1,000)	2,701,309	2,290,101	411,208
Patio/terrace/detached deck			
Number of projects (1,000)	3,500	1,835	1,665
Median expenditures (\$)	2,000	3,176	1,000
Total expenditures (1,000)	13,022,905	9,963,322	3,059,583
Garage			
Number of projects (1,000)	158	87	71
Median expenditures (\$)	15,000	20,250	5,000
Total expenditures (1,000)	2,621,310	2,165,996	455,314
Carport			
Number of projects (1,000)	158	82	76
Median expenditures (\$)	1,500	1,600	1,300
Total expenditures (1,000)	399,581	240,654	158,927
Shed			
Number of projects (1,000)	2,098	977	1,121
Median expenditures (\$)	1,429	2,600	800
Total expenditures (1,000)	8,599,423	5,927,181	2,672,242
Swimming pool/tennis court/recreational	structures		
Number of projects (1,000)	713	414	300
Median expenditures (\$)	2,500	6,000	500
Total expenditures (1,000)	7,417,915	7,102,007	315,908
Other exterior			
Number of projects (1,000)	9,003	5,419	3,584
Median expenditures (\$)	1,247	2,000	500

Total expenditures (1,000)	22,898,421	18,263,708	4,634,713
Disaster Repairs			
Number of projects (1,000)	1,846	1,519	327
Median expenditures (\$)	7,000	8,000	2,736
Total expenditures (1,000)	23,015,733	21,112,396	1,903,337
Other interior			
Number of projects (1,000)	1,661	1,192	469
Median expenditures (\$)	1,200	1,500	754
Total expenditures (1,000)	4,660,744	3,947,101	713,642
Lot or Yard Additions & Replacements			
Driveways/walkways			
Number of projects (1,000)	4,099	2,712	1,387
Median expenditures (\$)	1,500	2,000	500
Total expenditures (1,000)	10,744,436	9,123,787	1,620,649
Fencing/walls			
Number of projects (1,000)	4,369	2,289	2,080
Median expenditures (\$)	1,000	2,000	600
Total expenditures (1,000)	9,239,951	6,722,489	2,517,462
Swimming pool/tennis court/recreational str	ructures		
Number of projects (1,000)	806	445	361
Median expenditures (\$)	4,000	7,000	800
Total expenditures (1,000)	8,864,172	7,345,981	1,518,191
Shed/detached garage/other building			
Number of projects (1,000)	2,359	1,023	1,337
Median expenditures (\$)	1,500	2,500	1,000
Total expenditures (1,000)	9,333,571	5,637,621	3,695,950
Landscaping/sprinkler system			
Number of projects (1,000)	6,096	2,467	3,630

Median expenditures (\$)	800	2,000	500
Total expenditures (1,000)	12,123,260	8,640,867	3,482,393
Other			
Number of projects (1,000)	829	514	315
Median expenditures (\$)	1,500	2,250	S
Total expenditures (1,000)	3,429,179	2,945,964	483,215

Annex B - CDC Injury Data

2001 - 2017, United States Fall Deaths and Rates per 100,000 All Races, Both Sexes, All Ages ICD-10 Codes: W00-W19,X80,Y01,Y30

Number of Deaths	Population***	Crude Rate	Age-Adjusted Rate**
443,576	5,200,918,231	8.53	7.93

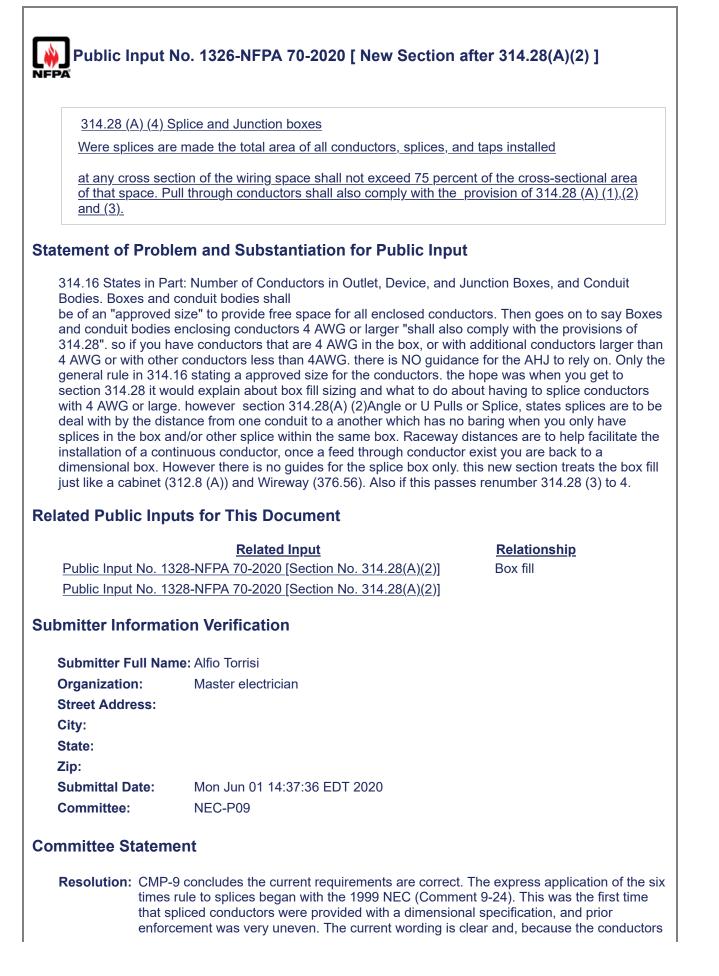
Reports for All Ages include those of unknown age.

* Rates based on 20 or fewer deaths may be unstable. Use with caution.

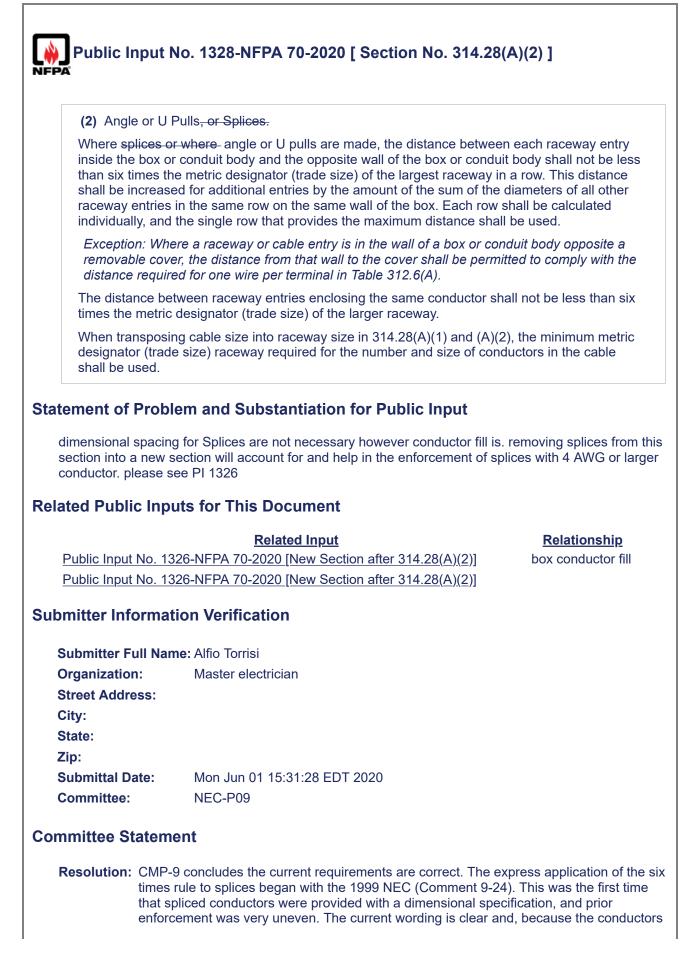
** Standard Population is 2000, all races, both sexes.

*** Population estimates are aggregated for multi-year reports to produce rates.

Produced by: National Center for Injury Prevention and Control, CDC Data Source: NCHS Vital Statistics System for numbers of deaths. Bureau of Census for population estimates.


A					Age	e Groups					
Rank	<1	1-4	5-9	10-14	15-24	25-34	35-44	45-54	55-64	65+	All Ages
1	Unintentional Fall 2,203,241	Unintentional Fall 14,695,505	Unintentional Fall 10,895,788	Unintentional Fall 10,193,254	Unintentional Struck by/ Against 16,379,505	Unintentional Fall 12,925,580	Unintentional Fall 12,965,891	Unintentional Fall 14,643,385	Unintentional Fall 13,392,906	Unintentional Fall 38,484,766	Unintentional Fall 144,895,252
2	Unintentional Struck by/ Against 533,293	Unintentional Struck by/ Against 6,058,063	Unintentional Struck by/ Against 6,868,690	Unintentional Struck by/ Against 9,721,402	Unintentional Fall 14,486,086	Unintentional Overexertion 11,152,537	Unintentional Overexertion 9,867,239	Unintentional Overexertion 7,534,235	Unintentional Struck by/ Against 4,040,364	Unintentional Struck by/ Against 4,271,311	Unintentional Struck by/ Against 74,260,233
3	Unintentional Other Bite/ Sting 211,421	Unintentional Other Bite/ Sting 2,496,959	Unintentional Cut/Pierce 1,921,531	Unintentional Overexertion 4,798,474	Unintentional MV-Occupant 12,889,729	Unintentional Struck by/ Against 10,888,727	Unintentional Struck by/ Against 8,646,276	Unintentional Struck by/ Against 6,849,399	Unintentional Overexertion 3,954,803	Unintentional Overexertion 3,338,390	Unintentional Overexertion 55,470,069
4	Unintentional Foreign Body 168,685	Unintentional Foreign Body 2,115,187	Unintentional Other Bite/ Sting 1,684,445	Unintentional Cut/Pierce 2,290,666	Unintentional Overexertion 12,057,868	Unintentional MV-Occupant 9,764,377	Unintentional MV-Occupant 7,404,124	Unintentional MV-Occupant 6,008,660	Unintentional MV-Occupant 3,674,071	Unintentional MV-Occupant 3,274,416	Unintentional MV-Occupant 46,257,031
5	Unintentional Fire/Burn 166,348	Unintentional Cut/Pierce 1,416,767	Unintentional Pedal Cyclist 1,438,614	Unintentional Pedal Cyclist 1,809,487	Unintentional Cut/Pierce 7,710,641	Unintentional Cut/Pierce 7,154,265	Unintentional Cut/Pierce 5,711,252	Unintentional Cut/Pierce 4,715,968	Unintentional Cut/Pierce 2,910,149	Unintentional Cut/Pierce 2,329,593	Unintentional Cut/Pierce 36,268,894
6	Unintentional Other Specified 134,502	Unintentional Overexertion 1,315,913	Unintentional Overexertion 1,354,807	Unintentional Unknown/ Unspecified 1,628,755	Unintentional Other Specified 4,030,764	Unintentional Other Specified 4,205,722	Unintentional Other Specified 4,087,399	Unintentional Other Specified 4,369,757	Unintentional Other Specified 2,336,522	Unintentional Other Bite/ Sting 1,433,760	Unintentional Other Specified 21,953,757
7	Unintentional Inhalation/ Suffocation 117,464	Unintentional Other Specified 932,167	Unintentional MV-Occupant 1,089,855	Unintentional MV-Occupant 1,437,342	Unintentional Other Bite/ Sting 2,956,648	Unintentional Other Bite/ Sting 2,807,584	Unintentional Poisoning 2,848,707	Unintentional Poisoning 3,189,281	Unintentional Poisoning 1,858,449	Unintentional Poisoning 1,409,344	Unintentional Other Bite/ Sting 18,634,091
8	Unintentional Cut/Pierce 106,012	Unintentional Fire/Burn 903,828	Unintentional Foreign Body 982,591	Unintentional Other Bite/ Sting 1,067,652	Unintentional Unknown/ Unspecified 2,697,889	Unintentional Poisoning 2,717,196	Unintentional Other Bite/ Sting 2,357,389	Unintentional Other Bite/ Sting 2,183,425	Unintentional Other Bite/ Sting 1,434,421	Unintentional Other Specified 1,124,089	Unintentional Poisoning 15,608,986
9	Unintentional Overexertion 94,101	Unintentional Poisoning 757,380	Unintentional Dog Bite 751,546	Unintentional Other Transport 903,792	Unintentional Poisoning 2,398,193	Unintentional Unknown/ Unspecified 1,865,642	Unintentional Unknown/ Unspecified 1,532,981	Unintentional Unknown/ Unspecified 1,303,370	Unintentional Unknown/ Unspecified 799,484	Unintentional Cther Transport 1,096,837	Unintentional Unknown/ Unspecified 12,386,141
10	Unintentional Unknown/ Unspecified 90,681	Unintentional Unknown/ Unspecified 752,229	Unintentional Other Transport 689,682	Unintentional Dog Bite 598,757	Unintentional Other Transport 2,006,159	Unintentional Other Transport 1,563,933	Unintentional Other Transport 1,316,897	Unintentional Other Transport 1,149,322	Unintentional Other Transport 753,041	Unintentional Unknown/ Unspecified 1,054,400	Unintentional Foreign Body 9,979,708

10 Leading Causes of Nonfatal Unintentional Emergency Department Visits, United States 2001 - 2017, All Races, Both Sexes, Disposition: All Cases

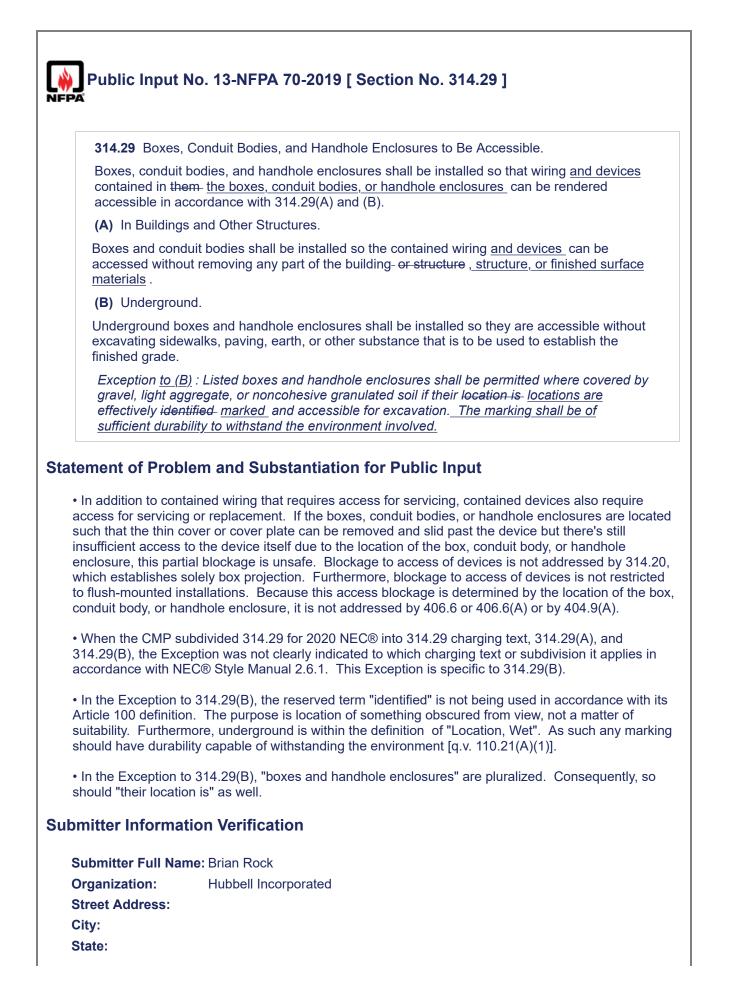

National Center for Injury Prevention and Control, CDC

NEISS All Injury Program operated by the Consumer Product Safety Commission (CPSC).

Public Input	No. 865-NFPA 70-2020 [Section No. 314.28(A)(1)]
(1) Straight Pu	ils.
metric designat	, the length of the box or conduit body shall not be less than eight times the or (trade size) of the largest raceway. <u>The width of a box shall not be less than</u> <u>netric designator (trade size) of the largest raceway.</u>
tatement of Prob	lem and Substantiation for Public Input
	adequate room for future changes from or through a box (splices). It would prevent nd creating unsafe installations because of lack of information on the width of a n box.
ubmitter Informa	tion Verification
Submitter Full Na	me: Curtis Fulster
Organization:	E Light Electric
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Mon Apr 13 19:13:15 EDT 2020
Committee:	NEC-P09
ommittee Statem	ient
supp minin area result	e is no substantiation of a problem with the existing wording beyond a vague osition of cutting corners on future work. The NEC [at 314.16(C)(1)] sets the num area of a comparable conduit body (usually a C fitting in this case) at twice the of the raceway, or roughly 1.57 times the diameter; the wording in this PI would t in a box of somewhat over (after accounting for locknuts, etc.) 2 times the diameter nimum for the same conductor manipulations. There is no substantiation to justify

entering a splice are necessarily different conductors, the spacing rule in the last paragraph of this section does not apply, lessening the severity of the requirement.

entering a splice are necessarily different conductors, the spacing rule in the last paragraph of this section does not apply, lessening the severity of the requirement.


Public II	nput No. 1217-NFPA 70-2020 [Section No. 314.28(C)]
NFPA	
(C) Cove	Tors
	oxes, junction boxes, and conduit bodies shall be provided with covers compatible with
the box o covers sh <u>through t</u> l	by conduit body construction and suitable for the conditions of use. Where used, metal hall comply with the grounding requirements of 250.110. <u>Covers that are attached</u> the use of screws shall utilize machine screws; wood screws, drywall screws or similar <u>be permitted</u> .
Statement of	Problem and Substantiation for Public Input
boxes and si	ge to require machine screws used to attach covers to pull boxes, junction boxes, device similar that enter the box which contains wiring or devices to be of a design that lessens the f damage to conductors.
0 0	equiring machine screws to attach covers similar in intent to 250.8 (A) (5) and (6) 404.10 .5 to prevent the use of screws such as wood or drywall screws.
Submitter Infe	formation Verification
Submitter F	Full Name: Gary Hein
Organizatio	n: Submission is independent of employer.
Street Addre	ress:
City:	
State:	
Zip:	
Submittal Da	
Committee:	NEC-P09
Committee St	tatement
Resolution:	: <u>FR-7821-NFPA 70-2020</u>
Statement:	CMP-9 is inserting language to protect against damage to conductors resulting from sharp projections from exposed threads of screws run through covers or sides of boxes. The location in Part I will make the requirement apply throughout the entire article. For correlation, CMP-9 is also inserting references to this rule throughout 314.70(A).
	In all instances, the only permitted style of screw will be one with machine threads and a blunt end. This eliminates sharp points and coarse threads with the attendant sharp-edged thread exposures of typical sheet metal screws. The penetrating length varies depending on the application and location. First, a cover screw is the customary ½ inch screw provided with boxes, expressed as the penetrating amount, or 7/16 inch. They penetrate adjacent to a box wall at or near a corner, which tends to offer additional protection to an enclosed conductor. Other screws penetrating the cover are limited to 5/16-inch penetration, which allows the customary 3/8-inch faceplate screws used to attach devices to raised covers. It is understood that work directly with a cover inherently affords greater control over wire positioning than elsewhere in the box.
	Large boxes, generally those covered in Sec. 314.28, have covers supplied with $\frac{1}{2}$ -in. long screws that enter close to an enclosure wall, and that therefore allow for a 7/16ths

inch penetration. Outlet and device boxes (usually not over 100 in3) are more difficult because they are often more tightly packed and with severe visual obstruction of how wires are arranging themselves against a wall of the box. For that reason, screws added to a wall of such boxes are prohibited from any extension beyond the interior wall surface. There is correlating language with 314.23(B)(1) that allows for protected screws to run through the rearward portion of such boxes for mounting purposes.

A similar limitation is imposed on screws applied to conduit bodies. A screw entering any part of a conduit bodies is likely to create damage during any stage of the process of pulling wires, and in such cases the objection stands even with a cap nut on a projecting screw end.

The second exception addresses the short gang screws that are shipped with most steel device boxes holding the sides in place; when such boxes are ganged the same screws hold the ganged boxes together. These screws are made long enough to hold the sides in place, and extend into the box by about 3/32 in. when securing adjacent gangs. They are supplied by the box manufacturers and cannot be easily shortened to the point of being flush. CMP-9 is excusing them as well.

ections]]	
Boxes and cond (E).	uit bodies used as pull or junction boxes shall comply with 314.28(A) through
Exception <u>No 1</u> 430.12.	: Terminal housings supplied with motors shall comply with the provisions of
	<u>: Section 314.28 (A) through (E) shall not apply to cables or conductors of systems. Pull and junction boxes shall be sized appropriate for the size of ctor installed.</u>
requirement for ove communications sys	
requirement for ove communications sys	rly restrictive sizing requirements for pull and junction points installed in stems
requirement for ove communications sys	rly restrictive sizing requirements for pull and junction points installed in stems
requirement for ove communications system ubmitter Informat Submitter Full Nan	rly restrictive sizing requirements for pull and junction points installed in stems tion Verification ne: Agnieszka Golriz
requirement for ove communications sys ubmitter Informat Submitter Full Nan Organization:	rly restrictive sizing requirements for pull and junction points installed in stems tion Verification ne: Agnieszka Golriz
requirement for ove communications sys ubmitter Informat Submitter Full Nan Organization: Street Address: City: State:	rly restrictive sizing requirements for pull and junction points installed in stems tion Verification ne: Agnieszka Golriz
requirement for ove communications sys ubmitter Informat Submitter Full Nan Organization: Street Address: City: State: Zip:	riv restrictive sizing requirements for pull and junction points installed in stems tion Verification ne: Agnieszka Golriz NECA
requirement for ove communications sys ubmitter Informat Submitter Full Nan Organization: Street Address: City: State: Zip: Submittal Date:	wed May 06 10:03:00 EDT 2020
requirement for ove communications sys ubmitter Informat Submitter Full Nan Organization: Street Address: City: State: Zip:	riv restrictive sizing requirements for pull and junction points installed in stems tion Verification ne: Agnieszka Golriz NECA
requirement for ove communications system ubmitter Informate Submitter Full Nan Organization: Street Address: City: State: Zip: Submittal Date:	wed May 06 10:03:00 EDT 2020 NEC-P09

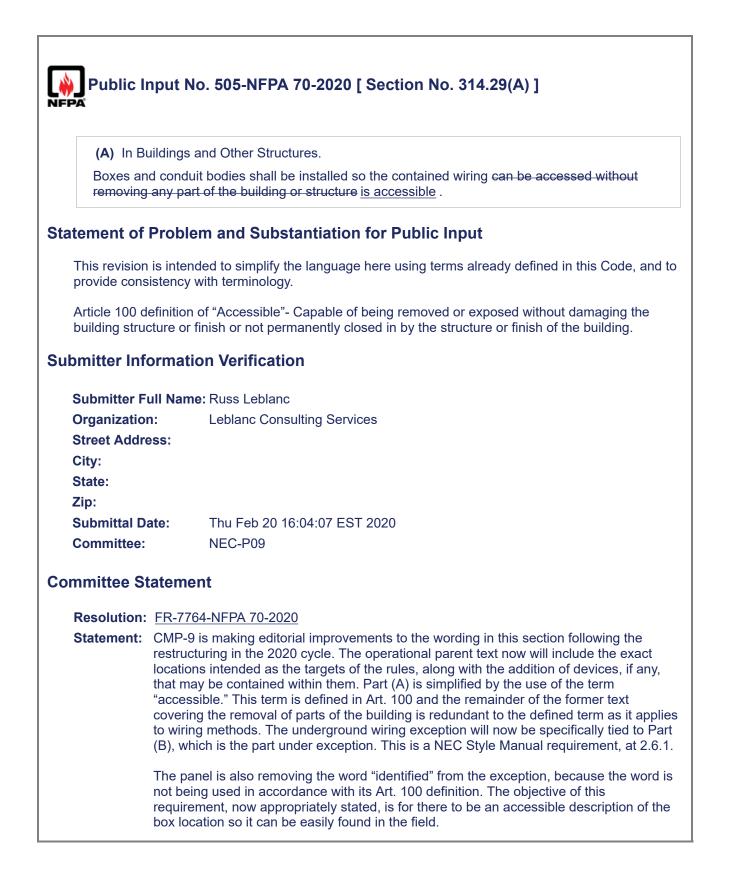
 Zip:
 Fri Nov 01 16:56:50 EDT 2019

 Committee:
 NEC-P09

Committee Statement

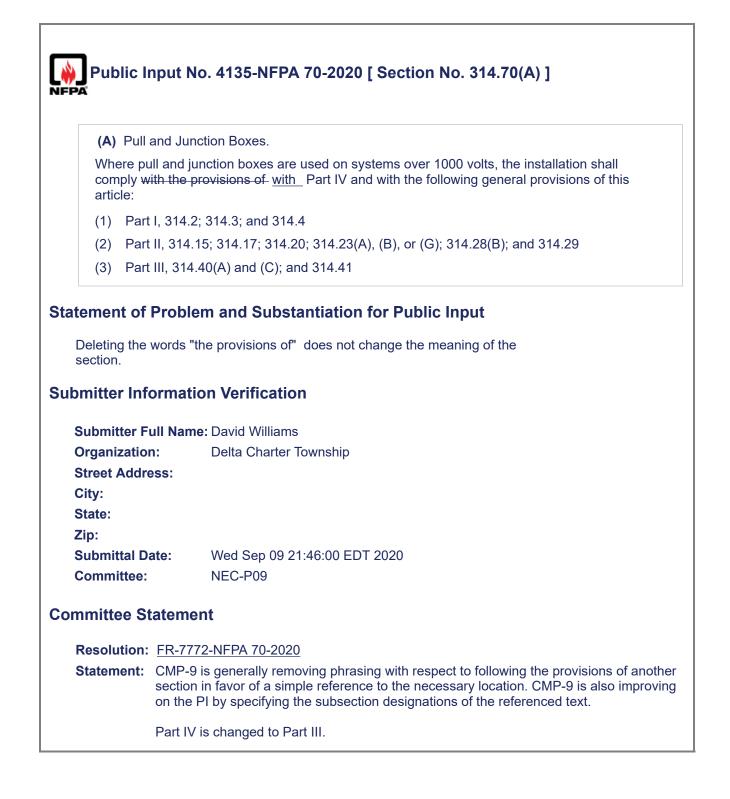
Resolution: <u>FR-7764-NFPA 70-2020</u>

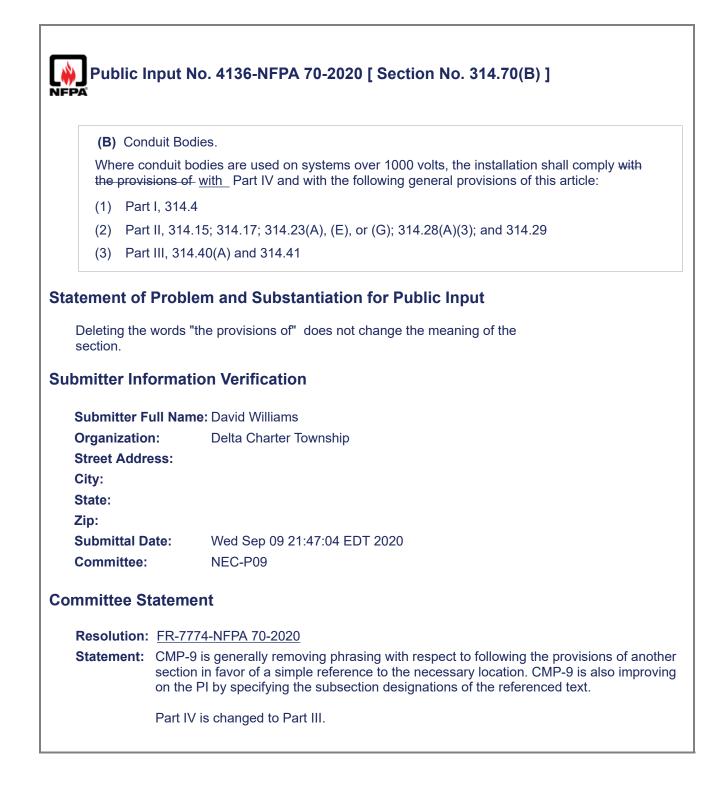
Statement: CMP-9 is making editorial improvements to the wording in this section following the restructuring in the 2020 cycle. The operational parent text now will include the exact locations intended as the targets of the rules, along with the addition of devices, if any, that may be contained within them. Part (A) is simplified by the use of the term "accessible." This term is defined in Art. 100 and the remainder of the former text covering the removal of parts of the building is redundant to the defined term as it applies to wiring methods. The underground wiring exception will now be specifically tied to Part (B), which is the part under exception. This is a NEC Style Manual requirement, at 2.6.1.

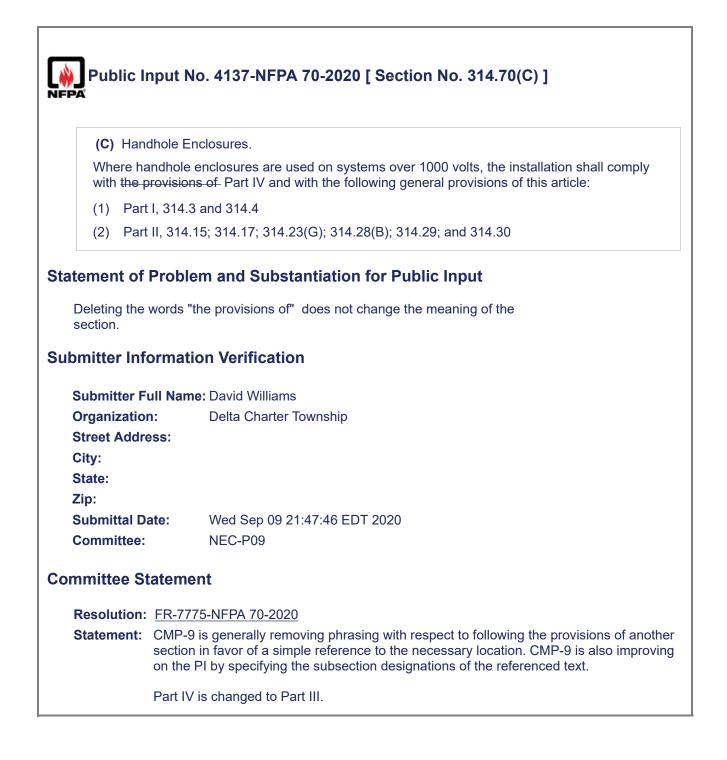

The panel is also removing the word "identified" from the exception, because the word is not being used in accordance with its Art. 100 definition. The objective of this requirement, now appropriately stated, is for there to be an accessible description of the box location so it can be easily found in the field.

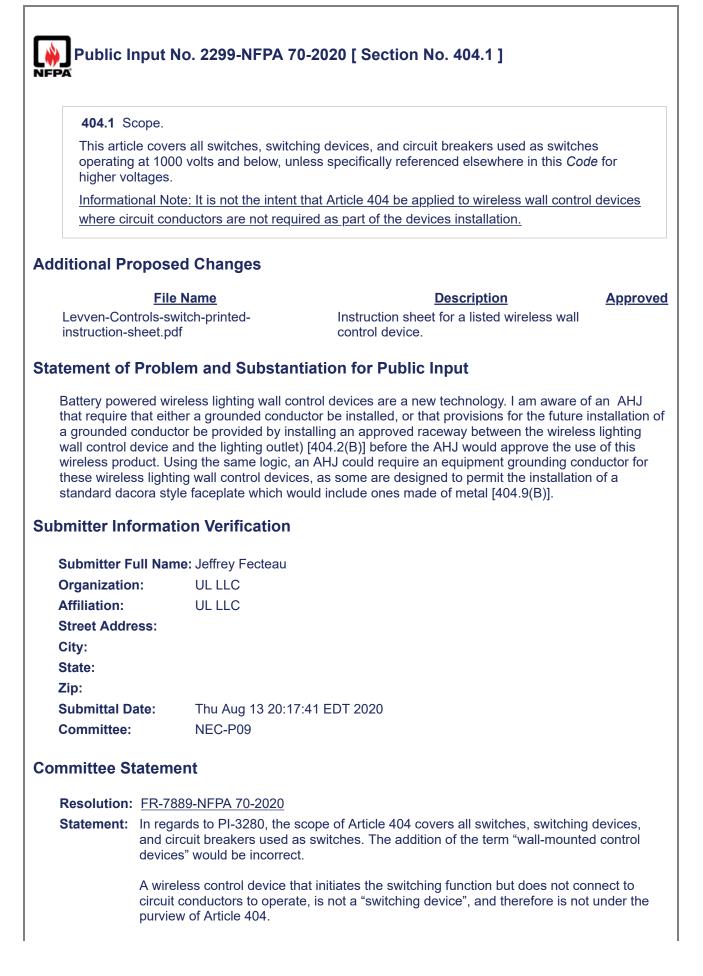
Γ

Public Input No. 1332-NFPA 70-2020 [Section No. 314.29]
314.29 Boxes, Conduit Bodies, and Handhole Enclosures to Be Accessible.
Boxes, conduit bodies, and handhole enclosures shall be installed so that wiring contained in them can be rendered accessible in accordance with $314.29 (\underline{A})$ and (B).
(A) In Buildings and Other
In or on Buildings or Structures.
Boxes
and
, <u>conduit bodies shall be installed so</u>
the
that wiring contained
wiring
in them can be
accessed without removing any part of the building or structure
rendered accessible without the removal of a obstacle
(B)_Underground.
<u>Underground boxes and handhole enclosures shall be installed so they are accessible without excavating sidewalks, paving, earth, or other substance that is to be used to establish the finished grade.</u>
<u>Exception: Listed boxes and handhole enclosures shall be permitted where covered by</u> <u>gravel, light aggregate, or noncohesive granulated soil if their location is effectively identified</u> and accessible for excavation.
Informational note: boxes containing a splice(s) shall meet the requirements of 110.26
Statement of Problem and Substantiation for Public Input this section does not recognize all of the obstacles in the field such as foreign equipment, electrical systems and building or structural appurtenances. If it is required to be accessed then the definition of accessible shall apply. Boxes containing splices are also required to have a working space as required in section 110.26 Spaces About Electrical Equipment; an info note will remind installers and inspectors the general rule of work space is applicable.
Submitter Information Verification
Submitter Full Name: Alfio Torrisi
Organization: Master electrician
Street Address:
City:
State: Zin:
Zip: Submittal Date: Mon Jun 01 16:02:03 EDT 2020
Committee: NEC-P09

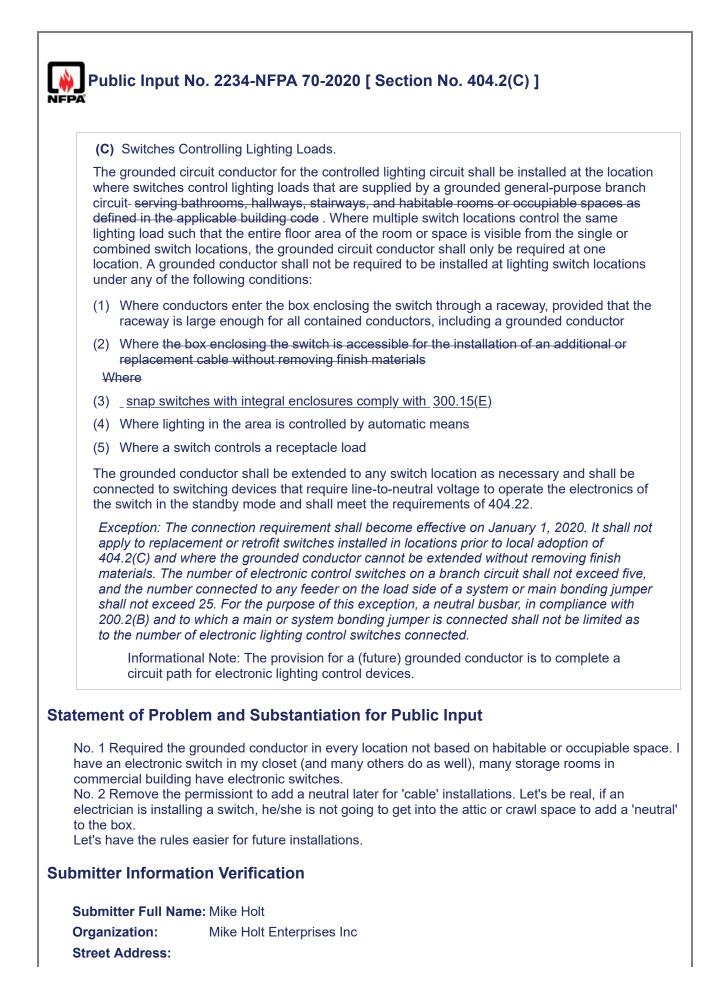

Committee Statement


Resolution: CMP-9 is resolving PI-1332 because the word "obstacle" is too broad and capable of wide variations of enforcement approaches, including potentially including transitory events. In addition, CMP-9 observes that 110.26 does not require working space at boxes. CMP-9 is, however, adding considerable detail to the description of the reach of this section, partially meeting the objectives of this PI.




Public Input N	No. 946-NFPA 70-2020 [Section No. 314.40]
314.40 Metal B	oxes, Conduit Bodies, and Fittings.
(A) Corrosion R	-
Metal boxes, cor	nduit bodies, and fittings shall be corrosion resistant or shall be well-galvanized, nerwise properly coated inside and out to prevent corrosion.
	nal Note: See 300.6 for limitation in the use of boxes and fittings protected sion solely by enamel.
(B) Thickness c	of Metal.
1.59 mm (0.0625 permanent-mold than 2.38 mm (¾	es not over 1650 cm ³ (100 in. ³) in size shall be made from steel not less than 5 in.) thick. The wall of a malleable iron box or conduit body and a die-cast or I cast aluminum, brass, bronze, or zinc box or conduit body shall not be less 32 in.) thick. Other cast metal boxes or conduit bodies shall have a wall as than 3.17 mm (½ in.). <u>Metal boxes shall be permitted to be unlisted.</u>
	1: Listed boxes and conduit bodies shown to have equivalent strength and shall be permitted to be made of thinner or other metals.
	2: The walls of listed short radius conduit bodies, as covered in 314.16(C)(2), ed to be made of thinner metal.
(C) Metal Boxes	s Over 1650 cm ³ (100 in. ³).
and rigidity. If of	er 1650 cm ³ (100 in. ³) in size shall be constructed so as to be of ample strength sheet steel, the metal thickness shall not be less than 1.35 mm (0.053 in.) I boxes shall be permitted to be unlisted.
(D) Equipment	Grounding Conductor Provisions.
	e provided in each metal box for the connection of an equipment grounding neans shall be permitted to be a tapped hole or equivalent.
A common misinter NEC have to be liste serve as pull boxes metal box satisfies a	em and Substantiation for Public Input pretation of the NEC by AHJ's is that all equipment and electrical materials in the ed. A common installation practice is the installation of custom built metal boxes for straight, angle, or U pulls. As far as the NEC is concerned, as long as the all of the applicable construction specifications in Part III of Article 314, a listing o d not be enforced by an AHJ.
ubmittor Informat	ion Varification
ubmitter Informat	ion Verification
Submitter Full Nam	t ion Verification ne: Brian Baughman
Submitter Full Nam Organization:	ne: Brian Baughman
Submitter Full Nam Organization: Affiliation:	
Submitter Full Nam Organization: Affiliation: Street Address:	ne: Brian Baughman
Submitter Full Nam Organization: Affiliation: Street Address: City:	ne: Brian Baughman
Submitter Full Nam Organization: Affiliation: Street Address:	ne: Brian Baughman

Committee:	NEC-P09
Committee St	atement
Resolution:	CMP-9 generally agrees with the concept that large pull boxes should not be required to be listed. In fact, CMP-9 has aggressively refused to entertain affirmative requirements that would mandate listings. See for example, Comment 9-73 in the 1993 cycle and Proposal 9-90 in the 2005 cycle. However, this PI goes too far in denying to the AHJ any recourse to asking for a listing. CMP-9 does not want to intrude on the decisions relative to product acceptance an AHJ might feel compelled to make in a particular context. The rule will remain, not requiring a listing as a matter of black letter Code, but not prohibiting an AHJ from asking for one either. In the event listing requirements are being imposed routinely without good reason, then installers would need to avail themselves of whatever opportunities for appeal apply in the particular jurisdiction.



Battery powered wireless control devices do not connect to circuit conductors.

CMP-9 realizes scope is under the purview of the Correlating Committee. CMP-9 requests the CC refer the FR to CMP-2 for information.

Public II	nput No. 3280-NFPA 70-2020 [Section No. 404.1]
404.1 So	cope.
breakers	le covers all switches, switching devices, <u>wall-mounted control devices</u> , and circuit used as switches operating at 1000 volts and below, unless specifically referenced e in this <i>Code</i> for higher voltages.
atement of	Problem and Substantiation for Public Input
lights and sh	all-mounted control device" was added to 210.70 in the 2020 code. This device controls ould be covered by the scope of Article 404. It appears that they are not the same as a use if they were the same there would have been no need to add a new term in 210.70.
ubmitter Info	ormation Verification
Submitter F	ull Name: Don Ganiere
Organizatio	n: [Not Specified]
Street Addre	ess:
City:	
State:	
Zip:	
Submittal Da	
Committee:	NEC-P09
ommittee St	atement
Resolution:	<u>FR-7889-NFPA 70-2020</u>
Statement:	In regards to PI-3280, the scope of Article 404 covers all switches, switching devices, and circuit breakers used as switches. The addition of the term "wall-mounted control devices" would be incorrect.
	A wireless control device that initiates the switching function but does not connect to circuit conductors to operate, is not a "switching device", and therefore is not under the purview of Article 404.
	Battery powered wireless control devices do not connect to circuit conductors.
	CMP-9 realizes scope is under the purview of the Correlating Committee. CMP-9

tement
R-7883-NFPA 70-2020
CMP-9 is not removing the occupancy limitation because that represents the principal pplication of the rule.
CMP-9 removed the allowance that the grounded conductor would not be required to be installed at a lighting switch location where the box enclosing the switch is accessible for the installation of an additional or replacement cable without removing finish materials. In though the box may be accessible, the ease of installation of the grounded conductor fiter the initial installation is likely to be exceedingly more difficult than during the initial installation.

404.3 Enclos	sure.
(A) General.	
listed for the i	circuit breakers shall be of the externally operable type mounted in an enclosure ntended use. The minimum wire-bending space at terminals and minimum gutter ed in switch enclosures shall be as required in 312.6.
	o. 1: Pendant- and surface-type snap switches and knife switches mounted on an vitchboard or panelboard shall be permitted without enclosures.
	 b. 2: Switches and circuit breakers installed in accordance with 110.27(A)(1), c) or (A)(4) shall be permitted without enclosures.
(B) Used as	a Raceway.
	nall not be used as junction boxes, auxiliary gutters, or raceways for conductors gh or tapping off to other switches or overcurrent devices, unless the enclosure 312.8.
<u>on 3-phase, 4</u>	angement. The B phase shall be that phase having the higher voltage to ground -wire, delta-connected systems. Other phase arrangements shall be permitted for xisting installations and shall be marked.
Add (C) requiring	blem and Substantiation for Public Input the high-leg conductor to terminate to the "B" phase in a switch. Currently the hig ed to terminate to the "B" phase of a panelboard [408.3(E)].
Add (C) requiring leg is only require	, the high-leg conductor to terminate to the "B" phase in a switch. Currently the hig
Add (C) requiring leg is only require omitter Inform	, the high-leg conductor to terminate to the "B" phase in a switch. Currently the hig ed to terminate to the "B" phase of a panelboard [408.3(E)]. Nation Verification
Add (C) requiring leg is only require omitter Inform Submitter Full N	the high-leg conductor to terminate to the "B" phase in a switch. Currently the hig ed to terminate to the "B" phase of a panelboard [408.3(E)]. nation Verification lame: Mike Holt
Add (C) requiring leg is only require omitter Inform Submitter Full N Organization:	g the high-leg conductor to terminate to the "B" phase in a switch. Currently the hig ed to terminate to the "B" phase of a panelboard [408.3(E)]. nation Verification lame: Mike Holt
Add (C) requiring leg is only require omitter Inform Submitter Full N Organization: Street Address: City:	g the high-leg conductor to terminate to the "B" phase in a switch. Currently the hig ed to terminate to the "B" phase of a panelboard [408.3(E)]. nation Verification lame: Mike Holt
Add (C) requiring leg is only require omitter Inform Submitter Full N Organization: Street Address: City: State:	g the high-leg conductor to terminate to the "B" phase in a switch. Currently the hig ed to terminate to the "B" phase of a panelboard [408.3(E)]. nation Verification lame: Mike Holt
Add (C) requiring leg is only require omitter Inform Submitter Full N Organization: Street Address: City: State: Zip:	g the high-leg conductor to terminate to the "B" phase in a switch. Currently the hig ed to terminate to the "B" phase of a panelboard [408.3(E)]. nation Verification lame: Mike Holt Mike Holt Enterprises Inc
Add (C) requiring leg is only require omitter Inform Submitter Full N Organization: Street Address: City: State: Zip: Submittal Date:	g the high-leg conductor to terminate to the "B" phase in a switch. Currently the hig ed to terminate to the "B" phase of a panelboard [408.3(E)]. nation Verification lame: Mike Holt
Add (C) requiring leg is only require omitter Inform Submitter Full N Organization: Street Address: City: State: Zip: Submittal Date: Committee:	y the high-leg conductor to terminate to the "B" phase in a switch. Currently the highed to terminate to the "B" phase of a panelboard [408.3(E)]. Nation Verification lame: Mike Holt Mike Holt Enterprises Inc Wed Jun 24 21:49:03 EDT 2020 NEC-P09
Add (C) requiring leg is only require omitter Inform Submitter Full N Organization: Street Address: City:	y the high-leg conductor to terminate to the "B" phase in a switch. Currently the highed to terminate to the "B" phase of a panelboard [408.3(E)]. Nation Verification lame: Mike Holt Mike Holt Enterprises Inc Wed Jun 24 21:49:03 EDT 2020 NEC-P09

	Raceway.
raceways for co	<u>vinet and cutout boxes</u> shall not be used as junction boxes, auxiliary gutters, or nductors feeding through or tapping off to other switches or overcurrent devices, sure complies with 312.8.
tatement of Probl	em and Substantiation for Public Input
	es' is way too vauge, in that the way the rule is currently worded, you could not us ap switches, unless you comply with 312.8. But 312.8 only applies to Cabinets an outlet boxes.
ubmitter Informat	tion Verification
Submitter Full Nan	ner Mille Helt
Submitter Full Nan	ne: Mike Holl
Organization:	Mike Holt Enterprises Inc
Organization: Street Address:	
Organization: Street Address: City:	
Organization: Street Address: City: State:	
Organization: Street Address: City:	
Organization: Street Address: City: State: Zip:	Mike Holt Enterprises Inc
Organization: Street Address: City: State: Zip: Submittal Date:	Mike Holt Enterprises Inc Tue Jun 02 12:50:32 EDT 2020 NEC-P09

Public Input No. 4561-NFPA 70-2020 [Section No. 404.6(C)]

(C) Connection of Switches.

Single-throw knife switches and switches with butt contacts shall be connected such that their blades are de-energized when the switch is in the open position. Bolted pressure contact switches shall have barriers that prevent inadvertent contact with energized blades. Single-throw knife switches, bolted pressure contact switches, molded case switches, switches with butt contacts, and circuit breakers used as switches shall be connected so that the terminals supplying the load are de-energized when the switch is in the open position. The exception to 404.6(C) shall not apply to those photovoltaic systems that comply with 690.12 and are connected on the supply side of the service disconnect as permitted by 230.82(6).

Exception: The blades and terminals supplying the load of a switch shall be permitted to be energized when the switch is in the open position where the switch is connected to circuits or equipment inherently capable of providing a backfeed source of power. For such installations, a permanent sign shall be installed on the switch enclosure or immediately adjacent to open switches with the following words or equivalent: WARNING — LOAD SIDE TERMINALS MAY BE ENERGIZED BY BACKFEED. The warning sign or label shall comply with 110.21(B).

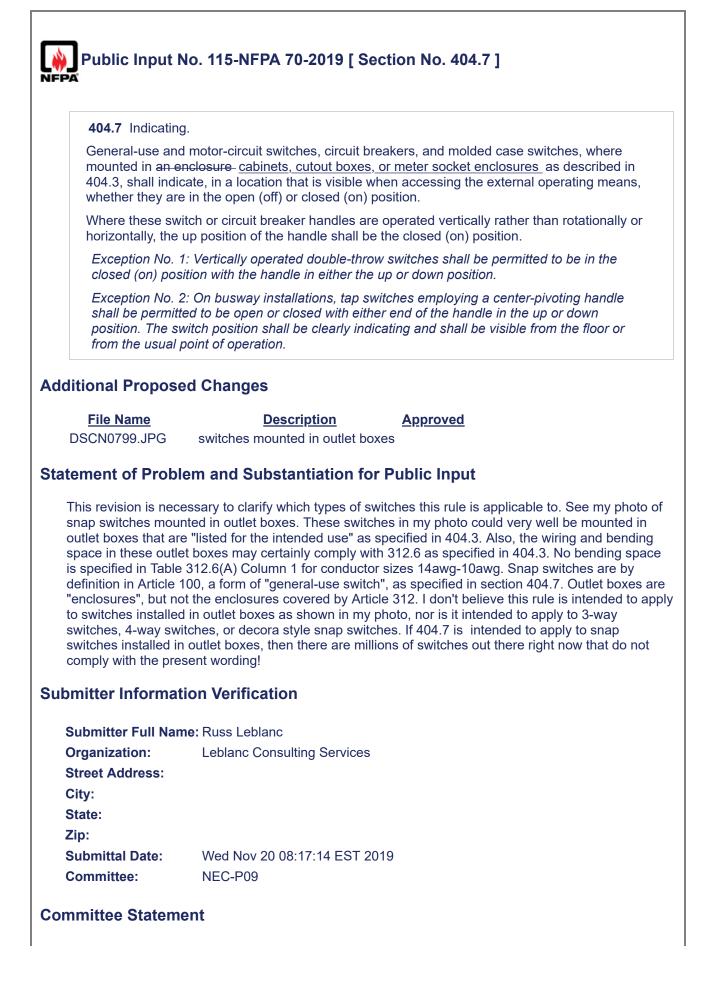
Statement of Problem and Substantiation for Public Input

This change is much needed in order reduce the greater associated hazards with the electric utility source as compared to the photovoltaic array source. Two obvious hazards associated with the utility source as compared to the photovoltaic source stand out.

(1)- The typical fault currents associated with a electric utility transformer far exceed the typical fault currents associated with a photovoltaic array, the short circuit current of most photovoltaic arrays is often little more than the maximum power current associated with the array.

(2)-Photovoltaic rapid shutdown devices will initiate upon loss of the utility source of power. The array output associated with the typical non-isolation, functionally grounded inverter types can de-energize all output power within seconds of rapid shutdown initiation, whereas the electric utility will remain energized without a utility scheduled shutdown.

Greater shock and fire hazards are present where the electric utility source is connected to the load terminals of a knife switch as permitted by the exception to 404.6(C), this leaves greater potential for accidental contact with un-insulated live parts in the knife switch as the load terminals cannot be broken from the fuses and fuse holders and are not required to have barriers.


Submitter Information Verification

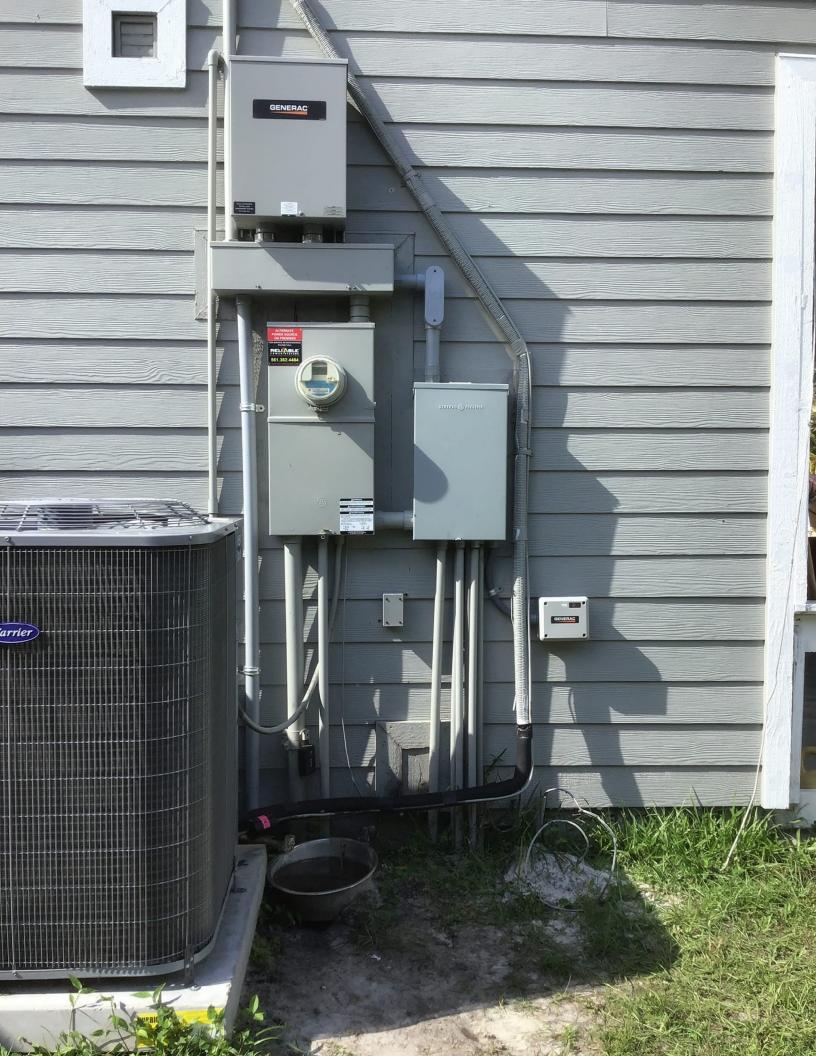
Submitter Full Name:	Chris Papp
Organization:	[Not Specified]
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Thu Sep 10 15:09:33 EDT 2020
Committee:	NEC-P09

Committee Statement

Resolution: Installation of Photovoltaic Systems is covered in Article 690. 690.13(B) requires that the system disconnecting means be marked with sufficient warnings and similar

requirements are unnecessary to be in Article 404.

Resolution: The term "enclosures" is valid for these sections and warrants no additional change in language.



11.19.2019

TA	
(A) Location.	
<u>Code</u> shall be lo be installed such	circuit breakers used as switches <u>a required disconnecting means by this</u> bocated so that they may be operated from a readily accessible place. They shall in that the center of the grip of the operating handle of the switch or circuit is highest position, is not more than 2.0 m (6 ft 7 in.) above the floor or n.
permitted to be	1: On busway installations, fused switches and circuit breakers shall be located at the same level as the busway. Suitable means shall be provided to ndle of the device from the floor.
other equipmer	2: Switches and circuit breakers installed adjacent to motors, appliances, or In that they supply shall be permitted to be located higher than 2.0 m (6 ft 7 in.) ssible by portable means.
Exception No.	3: Hookstick operable isolating switches shall be permitted at greater heights.
accessible. The rule or maintenance byp	
accessible. The rule	ge requires general-use as well as maintenance bypass switches to be readily e is intended to apply to switches used as a disconnecting means, not general-us bass switches.
accessible. The rule or maintenance byp	ge requires general-use as well as maintenance bypass switches to be readily e is intended to apply to switches used as a disconnecting means, not general-us bass switches.
accessible. The rule or maintenance byp bmitter Informat	ge requires general-use as well as maintenance bypass switches to be readily e is intended to apply to switches used as a disconnecting means, not general-us bass switches.
accessible. The rule or maintenance byp Ibmitter Informat	ge requires general-use as well as maintenance bypass switches to be readily e is intended to apply to switches used as a disconnecting means, not general-us bass switches. tion Verification ne: Mike Holt
accessible. The rule or maintenance byp Ibmitter Informat Submitter Full Nar Organization:	ge requires general-use as well as maintenance bypass switches to be readily e is intended to apply to switches used as a disconnecting means, not general-us bass switches. tion Verification ne: Mike Holt
accessible. The rule or maintenance byp Ibmitter Informat Submitter Full Nar Organization: Street Address:	ge requires general-use as well as maintenance bypass switches to be readily e is intended to apply to switches used as a disconnecting means, not general-us bass switches. tion Verification ne: Mike Holt
accessible. The rule or maintenance byp Ibmitter Informat Submitter Full Nar Organization: Street Address: City:	ge requires general-use as well as maintenance bypass switches to be readily e is intended to apply to switches used as a disconnecting means, not general-us bass switches. tion Verification ne: Mike Holt
accessible. The rule or maintenance byp Ibmitter Informat Submitter Full Nar Organization: Street Address: City: State:	ge requires general-use as well as maintenance bypass switches to be readily e is intended to apply to switches used as a disconnecting means, not general-us bass switches. tion Verification ne: Mike Holt
accessible. The rule or maintenance byp Ibmitter Informat Submitter Full Nar Organization: Street Address: City: State: Zip:	ge requires general-use as well as maintenance bypass switches to be readily e is intended to apply to switches used as a disconnecting means, not general-us bass switches. tion Verification ne: Mike Holt Mike Holt Enterprises Inc
accessible. The rule or maintenance byp Ibmitter Informat Submitter Full Nar Organization: Street Address: City: State: Zip: Submittal Date:	ge requires general-use as well as maintenance bypass switches to be readily e is intended to apply to switches used as a disconnecting means, not general-us bass switches. tion Verification ne: Mike Holt Mike Holt Enterprises Inc Fri Jul 10 13:49:23 EDT 2020 NEC-P09

(A) Location.	
operated from of the operating	nd circuit breakers used as switches shall be located so that they may be a readily accessible place. They shall be installed such that the center of the grip g handle of the switch or circuit breaker, when in its highest position, is not more t 7 in.) above the floor or working platform.
permitted to b	. 1: On busway installations, fused switches and circuit breakers shall be located at the same level as the busway. Suitable means shall be provided to andle of the device from the floor.
other equipme	. 2: Switches and circuit breakers installed adjacent to motors, appliances, or ent that they supply shall be permitted to be located higher than 2.0 m (6 ft 7 in.) essible by portable means.
Exception No.	. 3: Hookstick operable isolating switches shall be permitted at greater heights.
or two- family alternate powe	. 4: Automatic transfer switches for optional standby systems installed on one- dwelling units that do not contain a disconnecting means for the normal or er source, shall be permitted to be located higher than 2.0 m (6ft 7in.) and to be portable means.
ATS_above_6_fe	
atement of Prot	plem and Substantiation for Public Input
equipment. Relief	rview over all types of switches, and by definition in Article 100, includes transfer f should be able to be provided for residential optional standby ATS's that do not ecting means for the normal or alternate sources of power within the ATS enclosure S's do not have to be reality accessible and are not listed or designed to be operat ormal operation.
bmitter Informa	ation Verification
Submitter Full Na	ame: Brian Baughman
Organization: Street Address: City:	Generac Power Systems Inc.
State:	
Zip:	
Submittal Date:	Tue Jan 07 16:04:26 EST 2020
Committee:	NEC-P09

would need to be readily accessible. The existing text as sufficient to serve the needs of the code & amp; electrical industry. PI-1844 substantiation statement does not provide sufficient reason to make a change.

Public Input No. 4057-NFPA 70-2020 [Section No. 404.8(A)]

(A) Location.

The disconnect means shall be located in a readily accessible location. If the disconnecting means installed in dwellings exposes any energized terminals or wiring when physically open, the enclosure shall be locked or require a tool to open

All switches and circuit breakers used as switches shall be located so that they may be operated from a readily accessible place. They shall be installed such that the center of the grip of the operating handle of the switch or circuit breaker, when in its highest position, is not more than 2.0 m (6 ft 7 in.) above the floor or working platform.

Exception No. 1: On busway installations, fused switches and circuit breakers shall be permitted to be located at the same level as the busway. Suitable means shall be provided to operate the handle of the device from the floor.

Exception No. 2: Switches and circuit breakers installed adjacent to motors, appliances, or other equipment that they supply shall be permitted to be located higher than 2.0 m (6 ft 7 in.) and to be accessible by portable means.

Exception No. 3: Hookstick operable isolating switches shall be permitted at greater heights.

Statement of Problem and Substantiation for Public Input

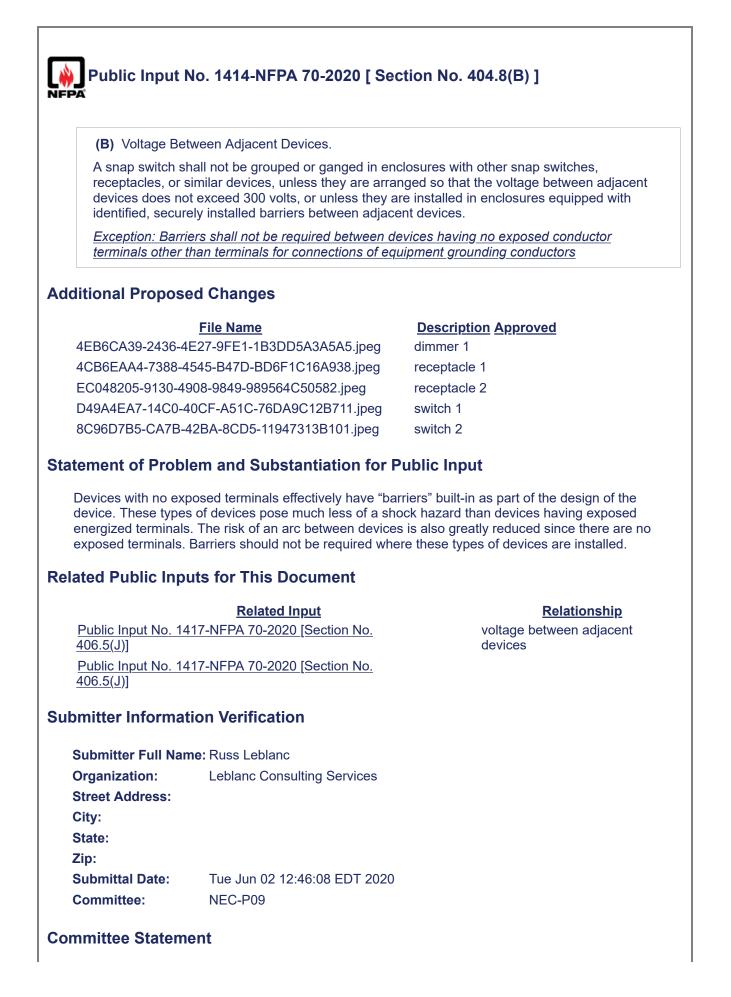
The placement of disconnect switches in dwellings, in locations that are accessible by other than qualified personnel, particularly by children, is a potential hazard. Knife blade disconnect switches are the ONLY widely used piece of electrical equipment that does not require a tool to access the live components inside, thus they have no child safeguards. The disconnect enclosures can often be easily opened exposing potentially life-threatening voltages and current levels if contacted by personnel. The disconnect equipment often is being installed on accessible external and internal surfaces of dwellings, in garages, and in almost any room except bathrooms in dwellings. An opened disconnect enclosure contains wiring and terminals that can be touched with tools, probes or hands. There is a need to require, that they be locked, or require a tool to physically open these enclosures.

Related Public Inputs for This Document

Related Input

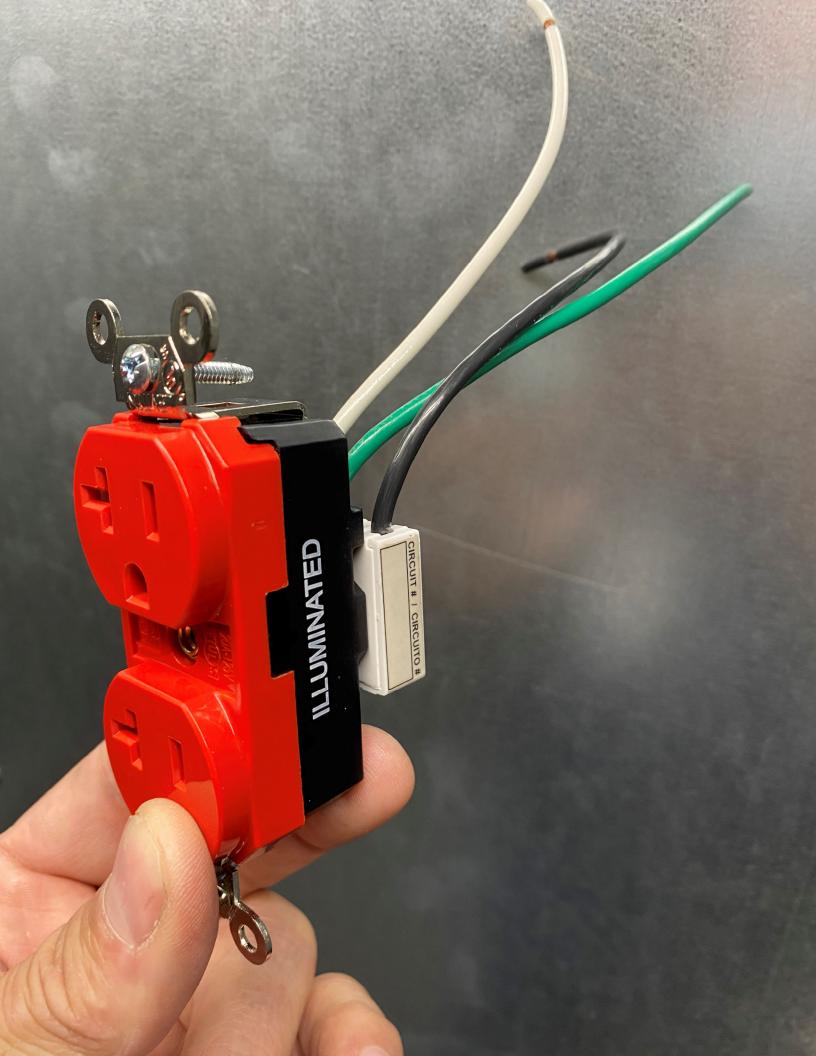
Relationship

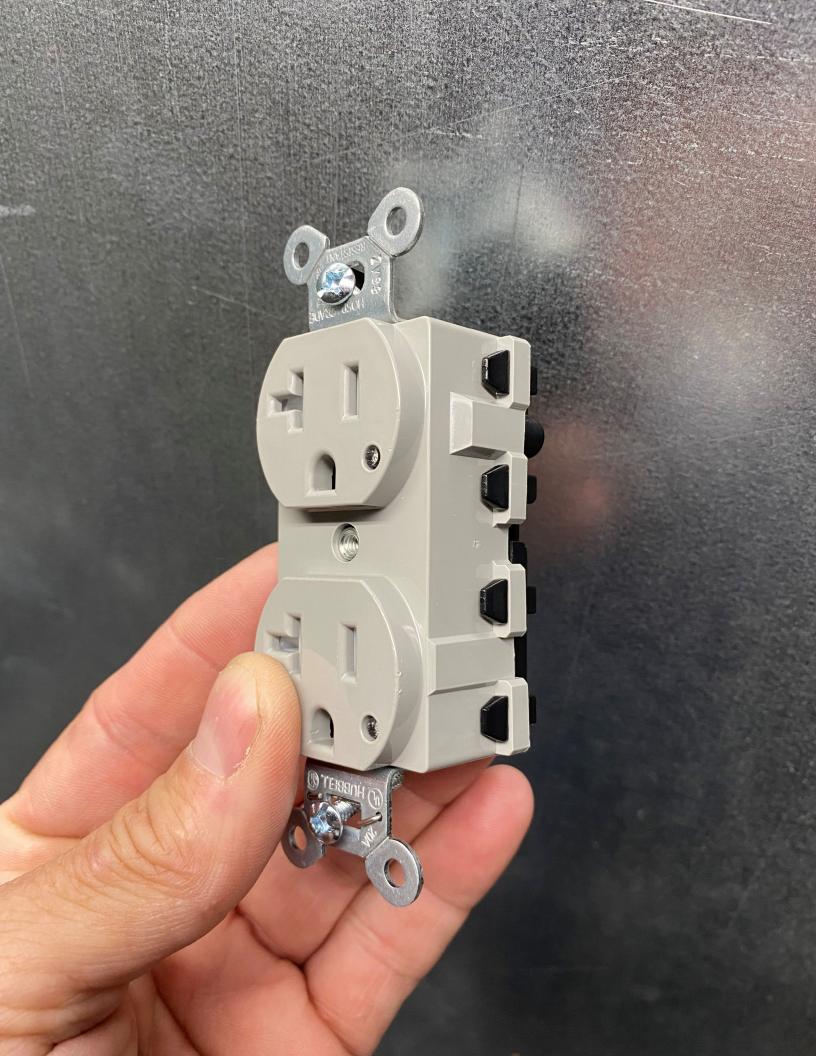
 Public Input No. 3738-NFPA 70-2020 [Section No. 110.25]

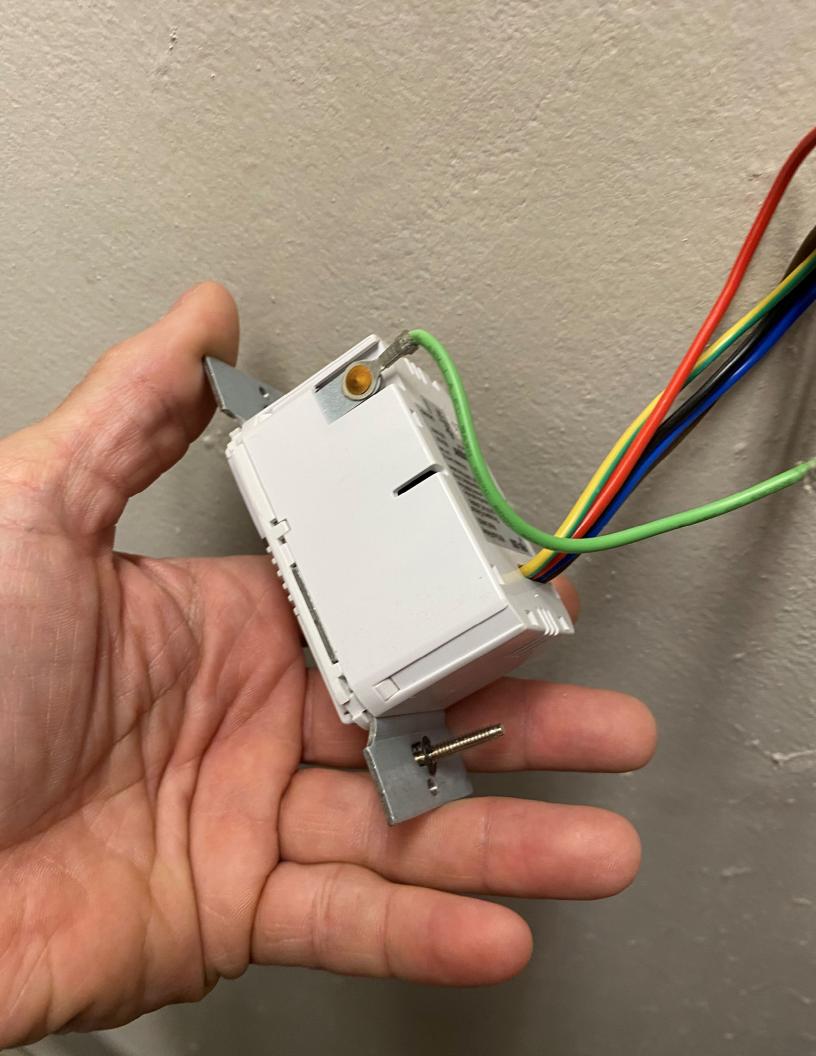

 Public Input No. 4071-NFPA 70-2020 [Section No. 440.11]

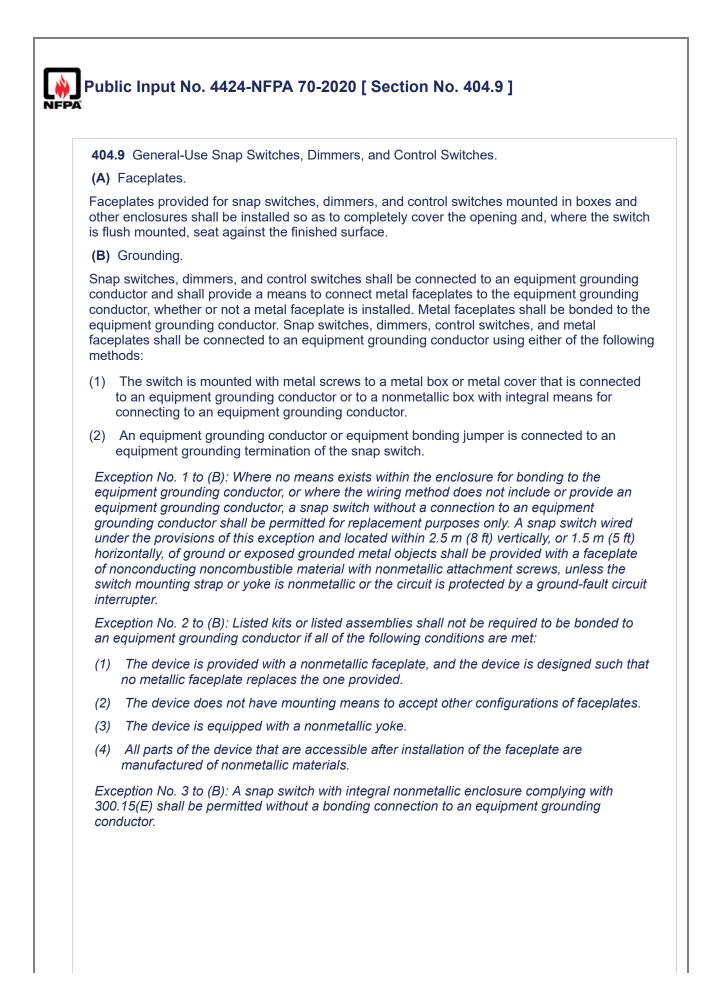
 Public Input No. 4080-NFPA 70-2020 [Section No. 680.13]

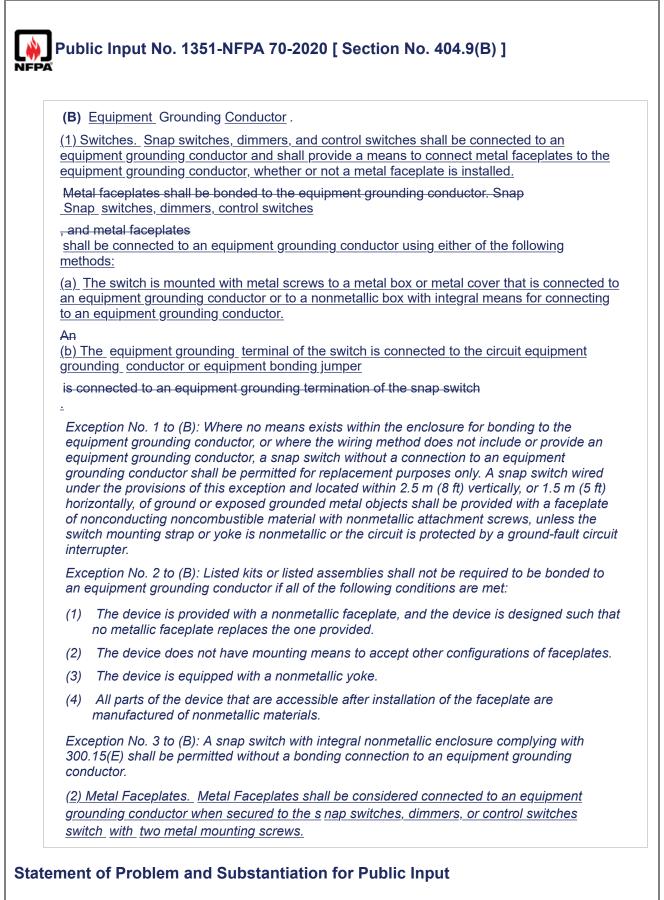
Submitter Information Verification


Submitter Full Name:	Tommy Davis
Organization:	Master Electrician, Retired IBEW member, Retired Electrical Inspector
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Wed Sep 09 19:35:35 EDT 2020


Committee:	NEC-P09	
Committee Statement		
Resolution:	FR-7861-NFPA 70-2020	
	Switches of this type may allow access to live parts with the door open that the user may contact. This change will restrict access to qualified persons.	


Resolution: Snap switches, receptacles, and similar devices exceeding 300 volts that have been grouped or ganged present a risk of arcing between exposed terminals. A device that does not inherently have an exposed terminal is not prevented from being replaced at its end-of-life by a device with exposed terminals. For this reason, a device that has an inherent barrier is not a sufficient replacement for a barrier installed between devices.





(C	Construction.	
no ma shi	nferrous metal r aterial shall be n all be permitted	hall be of ferrous metal not less than 0.76 mm (0.030 in.) in thickness or of not less than 1.02 mm (0.040 in.) in thickness. Faceplates of insulating ioncombustible and not less than 2.54 mm (0.100 in.) in thickness, but they to be less than 2.54 mm (0.100 in.) in thickness if formed or reinforced to mechanical strength.
<u>(D</u>	<u>) Back wired sw</u>	itches
		switches shall not be allowed as a feed through means for connection of nductor on each pole.
Stateme	nt of Proble	m and Substantiation for Public Input
makin conne In ma	g the device ca ected to the swit ny cases it show	are used as a feed through connection with stab in back wired connections are ry the entire load of the circuit instead of just the load connected that is ch. vs up that the device is failing after being installed due to the stab in connections he loads being fed through the device.
		on Verification
	nitter Full Name	IBEW Local 280
-	t Address:	IDEW LOCAI 200
City:	Address.	
State:		
Zip:		
	ittal Date:	Thu Sep 10 12:50:51 EDT 2020
Comn	nittee:	NEC-P09
Commit	tee Statemei	nt
Reso		omitter did not provide adequate substantiation. The limitation is unnecessary as luct standard evaluates the capability of the terminals to conduct the rated current witch.

No. 1. According to the NFPA Style Manual, the Section Title needs to reflect the content of the rule. The rule is about the equipment grounding conductor, not about "Grounding." No. 2. Reorganized the

text to better describe the requirements, particularly the bonding requirements of a metal faceplate.

Submitter Information Verification

Submitter Full Name: Mike HoltOrganization:Mike Holt Enterprises IncStreet Address:-City:-State:-Zip:-Submittal Date:Mon Jun 01 17:12:55 EDT 2020Committee:NEC-P09

Committee Statement

Resolution: The proposed change does not add any significant clarity to the text. CMP-9 reviewed for compliance with the Style Manual.

	No. 1069-NFPA 70-2020 [Section No. 404.11]
404.11 Circuit	Breakers as Switches.
breaker capable	e circuit breaker equipped with a lever or handle, or a power-operated circuit of being opened by hand in the event of a power failure, shall be permitted to ch if it has the required number of poles.
Informatic	nal Note: See the provisions contained in <u>Sections</u> 240.81 and 240.83.
atement of Prob	lem and Substantiation for Public Input
	ons contained in" are redundant and unnecessary. No context or meaning of the is lost with this revision.
	tion Verification
bmitter Informa	
bmitter Informa	tion Verification
bmitter Informa Submitter Full Nar Organization: Street Address:	tion Verification me: Agnieszka Golriz
bmitter Informa Submitter Full Nar Organization: Street Address: City:	tion Verification me: Agnieszka Golriz
Ibmitter Informa Submitter Full Nat Organization: Street Address: City: State:	tion Verification me: Agnieszka Golriz
Ibmitter Informa Submitter Full Nar Organization: Street Address: City:	tion Verification me: Agnieszka Golriz
Ibmitter Informa Submitter Full Nat Organization: Street Address: City: State: Zip:	tion Verification me: Agnieszka Golriz NECA
bmitter Informa Submitter Full Nat Organization: Street Address: City: State: Zip: Submittal Date:	tion Verification me: Agnieszka Golriz NECA Fri May 15 07:57:19 EDT 2020 NEC-P09
bmitter Informa Submitter Full Nat Organization: Street Address: City: State: Zip: Submittal Date: Committee:	tion Verification me: Agnieszka Golriz NECA Fri May 15 07:57:19 EDT 2020 NEC-P09

404.12 Ground	ling of Enclosures Enclosure Connection to Equipment Grounding Conductor.				
conductor as sp used as service nonmetallic enc	Metal enclosures for switches or circuit breakers shall be connected to an equipment grounding conductor as specified in Part IV of Article 250. Metal enclosures for switches or circuit breakers used as service equipment shall comply with the provisions of Part V of Article 250. Where nonmetallic enclosures are used with metal raceways or metal-armored cables, they shall comply with 314.3, Exception No. 1 or No. 2.				
	red in 404.9(B), Exception No. 1, nonmetallic boxes for switches shall be wiring method that provides or includes an equipment grounding conductor.				
According to the NI is about the equipm	nent grounding conductor, not about 'Grounding. tion Verification				
According to the NI is about the equipm Ibmitter Informa Submitter Full Nar	FPA Style Manual, the Section Title needs to reflect the content of the rule. The runnent grounding conductor, not about 'Grounding. tion Verification me: Mike Holt				
According to the NI is about the equipm Ibmitter Informa Submitter Full Nar Organization:	FPA Style Manual, the Section Title needs to reflect the content of the rule. The runnent grounding conductor, not about 'Grounding. tion Verification				
According to the NI is about the equipm Ibmitter Informat Submitter Full Nar Organization: Street Address:	FPA Style Manual, the Section Title needs to reflect the content of the rule. The runnent grounding conductor, not about 'Grounding. tion Verification me: Mike Holt				
According to the NI is about the equipm Ibmitter Informa Submitter Full Nar Organization:	FPA Style Manual, the Section Title needs to reflect the content of the rule. The runent grounding conductor, not about 'Grounding. tion Verification me: Mike Holt				
According to the NI is about the equipm Ibmitter Informa Submitter Full Nar Organization: Street Address: City:	FPA Style Manual, the Section Title needs to reflect the content of the rule. The runent grounding conductor, not about 'Grounding. tion Verification me: Mike Holt				
According to the NI is about the equipm Ibmitter Informat Submitter Full Nar Organization: Street Address: City: State:	FPA Style Manual, the Section Title needs to reflect the content of the rule. The runnent grounding conductor, not about 'Grounding. tion Verification me: Mike Holt				

Public Input No. 382-NFPA 70-2020 [Section No. 404.12]

404.12 Grounding of Enclosures.

Metal enclosures for switches or circuit breakers shall be connected to an equipment grounding conductor as specified in Part IV of Article 250. <u>Metal</u> <u>Where separate grounding conductors or bonding jumpers are installed, a terminal bar for all grounding and bonding conductor connections shall be bonded to the metal enclosure in accordance with 250.12. Equipment grounding conductors shall not be connected to a terminal bar provided for grounded conductors or neutral conductors unless the bar is identified for the purpose and is located where interconnection between equipment grounding conductors and grounded circuit conductors is permitted or required by Article 250. Metal enclosures for switches or circuit breakers used as service equipment shall comply with the provisions of Part V of Article 250. Where nonmetallic enclosures are used with metal raceways or metal-armored cables, they shall comply with 314.3, Exception No. 1 or No. 2.</u>

Except as covered in 404.9(B), Exception No. 1, nonmetallic boxes for switches shall be installed with a wiring method that provides or includes an equipment grounding conductor.

Statement of Problem and Substantiation for Public Input

The purpose of this proposed change is twofold:

(1) Inspectors need to have one common point where they can view and check all grounding and bonding connections. This is especially true for services, when the inspector must examine inside the switch (SUSE). There is usually a hodgepodge of lugs untidily scattered about the switch enclosure. It is also not uncommon to find a single lug, containing two or more conductors (an obvious violation). As an inspector it would save me time, and also make for a safer installation if it was required that all equipment grounding conductors, bonding jumpers, and grounding electrode conductor(s) could be routed to a single point. It's cleaner, and safer. And we wouldn't have to spend so much time trying to "decipher" what is actually going on within the switch enclosure. I believe that the proposed language accomplishes this.

The second reason for the proposed change is for consistency within the NEC. Other code sections already have similar requirements, such as 450.10(A):

"450.10(A) Dry-Type Transformer Enclosures.

Where separate equipment grounding conductors and supply-side bonding jumpers are installed, a terminal bar for all grounding and bonding conductor connections shall be secured inside the transformer enclosure. The terminal bar shall be bonded to the enclosure in accordance with 250.12 and shall not be installed on or over any vented portion of the enclosure."

and 408.40:

"408.40 Grounding of Panelboards.

Panelboard cabinets and panelboard frames, if of metal, shall be in physical contact with each other and shall be connected to an equipment grounding conductor. Where the panelboard is used with nonmetallic raceway or cable or where separate equipment grounding conductors are provided, a terminal bar for the equipment grounding conductors shall be secured inside the cabinet. The terminal bar shall be bonded to the cabinet and panelboard frame, if of metal; otherwise it shall be connected to the equipment grounding conductor that is run with the conductors feeding the panelboard."

Please consider adding this language as it is desperately needed and will help the electrical inspector.

Submitter Information Verification

Submitter Full Name: Nick SassoOrganization:Clark County Building and FireStreet Address:-City:-State:-Zip:-Submittal Date:Wed Jan 29 14:49:32 EST 2020Committee:NEC-P09

Committee Statement

Resolution: CMP-9 resolves the PI as it needlessly duplicates other requirements in the Code.

404	I.14 Rating and Use of Switches.
404	itches shall be listed and used within their ratings. Switches of the types covered in $I.14(A)$ through (E) shall be limited to the control of loads as specified accordingly. Switcher to control cord-and-plug-connected loads shall be limited as covered in 404.14($\in \underline{G}$).
	Informational Note No. 1: For switches for signs and outline lighting, see 600.6.
	Informational Note No. 2: For switches controlling motors, see 430.83, 430.109, and 430.110.
(A)	Alternating-Current General-Use Snap Switch.
This	s form of switch shall only be used on ac circuits and used for controlling the following:
(1)	Resistive and inductive loads not exceeding the ampere rating of the switch at the voltag applied
(2)	Tungsten-filament lamp loads not exceeding the ampere rating of the switch at 120 volts
(3)	Electric discharge lamp loads not exceeding the marked ampere and voltage rating of the switch
(4)	Motor loads not exceeding 80 percent of the ampere rating of the switch at its rated voltage
(5)	Electronic ballasts, self-ballasted lamps, compact fluorescent lamps, and LED lamp loads with their associated drivers, not exceeding 20 amperes and not exceeding the ampere rating of the switch at the voltage applied
(B)	Alternating-Current or Direct-Current General-Use Snap Switch.
	s form of switch shall be permitted on either ac or dc circuits and used only for controlling the wing:
(1)	Resistive loads not exceeding the ampere rating of the switch at the voltage applied.
(2)	Inductive loads not exceeding 50 percent of the ampere rating of the switch at the applied voltage. Switches rated in horsepower are suitable for controlling motor loads within their rating at the voltage applied.
(3)	Tungsten-filament lamp loads not exceeding the ampere rating of the switch at the applie voltage if T-rated.
4)	Electronic ballasts, self-ballasted lamps, compact fluorescent lamps, and LED lamp loads with their associated drivers, not exceeding the ampere rating of the switch at the voltage applied.
(C)	CO/ALR Snap Switches.
	p switches directly connected to aluminum conductors and rated 20 amperes or less shall narked CO/ALR.
(<u>D)</u> amp swit <u>swit</u> mar sha	Snap Switches with Push-in Terminals. Push-in terminals of snap switches rated 15 peres shall be directly connected solely to 14 AWG solid copper conductors. For listed sn inches rated 15 amperes and having push-in terminals that are identified additionally, and solid ked, as suitable for 14 AWG solid copper-clad aluminum conductors, the push-in terminal libe permitted to be directly connected to 14 AWG solid copper-clad aluminum in ordance with 240.4(D)(3).

(E) Alternating-Current General-Use Snap Switches Rated for 347 Volts.

This form of switch shall not be rated less than 15 amperes at a voltage of 347 volts ac, and they shall not be readily interchangeable in box mounting with switches covered in 404.14(A) and (B). These switches shall be used only for controlling any of the following:

- (1) Noninductive loads other than tungsten-filament lamps not exceeding the ampere and voltage ratings of the switch.
- (2) Inductive loads not exceeding the ampere and voltage ratings of the switch. Where particular load characteristics or limitations are specified as a condition of the listing, those restrictions shall be observed regardless of the ampere rating of the load.
- (3) Electronic ballasts, self-ballasted lamps, compact fluorescent lamps, and LED lamp loads with their associated drivers, not exceeding 20 amperes and not exceeding the ampere rating of the switch at the voltage applied.

(EF) Dimmer and Electronic Control Switches.

General-use dimmer switches shall be used only to control permanently installed incandescent luminaires unless listed for the control of other loads and installed accordingly. Other electronic control switches, such as timing switches and occupancy sensors, shall be used to control permanently connected loads. They shall be marked by their manufacturer with their current and voltage ratings and used for loads that do not exceed their ampere rating at the voltage applied.

(FG) Cord- and Plug-Connected Loads.

Where a snap switch or control device is used to control cord-and-plug-connected equipment on a general-purpose branch circuit, each snap switch or control device controlling receptacle outlets or cord connectors that are supplied by permanently connected cord pendants shall be rated at not less than the rating of the maximum permitted ampere rating or setting of the overcurrent device protecting the receptacles or cord connectors, as provided in 210.21(B).

Informational Note: See 210.50(A) and 400.10(A)(1) for equivalency to a receptacle outlet of a cord connector that is supplied by a permanently connected cord pendant.

Exception: Where a snap switch or control device is used to control not more than one receptacle on a branch circuit, the switch or control device shall be permitted to be rated at not less than the rating of the receptacle.

Additional Proposed Changes

File Name

Proposed_404.14_D_Draft_Fnl.docx

Description Approved

Word file attached for clarity.

Terminal temperature static heating test report as requested by task group

Terminal_and_Conductor_Temperature_Testing_Part_I_Fnl.pdf

Statement of Problem and Substantiation for Public Input

Task Group Statement

This public input is submitted on behalf of the task group formed in accordance with the direction of the NFPA Standards Council in their Decisions D#19-2 and D#19-23. This task group was appointed to identify potential proposed changes to the 2020 edition of the NEC in the form of proposed Tentative Interim Amendments (TIAs) or to the 2023 edition of the NEC in the form of Public Inputs (PIs) that within the Task Group's scope of activity as specified by the Standards Council.

These proposed PIs relate to new requirements covering the use of copper-clad aluminum conductors throughout the NEC as a coordinated set of new or revised requirements. These Public Inputs should

not be misconstrued by the CMPs as precluding consideration of other Public Inputs, with supporting test data, submitted now or in the future, for other potentially eligible conductor materials or sizes.

The task group members are; David Hittinger-Chair, Todd Crisman, Roland Deike, Thomas Domitrovich, Peter Graser, Christel Hunter, Chuck Mello, Ken Riedl, Susan Newman Scearce, Susan Stene, George Straniero, Frank Tse and Brian Rock. This task group of balanced interests provided the expertise to develop these public inputs covering the use of copper-clad aluminum conductors.

Public Inputs are being submitted in the following sections: Article 100, definition of "copper-clad aluminum", 210.12, 210.18, 210.21(B)(1), 210.23, 210.24, 210.52(B), 240.4(D), 240.6, 310.3(A), 310.3(B), Table 310.16, Table 310.17, 330.104, 334.104, 336.104, 340.104,404.14(D), and 406.3(D).

Technical Substantiation

The UL standard and associated guide information under category code WJQR for snap switches with push in terminals permits only 14 AWG solid copper conductors to be used at this time.

"Screwless terminal connectors of the conductor push-in type (also known as "push-in terminals") are restricted to 15 A branch circuits and are intended for connection with 14 AWG solid copper wire only. They are not intended for use with aluminum or copper-clad aluminum wire, 14 AWG stranded copper wire, or 12 AWG solid or stranded copper wire."

The change to this section is to highlight this limitation for switches that may have push-in terminals provided. The introduction of 14 AWG copper-clad aluminum into the NEC for branch circuit wiring needs this limitation to ensure push-in terminals on wiring devices are being installed in accordance with their listing.

Related Public Inputs for This Document

Related Input

Public Input No. 2864-NFPA 70-2020 [Section No. 210.18]

Public Input No. 2866-NFPA 70-2020 [Section No. 210.21(B)]

Public Input No. 3261-NFPA 70-2020 [Section No. 210.23]

Public Input No. 3940-NFPA 70-2020 [Section No. 210.24]

Public Input No. 3241-NFPA 70-2020 [Section No. 310.3(A)]

Public Input No. 3247-NFPA 70-2020 [Section No. 330.104]

Public Input No. 3248-NFPA 70-2020 [Section No. 334.104]

Public Input No. 3249-NFPA 70-2020 [Section No. 336.104 [Excluding any Sub-Sections]]

Public Input No. 3251-NFPA 70-2020 [Section No. 340.104]

Public Input No. 3259-NFPA 70-2020 [Section No. 406.3]

Public Input No. 2864-NFPA 70-2020 [Section No. 210.18]

Public Input No. 2865-NFPA 70-2020 [Section No. 210.12]

Public Input No. 2866-NFPA 70-2020 [Section No. 210.21(B)]

Relationship

Branch circuit ratings added 10 amps

Individual branch circuit receptacle applications and limitations

Branch circuit applications and limitations add 10 amps

Summary branch circuit applications and limitations added 10 amps

Branch circuit conductors added 14 AWG copper-clad aluminum

14 AWG copper-clad aluminum added for cables

Applications and limitations for receptacles

Public Input No. 3237-NFPA 70-2020 [Section No. 210.52(B)(1)] Public Input No. 3238-NFPA 70-2020 [Section No. 240.4(D)] Public Input No. 3241-NFPA 70-2020 [Section No. 310.3(A)] Public Input No. 3248-NFPA 70-2020 [Section No. 334.104] Public Input No. 3249-NFPA 70-2020 [Section No. 336.104 [Excluding any Sub-Sections]] Public Input No. 3251-NFPA 70-2020 [Section No. 340.1041 Public Input No. 3259-NFPA 70-2020 [Section No. 406.31 Public Input No. 3261-NFPA 70-2020 [Section No. 210.23] Public Input No. 3940-NFPA 70-2020 [Section No. 210.24] Public Input No. 3960-NFPA 70-2020 [Section No. 310.21]

Submitter Information Verification

Submitter Full Name: David Hittinger

Organization:	IEC
Affiliation:	NEC Correlating Committee Task Group
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Mon Sep 07 11:08:10 EDT 2020
Committee:	NEC-P09

Committee Statement

Resolution: <u>FR-7881-NFPA 70-2020</u>

Statement: The UL standard and associated guide information under category code WJQR for snap switches with push in terminals permits only 14 AWG solid copper conductors to be used at this time.

"Screwless terminal connectors of the conductor push-in type (also known as "push-in terminals") are restricted to 15 A branch circuits and are intended for connection with 14 AWG solid copper wire only. They are not intended for use with aluminum or copper-clad aluminum wire, 14 AWG stranded copper wire, or 12 AWG solid or stranded copper wire."

The change to this section is to highlight this limitation for switches that may have push-in terminals provided. The introduction of 14 AWG copper-clad aluminum into the NEC for branch circuit wiring needs this limitation to ensure push-in terminals on wiring devices are being installed in accordance with their listing. Nothing in the proposed language mandates that the push-in terminals must be used.

The marking addition ensures that the AHJ will be provided with the intended rating for use. The panel finds it necessary to write this requirement into NEC although it may already be present in other applicable standards.

404.14

404.14 Rating and Use of Switches. Switches shall be listed and used within their ratings. Switches of the types covered in 404.14(A) through (E) shall be limited to the control of loads as specified accordingly. Switches used to control cord-and-plug-connected loads shall be limited as covered in $404.14(\underline{FG})$.

Informational Note No. 1: For switches for signs and outline lighting, see 600.6.

Informational Note No. 2: For switches controlling motors, see 430.83, 430.109, and 430.110.

(A) Alternating-Current General-Use Snap Switch. This form of switch shall only be used on ac circuits and used for controlling the following:

(1) Resistive and inductive loads not exceeding the ampere rating of the switch at the voltage applied

(2) Tungsten-filament lamp loads not exceeding the ampere rating of the switch at 120 volts

(3) Electric discharge lamp loads not exceeding the marked ampere and voltage rating of the switch

(4) Motor loads not exceeding 80 percent of the ampere rating of the switch at its rated voltage

(5) Electronic ballasts, self-ballasted lamps, compact fluorescent lamps, and LED lamp loads with their associated drivers, not exceeding 20 amperes and not exceeding the ampere rating of the switch at the voltage applied

(B) Alternating-Current or Direct-Current General-Use Snap Switch. This form of switch shall be permitted on either ac or dc circuits and used only for controlling the following:

(1) Resistive loads not exceeding the ampere rating of the switch at the voltage applied.

(2) Inductive loads not exceeding 50 percent of the ampere rating of the switch at the applied voltage. Switches rated in horsepower are suitable for controlling motor loads within their rating at the voltage applied.

(3) Tungsten-filament lamp loads not exceeding the ampere rating of the switch at the applied voltage if T-rated.

(4) Electronic ballasts, self-ballasted lamps, compact fluorescent lamps, and LED lamp loads with their associated drivers, not exceeding the ampere rating of the switch at the voltage applied.

(C) CO/ALR Snap Switches. Snap switches directly connected to aluminum conductors and rated 20 amperes or less shall be marked CO/ALR.

(D) Snap Switches with Push-in Terminals. Push-in terminals of snap switches rated 15 amperes shall be directly connected solely to 14 AWG solid copper conductors. For listed snap switches rated 15 amperes and having push-in terminals that are identified additionally, and so marked, as suitable for 14 AWG solid copper-clad aluminum conductors, the push-in terminals shall be permitted to be directly connected to 14 AWG solid copper-clad aluminum in accordance with 240.4(D)(3).

(Đ<u>E</u>) Alternating-Current General-Use Snap Switches Rated for 347 Volts. This form of switch shall not be rated less than 15 amperes at a voltage of 347 volts ac, and they shall not be readily interchangeable in box mounting with switches covered in 404.14(A) and (B). These switches shall be used only for controlling any of the following:

(1) Noninductive loads other than tungsten-filament lamps not exceeding the ampere and voltage ratings of the switch.

(2) Inductive loads not exceeding the ampere and voltage ratings of the switch. Where particular load characteristics or limitations are specified as a condition of the listing, those restrictions shall be observed regardless of the ampere rating of the load.

(3) Electronic ballasts, self-ballasted lamps, compact fluorescent lamps, and LED lamp loads with their associated drivers, not exceeding 20 amperes and not exceeding the ampere rating of the switch at the voltage applied.

(E<u>F</u>) Dimmer and Electronic Control Switches. General-use dimmer switches shall be used only to control permanently installed incandescent luminaires unless listed for the control of other loads and installed accordingly. Other electronic control switches, such as timing switches and occupancy sensors, shall be used to control permanently connected loads. They shall be marked by their manufacturer with their current and voltage ratings and used for loads that do not exceed their ampere rating at the voltage applied.

(FG) Cord- and Plug-Connected Loads. Where a snap switch or control device is used to control cord-and-plug-connected equipment on a general-purpose branch circuit, each snap switch or control device controlling receptacle outlets or cord connectors that are supplied by permanently connected cord pendants shall be rated at not less than the rating of the maximum permitted ampere rating or setting of the overcurrent device protecting the receptacles or cord connectors, as provided in 210.21(B).

Informational Note: See 210.50(A) and 400.10(A)(1) for equivalency to a receptacle outlet of a cord connector that is supplied by a permanently connected cord pendant.

Exception: Where a snap switch or control device is used to control not more than one receptacle on a branch circuit, the switch or control device shall be permitted to be rated at not less than the rating of the receptacle.

Substantiation:

Task Group Statement

This public input is submitted on behalf of the task group formed in accordance with the direction of the NFPA Standards Council in their Decisions D#19-2 and D#19-23. This task group was appointed to identify potential proposed changes to the 2020 edition of the NEC in the form of proposed Tentative Interim Amendments (TIAs) or to the 2023 edition of the NEC in

the form of Public Inputs (PIs) that within the Task Group's scope of activity as specified by the Standards Council.

These proposed PIs relate to new requirements covering the use of copper-clad aluminum conductors throughout the NEC as a coordinated set of new or revised requirements. These Public Inputs should not be misconstrued by the CMPs as precluding consideration of other Public Inputs, with supporting test data, submitted now or in the future, for other potentially eligible conductor materials or sizes.

The task group members are; David Hittinger-Chair, Todd Crisman, Roland Deike, Thomas Domitrovich, Peter Graser, Christel Hunter, Chuck Mello, Ken Riedl, Susan Newman Scearce, Susan Stene, George Straniero, Frank Tse and Brian Rock. This task group of balanced interests provided the expertise to develop these public inputs covering the use of copper-clad aluminum conductors.

Public Inputs are being submitted in the following sections: Article 100, definition of "copperclad aluminum", 210.12, 210.18, 210.21(B)(1), 210.23, 210.24, 210.52(B), 240.4(D), 240.6, 310.3(A), 310.3(B), Table 310.16, Table 310.17, 330.104, 334.104, 336.104, 340.104,404.14(D), and 406.3(D).

Technical Substantiation

The UL standard and associated guide information under category code WJQR for snap switches with push in terminals permits only 14 AWG solid copper conductors to be used at this time.

"Screwless terminal connectors of the conductor push-in type (also known as "push-in terminals") are restricted to 15 A branch circuits and are intended for connection with 14 AWG solid copper wire only. They are not intended for use with aluminum or copper-clad aluminum wire, 14 AWG stranded copper wire, or 12 AWG solid or stranded copper wire."

The change to this section is to highlight this limitation for switches that may have push-in terminals provided. The introduction of 14 AWG copper-clad aluminum into the NEC for branch circuit wiring needs this limitation to ensure push-in terminals on wiring devices are being installed in accordance with their listing.

Terminal and Conductor Temperature Testing of 14 AWG Copper-Clad Aluminum and 14 AWG Copper Conductors

Part I – Static Heating and Flexing Tests

For

Bimetallics Task Group

Conducted at

Eaton Laboratories Menomonee Falls, Wisconsin

Report by

Chuck Mello on behalf of Bimetallics Task Group

Report Date

August 28, 2020

Table of Contents

1.0	Introduction and Purpose	. 1
2.0	Testing Arrangement and Setup	. 2
3.0	Materials for Testing	. 6
4.0	Test Procedures	. 7
5.0	Test Results	11
6.0	Conclusions	16
7.0	Test Equipment and Calibration	17

Appendices

A – Photos	A1 – A12
B – Copper-Clad Aluminum Material Verification	B1 – B7
C – Static Heating Test Data	
C1 – Static Heating Test at 100% Rated Current	C1-1 – C1-6
C2 – Static Heating Test at 135% Rated Current	C2-1 – C2-6
C3 – Static Heating Test at 150% Rated Current	C3-1 – C3-6
C4 – Static Heating Test at 200% Rated Current	C4-1 – C4-6
C5 – Static Heating Original 100% and 135% Trip Failure	C5-1
D – Flexing Tests Data	D1
E – Certificates of Calibration	E1 – E26

1.0 Introduction and Purpose

At the direction of the NFPA Standards Council in their Decisions D#19-2 and D#19-23, a Bimetallics Task Group of balanced interest was appointed. The scope was to review the proposed changes to the 2020 edition of the *NEC*® that relate to copper-clad aluminum conductors and recommend changes through tentative interim amendment(s) and/or to provide public inputs for the next revision cycle.

As the task group conducted the work, it was determined that testing data had been provided substantiating the ampacity of 14 AWG copper-clad aluminum but a number of related questions about 14 AWG copper-clad aluminum applications arose regarding terminal temperatures when applied to circuit breakers, wire splicing devices and device terminals. A testing plan was developed, reviewed over several task group meetings, and accepted by the task group to address the terminal temperature questions. This testing was completed at the Eaton Corporation laboratory facilities in Menomonee Falls, Wisconsin. The helpful assistance of Mr. Tom Domitrovich, Mr. Kevin Arnold, Mr. James Parrett, and Mr. Steve Averbeck with Eaton Corporation is greatly appreciated in arranging for and executing the testing.

This test report provides the testing arrangement, testing procedures and results for the static heating and the flexing tests. The Part I testing detailed in this report commenced July 30, 2020 and completed on August 26, 2020. Thermocycling testing is presently being conducted and those test results will be provided in a separate report. The separation of the reports is necessary to meet the NFPA deadline of September 10, 2020 to submit public inputs and any supporting data.

The purpose of this testing is to provide data, as requested by the Bimetallics Task Group, to understand certain installation and operating conditions when considering the application of 14 AWG copper-clad aluminum conductors at the proposed ampacity for branch circuits. The testing being completed also includes 14 AWG copper conductors at its *NEC*® ampacity for comparison and performance. The basis for comparison is at the 60°C ampacity rating for copper (15 amps) and the proposed 60°C ampacity rating for copper-clad aluminum (10 amps). This testing is designed to represent a typical installation to determine the following:

- 1) The temperature (temperature rise) on the terminals and conductor immediately adjacent to a 10 Amp and 15 Amp molded case circuit breaker, under normal and identified abnormal conditions
- 2) The temperature (temperature rise) on wire-splicing devices (e.g., Ideal Wire Nuts® or similar), and conductor immediately adjacent, commonly used for splicing in junction or device boxes or attaching leads from utilization equipment, under normal and abnormal conditions
- The temperature (temperature rise) on wiring devices (single receptacle as representative) and conductor immediately adjacent under normal and abnormal conditions
- 4) Conductor retention on wiring devices after abnormal thermal-cycling
- 5) The flexing durability of 14 AWG copper-clad aluminum when installed and removed from a single-gang device box

Since the various product standards do not presently have requirements, procedures or parameters for 14 AWG copper-clad aluminum, the testing being conducted is based on the 10-ampere branch circuit rating at 60°C and percentage multipliers taken from the applicable standards. Where the standard does not provide a percentage value, then the current for the testing was interpolated from the values for relative copper and/or aluminum conductors from the standard. The values for testing of 14 AWG copper are taken from the applicable product safety standards with an ampacity basis of 15 Amps at 60°C

It is to be understood this testing is only being conducted to provide specific performance data and information as requested by the task group. The testing does not provide performance or data for certification of any of the components used for the testing. If 14 AWG copper-clad aluminum is accepted into the 2023 *NEC*®, then numerous UL standards will need to be revised and testing completed under the requirements established in those standards. This testing for certification could be more extensive and take much more time to complete than what is provided here. The goal again is to provide information for a typical installation specific to terminal temperatures. The changes to UL standards will not begin to occur until 14 AWG copper-clad aluminum is recognized for installation in the *NEC*®.

To provide a basis to consider the test results for 14 AWG copper-clad aluminum, duplicate test set ups were constructed using 14 AWG copper conductors. The only difference in the setup for 14 AWG copper is the circuit breaker was rated 15 Amps and the testing values were based on the 15 Amp ampacity. This additional testing data provides a direct comparison in the same environment at the 60°C ampacity values for these two conductor types and assemblies.

2.0 Testing Arrangement and Setup

The test was conducted in a suitable facility with environmental controls and documented monitoring. The facility was free from extraneous changes in ambient temperature and from having random air flow (drafts) through the testing area. Ambient temperature was maintained between 20°C and 25°C and recorded with thermocouples positioned in the testing area while temperature testing was completed.

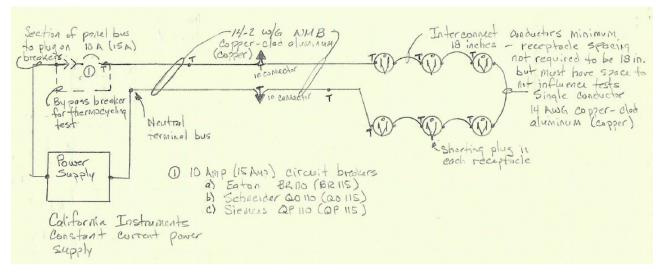


Figure 1 – Typical Test Circuit Diagram

The Eaton facility, being a division within a manufacturing company of wiring devices and circuit breakers, has laboratory technicians that are very familiar with testing of circuit components and equipment to UL standards.

The test circuit diagram shown in figure 1 above provides the basic layout of one (1) testing circuit consisting of one (1) circuit breaker, the conductor (14 AWG copper-clad aluminum or copper NM-B cable) two wire-splicing devices, and six (6) single receptacles. To complete tests 1 through 4 as described below, three (3) of these test circuits were assembled at a time. Photos 1 through 3 in Appendix A show the general test setup for completing the static heating testing. Each of the three (3) circuits have one of the manufacturer's (mfg. 1, mfg. 2, and mfg. 3) circuit breaker, the wire splicing devices on the black and white wire as described below, and three (3) each of receptacles from two of the manufacturers. Photos 4 through 7 show each of the setups with a sign indicating the circuit breaker, conductor material, wire splicing devices, and receptacles in that circuit.

For example, a setup had three (3) circuits with:

- Three different 10-amp circuit breakers (one each mfg. 1, mfg. 2, and mfg. 3)
- 14 AWG copper-clad aluminum NM-B conductors
- Mfg. 4 and mfg.5 wire splicing devices respectively, on the black and white conductors
- Three each of the mfg. 8 and mfg. 9 receptacles, and
- 14 AWG THHN copper-clad aluminum conductors for interconnection of the receptacles

These components were connected together to form a complete circuit. The second setup for 14 AWG copper-clad aluminum were same circuit breakers but with mfg.6 and mfg.7 wire spicing devices and with mfg. 10 and mfg.11 receptacles. The third and fourth setups were the same as 1 and 2 except using 15-amp circuit breakers and 14 AWG copper conductors.

Due to testing of several different circuit breakers, receptacles, and wire-splicing devices, the test arrangement was different than what may be used for certification testing of a single type of device. The test purpose was to approximate an actual installation under laboratory type conditions and not to establish certification type testing for any one device.

For tests 1 through 4 the three power supplies used were programmable constant current power supply sources. Each power supply was connected to one of the circuits and provided the current level specified for the tests being conducted.

For each of the four setups the following description is provided, see circuit diagram in figure 1 and Appendix A photos 1 through 7:

- 1) The three (3) circuits were mounted on an insulating sheet approximately 4 feet high and 8 feet wide. The partition had suitable framing to provide structural support for the partition to be in a vertical orientation to the floor.
- 2) During all testing, suitable barrier tape, safety cones, barriers, or other means was in place in accordance with the laboratory safety procedures to keep unauthorized persons out of the area and away from exposed live parts.
- 3) The individual conductors and devices were arranged horizontally with approximately 12 inches of vertical spacing between each horizontal assembly. Staples, or other fastening devices, such as cable ties, were used to keep the NM-B cable aligned with the respective test assembly.

- 4) For the circuit breaker testing the following was assembled:
 - a) For the copper-clad aluminum conductors, three (3) 10-amp plug-on type panelboard circuit breakers were installed on sections of panelboard bus that are mounted onto the insulating board partition.
 - b) For the copper conductors, three (3) 15-amp plug-on type panelboard circuit breakers were installed on sections of panelboard bus that are mounted onto the insulating board partition. The panelboard bus had a terminal for connection of one conductor from the power supply.
- 5) From the circuit breaker approximately 4 feet of 14-2 NM-B cable was installed and supported as provided above. From this center junction another 2 feet of 14-2 NM-B cable (copper-clad aluminum or copper as applicable) was installed. The junction in the middle had approximately 6 inches of exposed conductor and a splice completed with yellow wire-splicing devices as provided for the black, white and equipment grounding conductors. The following was applied to the two setups for the copper-clad aluminum conductors respectfully and repeated for the copper conductor setups.
 - a) The black wire for the first circuit set of three used a mfg. 4 yellow wire-splicing devices
 - b) The white wire for the first circuit set of three used an mfg. 5 yellow Wire Nuts®
 - c) The black wire of the second circuit set of three used a mfg. 6 yellow wire-splicing devices
 - d) The white wire of the second circuit set of three used a mfg. 7 yellow wire-splicing devices

The manufacturer and location of the wire-splicing devices used was recorded for each test setup.

- 6) Six (6) receptacles were installed at the end of each horizontal assembly.
 - a) The first set of circuits of copper-clad aluminum or of copper had three (3) mfg. 11 receptacles and then three (3) receptacles from mfg. 8 all connected in series.
 - b) The second circuit of copper-clad aluminum or of copper had three (3) receptacles from mfg. 10 and then three (3) receptacles from mfg. 9 all connected in series.

The receptacles were spaced a minimum of six (6) inches apart horizontally and/or vertically and were interconnected with a minimum of eighteen (18) inches of 14 AWG solid THHN copper-clad aluminum or copper conductors respectfully.

The receptacles were mounted to the wall surface with screws, so that the face of the receptacle was approximately 1 1/2 inches from the insulating board partition surface.

For each manufacturer the receptacles were connected to terminals as follows:

a) One receptacle had the conductors installed at each wire binding screw and the conductors were wrapped counter-clockwise around the screw shank under the screw head, for 2/3 to 3/4 of wire binding screw circumference.

- b) The second receptacle had the conductors installed into one side back terminal (entry hole) of the pressure plate terminal.
- c) The third receptacle had two conductors installed into each back-side pressure plate terminal as follows: one conductor of the test circuit into each side (hot and neutral) of the pressure plate terminal and one additional short conductor of equal diameter and material into the other side (entry hole) of the same pressure plate terminal. The second conductor was to fill the slot only and is not required for any other purpose than to balance the mechanical clamping forces applied.

Each receptacle had a shorting plug installed as follows:

- a) The ungrounded (BLACK) and grounded (WHITE) contacts of each receptacle being tested were connected together by a mated attachment plug having rigidly-attached solid blades.
- b) The terminals of each attachment plug were short-circuited by the shortest feasible length of 14 AWG stranded copper conductor from type SJ flexible cord.
- c) The flexible cord shorting conductor was mechanically terminated into the pressure plate terminals and the connection torqued to the manufacturer's specification.
- 7) The conductor from the neutral terminal of the last receptacle in the series was routed back using the white wire in the NM-B cable, through the wire-splicing devices and terminated at a terminal bar mounted to the support board for connection back to the power supply.
- 8) All connections were tightened as follows. Torquing tools were calibrated and calibration documented:
 - a) The circuit breaker terminals were torqued as specified on the circuit breaker nameplate.
 - b) The wire-splicing devices were torqued to the manufacturer's specification in the instructions. If there was no specification, then the 14 AWG copper-clad aluminum conductors were torqued to 2.47 lbf-in and the 14 AWG coper conductors were torqued to 4.11 lbf-in [Specification from UL 486C – 9.1.9.4]
 - c) The terminals of the receptacles and of the attachment plugs were torqued to the manufacturer's specification in the installation instructions. If there was no torque specification provided, then the terminals were torqued to 9 lbf-in.
- 9) Thermocouples were connected as shown in the diagram, figure 1 and as shown in Appendix A photos 8 and 11 through 14.
 - a) Thermocouples were installed on device terminals so that it did not interfere with the terminal.

For the wire-splicing devices, the thermocouples were attached into the wire bundle within the wire-splicing devices.

- b) The thermocouples that measured center wire temperatures had a flap of the NM-B jacket and the conductor insulation peeled back to expose the conductor. The thermocouple was attached with thermo-cement to the conductor and the conductor insulation and jacket flap folded back to the original position with two wraps of black electrical tape wrapped to hold the flap in place.
- c) A thermocouple was positioned midway in elevation to the test setup for each circuit and recorded the ambient temperature as testing was completed.
- 10) The power supply was a programable constant current power supply. The current was monitored and recorded by the data logger along with the temperature recordings. The power supply was connected to the lug on the panelboard bus serving the circuit breaker and to the neutral terminal bar where the return white conductor from the NM-B cable was terminated.

3.0 Materials for Testing

The generous support with the supplying of materials by Copperweld, Eaton, Hubbell, Legrand, Leviton, and Siemens are acknowledged and appreciated. The following materials were used to complete the setups as described above.

- 1) The circuit breakers for the copper-clad aluminum testing were single pole 10 Amp 120/240 Volt, 10,000 interrupting rating with five (5) each of the following (two (2) breakers to be used and the others as backup):
 - a) Eaton BR110,
 - b) Schneider QO110, and
 - c) Siemens QP110.
- 2) The circuit breakers for the copper testing were single pole 15 Amp 120/240 Volt, 10,000 interrupting rating with five (5) each of the following (two (2) breakers to be used and the others as backup):
 - a) Eaton BR115,
 - b) Schneider QO115, and
 - c) Siemens QP115.
- 3) The yellow wire-splicing devices were as follows:
 - a) Gardner-Bender Ultra WingGard
 - b) Ideal Wing-Twist
 - c) 3M Performance Plus Red/Yellow+
 - d) Commercial Electric WT4

- 4) The receptacles for both the copper-clad aluminum and copper testing were:
 - a) Eaton (Cooper) model TR6250W, 5-15R single receptacle with wire binding screw and pressure plate terminals (back and side wired)
 - b) Hubbell model HBL 5261, 5-15R single receptacle with both wire binding screw and pressure plate terminals (back and side wired)
 - c) Legrand (Pass & Seymour) model TR 5251, 5-15R single receptacle with both wire binding screw and pressure plate terminals (back and side wired)
 - d) Leviton model T 5015, 5-15R single receptacle with both wire binding screw and pressure plate terminals (back and side wired)
- 5) Thermocouples, UL calibrated, model UL 3055, with sufficient length to connect and route to datalogger recording device.
- 6) Datalogger recording device and laptop or another required device for the datalogger.
- 7) Programable power supplies from Eaton laboratory. Maximum current for the copper was 30 Amps and for the copper-clad aluminum was 20 amps.
- 8) Approximately 50 feet each of 14-2 w/ground copper-clad aluminum NM-B cable and of 14-2 w/ground copper NM-B cable.
- Approximately 50 feet each of 14 AWG solid THHN copper-clad aluminum and 14 AWG solid THHN copper single conductors.

4.0 Test Procedures

4.1 Conductor Material Testing

A sample of each the 14-2 NM-B and 14 AWG THHN copper-clad aluminum conductors used for the testing was returned to the Copperweld factory laboratory for analysis. The testing was performed to confirm the conductors that were used for the testing at Eaton were in fact 14 AWG and met the requirements for copper-clad aluminum as specified in UL 83 Annex E and ASTM B566. The packaging was photo documented from the Eaton laboratory and the opening of the package at the Copperweld laboratory photo documented.

The Copperweld laboratory technician, who routinely performs the full ASTM B566 battery of testing, completed all the testing and documented it on a Copperweld laboratory test data sheet.

Standard materials testing was completed by Copperweld laboratory technicians including:

- DC resistance
- Copper thickness
- Copper Volume
- Tensile strength
- Elongation
- Adhesion
- Cohesion

The following tests, as completed by the Copperweld laboratory technician, were witnessed and documented by the UL Field Representative that normally completes follow-up inspections of copper-clad aluminum conductors as part of the recognized component program, under category DVVU2:

- DC resistance
- Copper thickness
- Tensile strength
- Elongation

4.2 Terminal Temperature Testing

The following test procedures, except the flexing test, used references from parts of UL 486(A)(B); UL 486(C); UL 489; UL 20; and UL 498.

As stated, the tests 1 through 4 were completed with all three (3) manufacturer's circuit breakers in three circuits at one time. These tests are identified with the test number from below with an "a", "b" or "c' representing the representative circuit breaker used:

- a. mfg. 1 circuit breaker
- b. mfg. 2 circuit breaker
- c. mfg. 3 circuit breaker

This same nomenclature is used in the data sheets found in Appendix C. To minimize test setups, and the number of times terminations are completed or taken apart, all four (4) static heating tests were completed for the "a", "b", and "c" circuit setups. After these tests were completed, then the next setup was assembled by changing the wire splicing devices and receptacles or changing the conductors from copper-clad aluminum to copper as applicable.

All static heating tests, tests 1 through 4 commenced with all components at ambient temperature.

For all testing temperature equilibrium is three consecutive readings taken at no less than 5-minute intervals indicating no further rise in temperature above the ambient temperature. For tests where the circuit breaker trips, which may be before temperature equilibrium was attained, the last three recorded temperatures were recorded onto the data sheets.

Test #1 – Rated Current Temperature

Each circuit was operated at 100% of the branch circuit rating (CCA - 10 Amps or Cu - 15 Amps) until temperature equilibrium was achieved. The final temperatures were recorded. All terminations were inspected for evidence of thermal damage. Temperature measurements were recorded at one-minute intervals.

Test #2 – Circuit Breaker Overload Temperature

Each circuit was operated at 135% of the branch circuit rating (CCA - 13.5 Amps or CU - 20.25 Amps) until temperature equilibrium was achieved or the circuit breaker tripped whichever came first. The circuit breaker elapsed trip time was recorded. Table 1, in section 4.3 below, provides the expected circuit breaker trip times from the manufacturer's time current curves. If the circuit breaker tripped, the last three recorded temperatures of the conductor, wire-splicing devices and wiring device were recorded on the datasheet. All terminations were inspected for evidence of thermal damage. Temperature measurements were recorded at 20-second intervals.

Test #3 – Wiring Device Overload Temperature

Each circuit was operated at 150% of the branch circuit rating (CCA - 15 Amps, or CU - 22.5 Amps) until temperature equilibrium was achieved or the circuit breaker tripped whichever came first. The circuit breaker elapsed trip time was recorded. Expected circuit breaker trip times are in a table 1 below in section 4.3 of procedure. If the circuit breaker tripped, the last three recorded temperatures of the conductor, wire-splicing devices and wiring device were recorded on the datasheet. All terminations were inspected for evidence of thermal damage. Temperature measurements were recorded at 10 second intervals.

Test #4 - Circuit Breaker Overload Temperature

Each circuit was operated at 200% of the branch circuit rating (CCA - 20 Amps, or CU 30 Amps) until temperature equilibrium was achieved or the circuit breaker trip tripped whichever came first. The circuit breaker elapsed trip time was recorded. Expected circuit breaker trip times are in a table 1 below in section 4.3 of procedure. If the circuit breaker tripped, the last three recorded temperatures of the conductor, wire-splicing devices and wiring device were recorded on the datasheet. All terminations were inspected for evidence of thermal damage. Temperature measurements were recorded at 7 second intervals.

Test #5 – Wiring Device Thermal Cycling

The thermocycling testing is underway at the time this report is being written. In order to meet NFPA public input deadlines, this report is for all testing completed at this time. A subsequent report will be written for the thermocycling testing.

Test # 6 – Conductor Flexing Test

- a) A standard 2 x 3 device box was mounted to a wood stud fixed to a table for support. See Appendix A photo 15. The device box was mounted with screws through the back of the box.
- b) A length of 14-2 AWG copper-clad aluminum NM-B cable was installed into the device box using NM cable clamps. The NM-B had a minimum of 1/4 inch of cable jacket projecting into the box past the clamping device.
- c) The outside end of the NM-B cable was connected to a digital multimeter to indicate continuity of the circuit through the receptacle, see Appendix A photo 16.

- d) The NM-B cable jacket was stripped and cut to length so that 6 inches of conductor projected beyond the cable entry to the box and 3 inches beyond the front edge of the device box. A receptacle was terminated to the NM-B cable conductors and the conductors shaped to fit back in the box so the receptacle yoke mated with the box front edge.
- e) For the first test, the NM-B conductors were installed using the wire binding screw with the conductors wrapped counter-clockwise around the screw shank under the screw head, for 2/3 to 3/4 of wire binding screw circumference.
- f) A shorting plug was installed into the receptacle.
- g) The 6-32 screws were removed and approximately 4-inch-long 10-32 screws were fixed to the device box ears and through the yoke of the receptacle providing a guideway for repeated insertion and removal. The 10-32 screws had nuts installed in the inside and outside of the device box ears to make rigid to the box, see Appendix A photo 15.
- With the assembly complete, the receptacle was pushed into and retracted from the box for 10 cycles and the continuity monitored on the digital multimeter, see Appendix A photos 17 through 19.
- i) Steps 'b' through 'h' were repeated two more times with new lengths of 14-2 NM-B copper-clad aluminum cable.
 - For the second test the receptacle was assembled with the backwiring pressure plate terminal and a single conductor.
 - For the third test the receptacle was assembled with the back-wiring pressure plate terminal and two conductors for mechanical balance on the wiring terminal.

4.3 Bimetallics Testing Circuit Breaker Trip Times

The below table provides the expected trip times based on the manufacturers time current curves at 40°C. The testing for this project was completed at about 22°C, based on the ambient temperatures recorded. Therefore, the trip times recorded from this testing may be somewhat higher but should not exceed the limits set in the UL Standard.

The UL standard specifies that calibration testing be competed at an ambient temperature of 25°C. The UL standard calibration testing at 25°C specifies that at:

- 135% of rating the maximum trip time for a 0 50-amp circuit breaker is 1 hour
- 200% of rating the maximum trip time for a breaker 0 30 amps is 2 minutes.

Manufacturer Catalog No. Trip Time Range in Seconds @ 4)°C
		100% rated current	135% rated current	150% rated current	200% rated current
Eaton	BR110	No trip	35 - 3600	20 - 500	12 - 40
	BR115	No trip	35 - 3600	20 - 500	12 - 40
Schneider	QO110	No trip	40 - 500	26 - 240	10 - 60
	QO115	No trip	30 - 210	21 - 100	8 - 28
Siemens	QP110	No trip	60 -800	40 - 450	19 - 150
	QP115	No trip	30 - 250	20 - 100	9 - 38

Table 1

5.0 Test Results

5.1 Copper-Clad Aluminum Conductor Material Testing

After the static heating testing was completed, Eaton laboratory technicians packed and shipped samples of the copper-clad aluminum conductor, NM-B cable and THHN single conductor, that had been used for the testing to Copperweld's laboratory for verification testing. Appendix A photos 22 to 24 show the samples the Eaton laboratory technicians packaged into the bag and shipped to the Copperweld laboratory. Note the date on these photos as August 24, 2020. Appendix B pages B1 and B2 show photos of the received package and opening of that package with these samples for the testing.

The samples of the 14 AWG copper-clad aluminum NM-B cable and the 14 AWG copper-clad aluminum THHN single conductors were tested in the Copperweld factory laboratory on August 27, 2020. The Copperweld laboratory testing data is provided in Appendix B page B3 and the calibration of the test equipment on pages B4 through B6.

The UL field engineer that routinely completes the quarterly follow-up inspections for the copper-clad aluminum conductor witnessed the testing required under the UL standard follow-up program that was completed on August 27, 2020. As shown in Appendix B, page B7, the UL field engineer confirmed that "*the 14 Awg from the NMB and THHN samples passed the UL tests for DVVUs, including Tensile, Elongation, copper thickness and DC resistance*"

The test results for the copper-clad aluminum confirm that the conductors used for this testing were 14 AWG and that the material tested met the requirements in ASTM B566.

5.2 Test Setup and Torquing

The test setups were as described in Section 2.0 of this report and shown with photographs in Appendix A. The terminations were tightened to the applicable torque value with a calibrated torque wrench. For the static heating testing the following tables show the torque values applied for each setup and device terminal.

Copper-Clad Aluminum conductors with mfg. 11 and mfg. 8 Receptacles

Item being torqued	in/lbs	mfr. spec	default
mfg. 1 brkr	20	yes	no
mfg. 2 brkr	36	yes	no
mfg. 3 brkr	25	yes	no
mfg. 4 wire splicing			
device	2.47	no	yes
mfg. 5 wire splicing device	2.47	no	yes
mfg. 11 receptacles	9	no	yes
mfg. 8 receptacles	12	yes	no

Torques applied:

Copper-Clad Aluminum conductors with mfg. 10 and mfg. 9 Receptacles

Torques applied:			
Item being torqued	in/lbs	mfr. spec	default
mfg. 1 brkr	20	yes	no
mfg. 2 brkr	36	yes	no
mfg. 3 brkr	25	yes	no
mfg. 6wire splicing device	2.47	no	yes
mfg. 7 wire splicing device	2.47	no	yes
mfg. 10 receptacles	9	no	yes
mfg. 9 receptacles	9	no	yes

Torques applied:

Copper conductors with mfg. 11 and mfg. 8 Receptacles

Torques applied:

in/lbs	mfr. spec	default
20	yes	no
36	yes	no
25	yes	no
4.11	no	yes
4.11	no	yes
9	no	yes
12	yes	no
	20 36 25 4.11 4.11 9	20 yes 36 yes 25 yes 4.11 no 4.11 no 9 no

Copper conductors with mfg. 10 and mfg. 9 Receptacles

Item being torqued	in/lbs	mfr. spec	default
mfg. 1 brkr	20	yes	no
mfg. 2 brkr	36	yes	no
mfg. 3 brkr	25	yes	no
mfg. 6wire splicing device	4.11	no	yes
mfg. 7 wire splicing			
device	4.11	no	yes
mfg. 10 receptacle	9	no	yes
mfg. 9 receptacle	9	no	yes

Torques applied:

5.3 Static Heating Test

The following are the results of the static heating testing, tests 1 through 4 with references to the applicable appendix pages. For all the testing data, the final three recorded temperature values are shown at either temperature equilibrium or the final three temperatures recorded before a circuit breaker tripped. All testing commenced with all test measurement points at ambient temperature. Also shown in the tables in the appendix are:

- The elapsed time from the start of the test,
- The ambient temperature recorded at the time of the recorded values, and
- The current at the time of the recorded values.

Since the UL standards reference temperature rise for most of the devices, those calculated values are shown immediately adjacent to the recorded values. The temperature rise was calculated by taking the recorded temperature and subtracting the ambient temperature recorded for that time.

Since the method of termination on each the three receptacles from one manufacturer was different (wire binding screw, back wired with pressure plate with one conductor and back wired with pressure plate with two conductors) exact data comparison of terminal temperature needs to be done line by line. For example, from appendix page C1 - 1, the line 1a for copper-clad aluminum, top table, needs to compare with line 1a for copper, bottom table.

Otherwise, data in general for terminal temperatures of specific devices, circuit breakers, wire splicing devices and receptacles as well as the conductor, can be compared in general. To facilitate ease of comparison, the pages in appendices C1 though C4 have been arranged so that each page has the copper-clad aluminum data in the top table and the related copper data in the bottom table.

5.3.1 Static Heating at 100% Rated Current

The data for the static heating testing at 100 percent of rated current are shown in Appendix C1. The recorded values are all after the temperatures being recorded had achieved temperature equilibrium. As can be seen in line by line or with general comparisons, the terminal and conductor temperatures for the copper-clad aluminum were less than those recorded for copper when operating at rated current. All temperatures recorded were less than the allowances in the applicable UL standards.

5.3.2 Static Heating at 135% Rated Current

The data for the static heating testing at 135 percent of rated current are shown in Appendix C2. The 135 percent current level is a calibration point for circuit breakers, rated up to 50 amps, where they are required to trip within 1 hour. The recorded values are the last three recorded temperatures before the circuit breaker tripped.

In doing analysis consideration must be given to the fact the temperatures recorded were still rising when the circuit breaker tripped. Therefore, when doing line by line or general comparisons, the circuit breaker trip time must be considered. It is noted the mfg. 1 10-amp circuit breaker tripped approximately twice as fast as the 15-amp circuit breaker, 8 vs. 19 seconds, and this resulted in higher recorded temperatures for copper. The test results with the mfg. 2 circuit breakers was reversed with the 15-amp breaker tripping in approximately half the time of the 10-amp circuit breaker, 3.5 vs. 5.5 seconds. Even with this time disparity the copper-clad aluminum with the longer time recorded lower temperatures than the copper. The trip times for the mfg. 3 circuit breakers had the 10-amp breaker tripping 3 times longer than the 15-amp breaker, but the copper-clad aluminum terminal temperatures still were less than or near to the copper terminal temperatures.

All temperatures recorded were less than the allowances in the applicable UL standards.

5.3.3 Static Heating at 150% Rated Current

The data for the static heating testing at 150 percent of rated current are shown in Appendix C3. The 150 percent current level is a static heating test current for wiring devices. The recorded values are the last three recorded temperatures before the circuit breaker tripped.

In doing analysis consideration must be given to the fact the temperatures recorded were still rising when the circuit breaker tripped. Therefore, when doing line by line or general comparisons, the circuit breaker trip time must be considered. The test data results shown in appendix C3 generally follow that same pattern as occurred with the 135 percent testing.

All temperatures recorded were less than the allowances in the applicable UL standards.

5.3.4 Static Heating at 200% Rated Current

The data for the static heating testing at 200 percent of rated current are shown in Appendix C4. The 200 percent current level is a calibration point for circuit breakers, rated up to 30 amps, where they are required to trip within 2 minutes. The recorded values are the last three recorded temperatures before the circuit breaker tripped.

In doing analysis consideration must be given to the fact the temperatures recorded were still rising when the circuit breaker tripped. Therefore, when doing line by line or general comparisons, the circuit breaker trip time must be considered. The test data results shown in appendix C4 generally follows the same pattern as occurred with the 135 percent and 150 percent testing.

All temperatures recorded were less than the allowances in the applicable UL standards.

5.3.5 Static Heating at 135% Rated Current – Circuit Breaker Did Not Trip

The first attempt at the 135 percent testing found the mfg. 2 10-amp circuit breaker not to trip within the required 1-hour time. The data for this static heating test at 100 percent and at 135 percent of rated current are shown in Appendix C5. The top table on this appendix page is the 100 percent test data and the bottom table is the 135 percent test data. As stated before, the 135 percent current level is a calibration point for circuit breakers, rated up to 50 amps, where they are required to trip within 1 hour.

Since the circuit breaker failed to trip the test was stopped shortly after the 1-hour time had elapsed. Analysis of the 135 percent data recorded found that after 1-hour at this current level, above the proposed rated current, none of the terminal or conductor temperatures had risen above UL standards allowances.

5.3.6 Flexing Tests

The data for the flexing testing is shown in Appendix D. There is no UL or other known industry standard for this specific test and the test process used was established and agreed to by the task group to represent an installation condition. Three tests were conducted, one with the receptacle terminated with the 14 AWG copper-clad aluminum wrapped around the wiring binding screw, the second with a single conductor back wired into the pressure plate and the third with two conductors back wired into the pressure plate.

The test results found that after 10 cycles of fully inserting and removing the receptacle to the full extended position, the copper-clad aluminum

conductors for the back wired assemblies did not break and therefore passed this test.

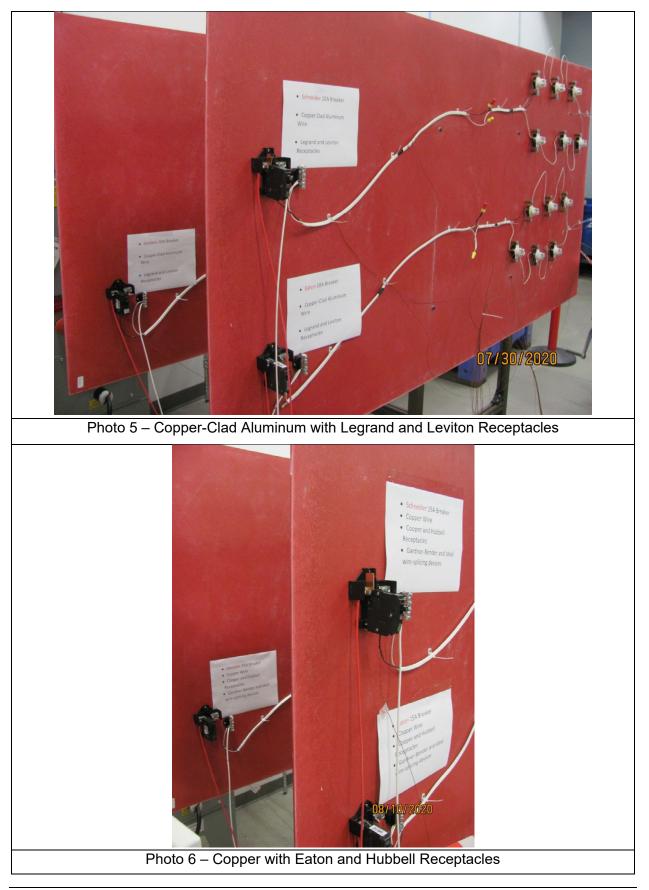
For the wire binding screw termination, the first test found the flexing for the 10 cycles passed where the conductors did not break. But when the conductors were being removed both the black and white conductors broke off near the end of the insulation, see Appendix A photo 20. A second test was conducted and the black conductor was found to break off near the end of the insulation on the eighth cycle. A third test was completed, using a 14 AWG NM-B sample from another coil, and this assembly passed the 10 cycles and removal of conductors with no breaking or signs of weakening in the stripped portion of the conductor, see Appendix A photo 21.

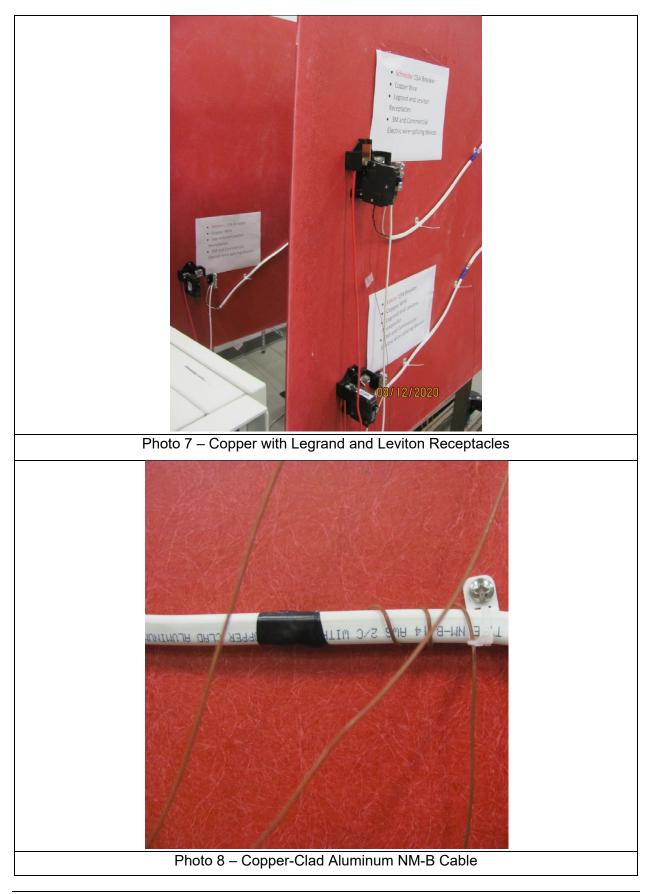
As stated, there is no industry standard for completing this flexing test and the test was conducted due to specific questions asked by members of the task group. The results demonstrate that there may be limits to the amount of flexing these conductors can withstand, but it should be noted that in normal installations the insertion and removal of a wiring device occurs far less than the eight to ten times as conducted in this test.

6.0 Conclusions

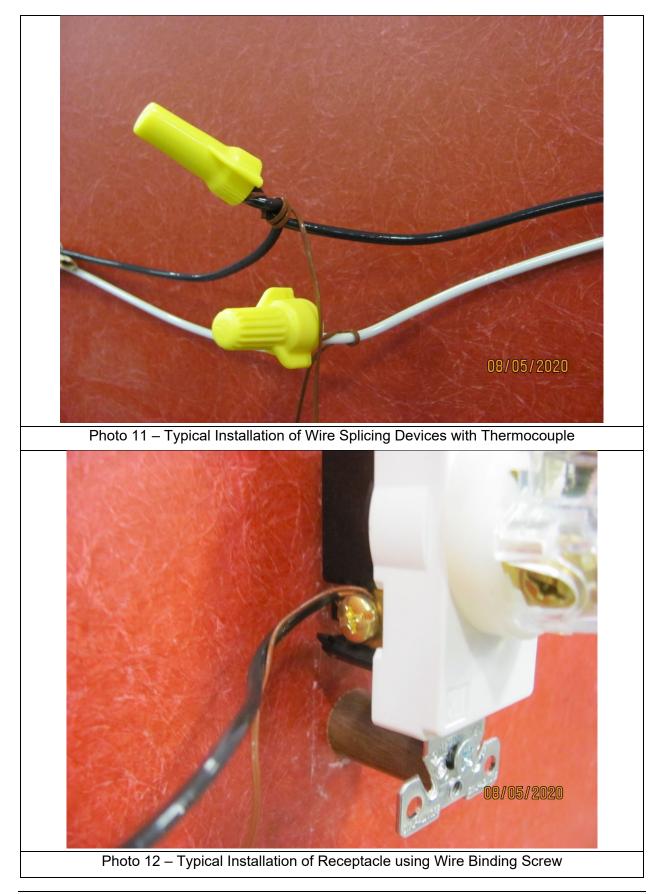
The results from the temperature testing conducted in this project found the 14 AWG copperclad aluminum to have terminal and conductor temperatures generally less than copper when tested at the 60°C ampacity values. In all cases, the temperature and temperature rise recorded were below those provided in the referenced UL standards. The flexing testing found that there may be some limitations to the number of flexing operations a 14 AWG copper-clad aluminum conductor can withstand, but the number of flexing operations to breakage is above those normally encountered in any installation.

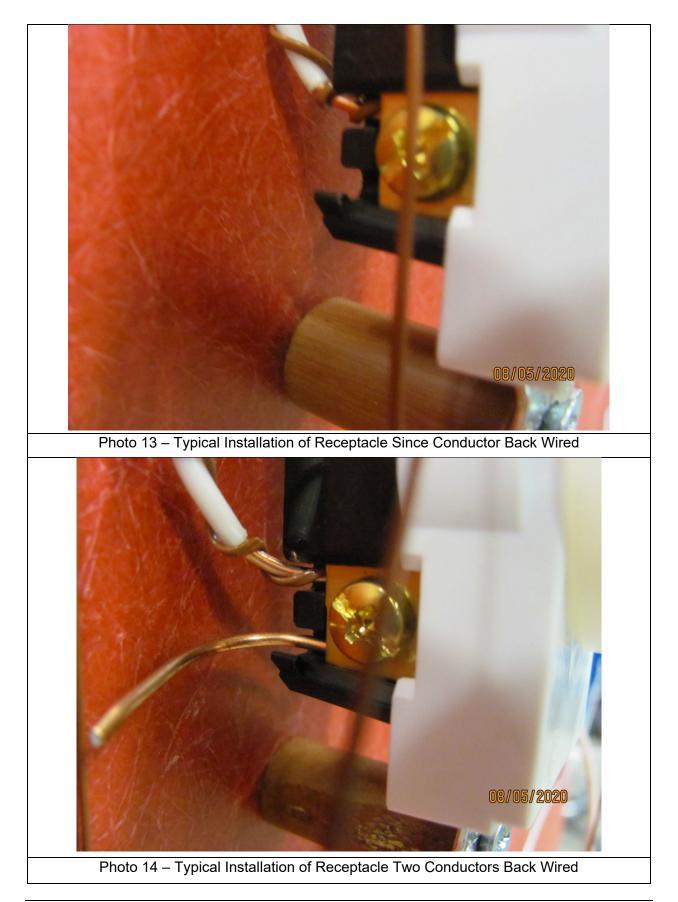
As stated in the introduction, this testing project was to answer specific questions raised by the Bimetallics Task Group regarding temperature performance of 14 AWG copper-clad aluminum compared with 14 AWG copper in typical applications. While testing conducted followed parts of several UL standards, it is to be understood the testing was only conducted to provide specific performance data and information as requested by the task group. The testing does not provide performance or data for certification of any of the components used for the testing.

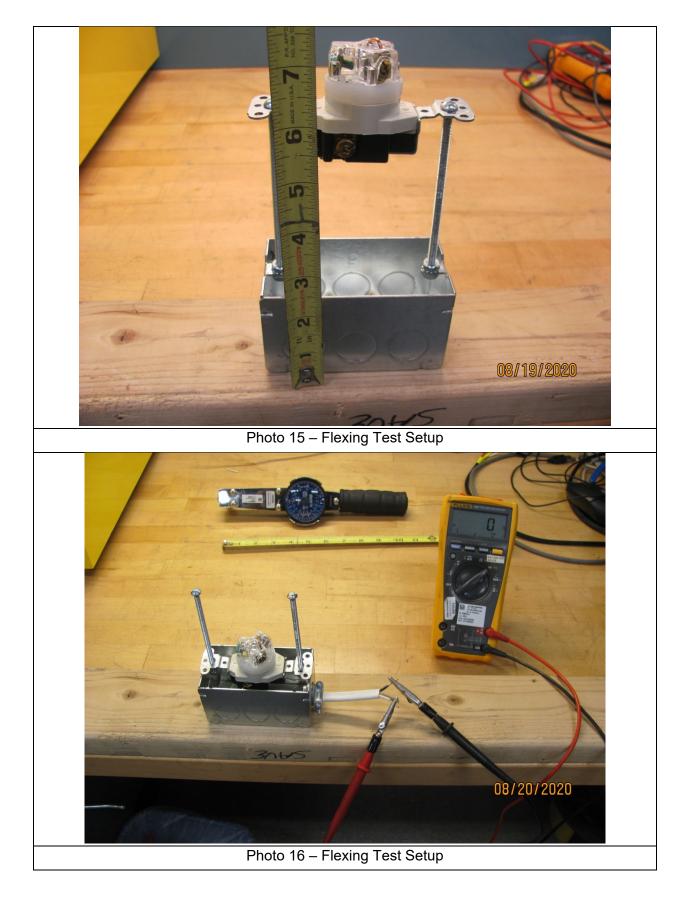

7.0 Test Equipment and Calibration

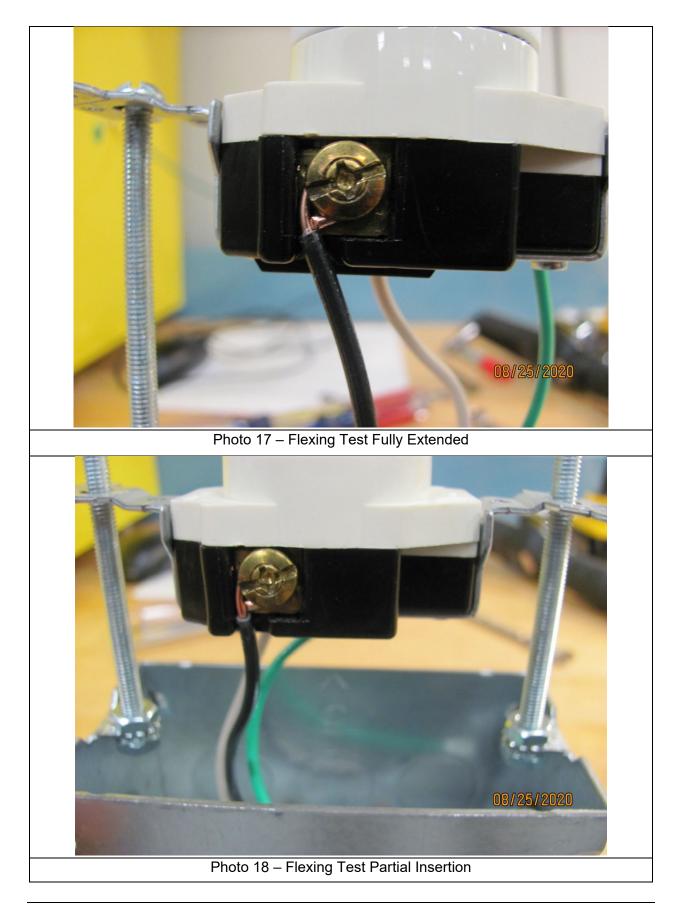

Description	manufacturer	Eaton Asset #	Cal Date	Cal Due
Thermocouples	Pacific Test and Measurement	N/A	7/10/2020	N/A
DACQ datalogger	Agilent (HP)	EM7054	7/16/2020	7/16/2021
DVM	Fluke	EM4437	7/16/2020	7/16/2021
DVM	Fluke	EM7014	7/16/2020	7/16/2021
DVM	Fluke	EM7024	7/16/2020	7/16/2021
СТ	AEMC	EM6996	7/16/2020	7/16/2021
СТ	AEMC	EM6997	7/16/2020	7/16/2021
СТ	AEMC	EM8032	7/16/2020	7/16/2021
Torque wrench	CDI	EM8363	7/14/2020	7/14/2021
Tape measure	Stanley	EM6927	7/16/2020	7/16/2021

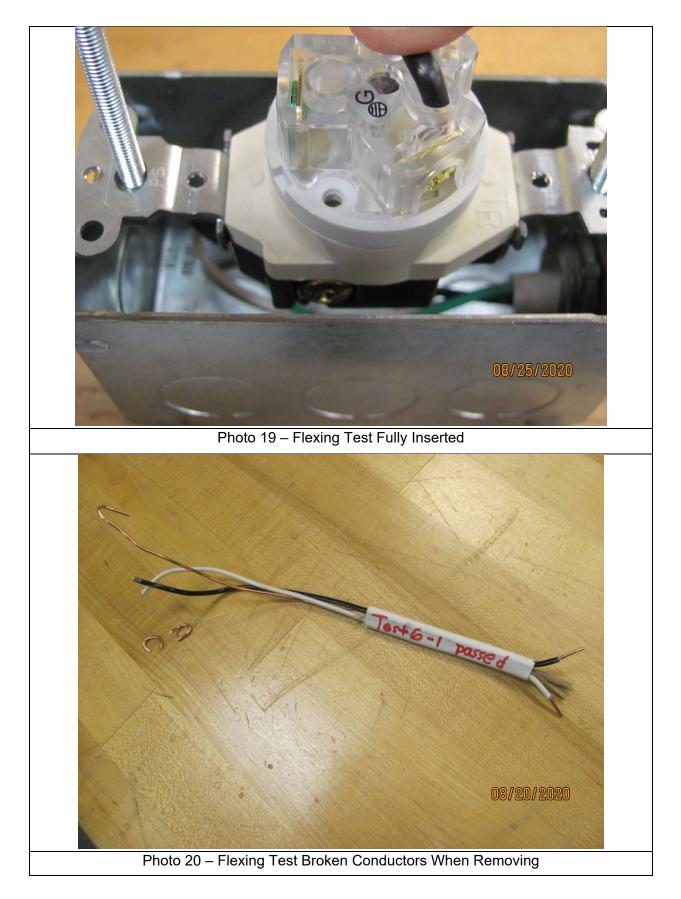
The following test and measurement equipment was used for the testing. The certificates of calibration for each of the above items is provided in Appendix E.

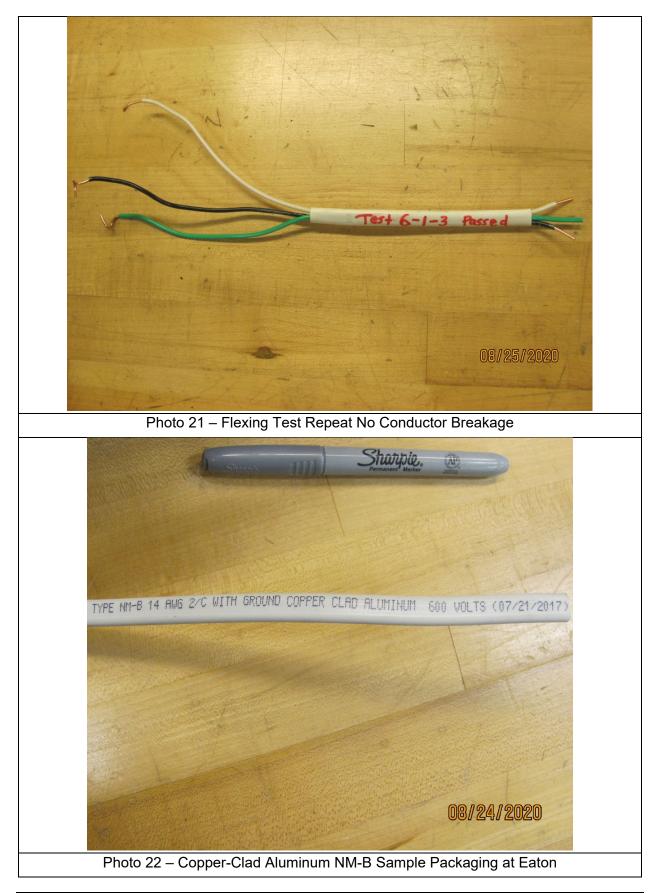












The power of two

Metallurgical Laboratory Report

Customer:	NEC Bime	etallics Task C	Group	Analysis By:	Sammy HamptonMetallographer
Subject:	14 AWG Bui	lding Wire—N THHN	IMB and	Authored By:	Sammy Hampton –Metallographer
Date:	8-27-2020	Report No:	456	Approved By:	Bill Lewey– QA Manager

Tested to ASTM Designation: B 566-- 04a

The NM and THHN class samples in this report were sent to Copperweld via a sealed package by Eaton Menomonee Falls test lab. The chain of custody was not broken. The testing was witnessed by a third party as part of routine auditing service. The witnessing session was recorded. The copper clad aluminum conductor material from these samples that was tested on August 27, 2020 by the Copperweld Metallurgical Lab was manufactured by Copperweld Bimetallics to ASTM B566 standards.

Package as received from Eaton

Appendix B - Copper-Clad Aluminum Lab Report

Opening the Package

Package Contents

The wire consists of a core of aluminum with a continuous outer cladding of copper metallurgically bonded to the core throughout and meets the requirements of this specification (5.1).

Test required	Test result	ASTM B 566 requirement	Result
Diameter	0.0641"	± 0.0001 0.0640" minimum 0.0642" maximum	Pass
Break load (lbs.)	55 pounds	64.4 pounds maximum	Pass
Tensile strength (psi)	17195 psi	20000 (psi) maximum	Pass
% elongation	22.78%	15.0% minimum	Pass
Copper thickness (minimum)	0.00148" = 4.6% of wire radius	minimum copper thickness= 3.5% of wire radius	Pass
Copper volume	10.05%	8% minimum 12% maximum	Pass
Adhesion test	No separation (see attached image 1)	The wire shall be repeatedly reverse bent to fracture by any convenient means. The copper clad aluminum wire shall be free from cladding delamination.	Pass
Cohesion test	No seams or splits (see attached images 2 and 3)	The copper clad aluminum wire shall be free from seams or splits	Pass

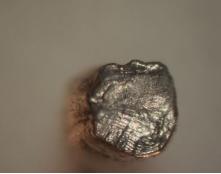


Image 1: adhesion test

Image 2: cohesion test (torsion)

image 3: cohesion test (reverse torsion)

		aronnont ogarpniont	
Equipment	Gauge ID	In calibration	Next due calibration
Micrometer	CP-01	Yes	April 2021
Tensile tester	1755-2000	Yes	January 2022
Ohmmeter	62-1625	Yes	December 2020
	Calibration C	ertificates Attached belo	W

Test and measurement equipment

	E-mail: in: Phone: 866	ter St r, TN 37398 fo@peslletn.com 5-521-3823 vww.pcslletn.com	INSTRU	JMENT C	ALIBRATION	N REPOI	RT		
Copperweld									
Instrument ID	CP-01								
Description		r							
Calibrated	8/3/2020						P	erformed At	Customer Location
Manufacturer				Location					Semi-Annual
Model Number	293-344-30			Building	254 Cotton Mill Rd. Favetteville, TN 373	24		Certificate #	CO080320JM-03
Serial Number	66936496			Department		134		Temp	73°F
Cal Procedure	QS0003JB2	010			In Service			Humidity	
				Calibrat	ion Specifications				
	roup#1 Name OD			<u>embru</u>	ion speeneerons				
tom In Val / In Val	In Type	Std Accy	<u>Acc %</u>	<u>+/-</u>	Out Val	Out Type	Fnd As	Lft As	In Tol
.25000 / 0.25000 .50000 / 0.50000	Inch Inch	Plus / Minus Plus / Minus	0.000000	± 0.00010 ± 0.00010	0.25000	Inch Inch	0.25000	0.25000	Yes Yes
.00000 / 1.00000	Inch	Plus / Minus	0.000000	±0.00010	1.00000	Inch	1.00000	1.00000	Yes
<u>Test Instruments Used</u> <u>Test Instrument ID</u> Z-GA-010 GAGE BLCK SET STD SHOF	Description Gage Block	<u>Calibration</u> 81pc Set Standa	<u>Manufa</u> rd China	cturer_	<u>Model Number</u> Rectangular Steel		<u>Number</u>)	<u>(As Of C</u> Last Cal 1 4/8/2016	al Entry Date <u>)</u> Date <u>Next Cal Date</u> 4/30/2021
Notes about this calibra Uncertainty = ± (64.9+2 Calibration Result Who Calibrated	5.2L) µin (95 Calibration	Successful							
Finalized By									
Date Finalized									
otal expanded measurement uncertaintia sults and uncertainty when determining accredited to ISO/IEC 17025: 2017.	es engressed are based if the results meet the	on a confidence level of 9: ir needs. This is considered	%; coverage factor of "shared responsibility."	" This calibration was co	e statement of compliance in this ce nducted using standards traceable t ay not be reproduced except in full.	o the SI through NIS	I. The results on this	s certificate of accuracy ap	nto consideration. The customer shall assess the pply only to the item described above.

Revision Date:05/08/2020 Rev: 04

Page 1 of 1

QF0016

9/2/2020

107 N Porter St Winchester, TN 37398 E-mail: info@pcsllctn.com Phone: 866-521-3823 Website: <u>www.pcsllctn.com</u>

INSTRUMENT CALIBRATION REPORT

QF0016

Copperweld

Instrument ID 1755-2000 Description Tensile Tester (2 Load cells) Calibrated 8/4/2020 Performed At Customer Location Location Main Manufacturer Thwing-Albert Instruments Frequency Semi-Annual Model Number EJA Building 254 Cotton Mill Rd. Certificate # CO080420JM-13 Fayetteville, TN 37334 Serial Number 1755-2000 Department Quality Temp 70°F Cal Procedure QS0033BG2013 Humidity 57% Status In Service **Calibration Specifications** Group # 1 Group Name 0-111b Load Cell 627022 In Type Nom In Val / In Val Std Accy Acc % Out Val Out Type Fnd As Lft As In Tol Pct of Range 0.500000 0.00 lbf 1.01 1.01 1/1 1bf 1.00 Yes 212 1bf Pct of Range 0.500000 0.00 2.00 1bf 2.01 2.01 Yes 3/3 Pct of Range 0.500000 0.00 1bf 3.00 1bf 3.01 3.01 Yes Pct of Range 0.500000 5/5 lbf 0.00 5.00 1bf 5.02 5.02 Yes 1bf Pct of Range 0.500000 0.00 7.00 lbf 7.03 7.03 Yes 10/10 0.00 lbf Pct of Range 10.00 1bf 10.04 10.04 Yes Group # 2 Group Name 0-225 lb Load cell 608236 Nom In Val / In Val In Type Std Accy Out Val Out Type Lft As In Tol Acc % Fnd As +/-1bf Pct of Range 0.500000 0.00 5.00 1bf 5.00 5.00 Yes 20,446 / 20,446 lbf Pct of Range 0.500000 0.00 20.45 1bf 20.48 20.48 Yes 50.414 / 50.414 Pct of Range 0.500000 0.00 50.41 50.48 50.48 lbf lbf Yes 88.532 / 88.532 lbf Pct of Range 0.500000 0.00 88.53 1bf 88.64 88.64 Yes 99 044 / 99 044 1bf Pct of Range 0 500000 0.00 99.04 1bf 99.15 99 15 Yes 117.60 / 117.60 0.500000 117.60 117.73 117.73 Pct of Range 0.00 lbf 1bf Yes Pct of Range 131.71 / 131.71 1bf 0.500000 0.00 131.71 1bf 131.83 131.83 Yes 151.04 / 151.04 161.19 / 161.19 lbf Pct of Range 0.500000 0.00 151.04 lbf 151.22 151.22 Yes 0.500000 161.38 1bf Pct of Range 0.00 161.19 1bf 161.38 Yes 207.76 / 207.76 Pct of Range 0.500000 0.00 1bf 207.99 207.99 lbf 207.76 Yes

Revision Date:05/08/2020 Rev: 04

Confidential

Page 1 of 2

107 N Porter St Winchester, TN 37398 E-mail: info@pesllctn.com Phone: 866-521-3823 Website: <u>www.pesllctn.com</u> INSTRUMENT CALIBRATION REPORT TION Copperweld Instrument ID 1755-2000 Description Tensile Tester (2 Load cells) Calibrated 8/4/2020 Performed At Customer Location Test Instruments Used During the Calibration (As Of Cal Entry Date)
 Description

 Z-LO-005 5K LOAD
 Load Cell, 5000lb, Tension & CELL

 CELL
 Compression
 Model Number Serial Number Next Cal Date Manufacturer Last Cal Date Futek LSB453 575093 1/7/2020 1/31/2022 D7-D10 (20), D1-D4 3/26/2019 (10), D1-D2 (2), 8MD8 Z-WE-003 HANGING Weight Set, 1-20lbs, Cast Iron Rice Lake ASTM Class 6 3/31/2021 WEIGHTS (1), 8MB4 (2),8MB5 (5) Notes about this calibration Uncertainty = ± 0.23% of Reading (95%CL; K=2) Calibration Result Calibration Successful Who Calibrated James Meadows Finalized By James Meadows Date Finalized 8/4/2020 1:12:08PM Total expanded measurement uncertainties expressed are based on a confidence level of 95%, coverage factor of (k=2). Decision Rule. The statement of compliance in this certificate was insted without taking the uncertainty of measurement into consideration. The number shall asses the results manuteristic when determining if the results meet that needs. This is considered "haved responsibility." This collemators was conducted using standards tanceable to the SI through NST. The results on this certificate of accuracy apply only to the item described above. This document may not be reproduced except in full. Laboratory Authorized Signature Raycon Fe Revision Date:05/08/2020 Rev: 04 Page 2 of 2 QF0016

9/2/2020

This document may contain confidential and proprietary information which is the exclusive property of Copperweld. It is delivered on the express condition that it is not to be disclosed, reproduced or used, in whole or part, for the manufacture, sales or use by anyone other than Copperweld without its express written concert.

Page 5

107 N Porter St Winchester, TN 37398 E-mail: info@pesiletn.com Phone: 866-521-3823 Website: www.pesiletn.com

Copperweld

INSTRUMENT CALIBRATION REPORT

Instrument II	0 62-1625								
Description	n Micro Ohn	n Meter							
Calibrate	d 8/4/2020						1	Performed At	Customer Location
Manufacture	r Valhalla Sci	entific		Location	Main			Frequency	Semi-Annual
Model Numbe	r 4176			Building	254 Cotton Mill Rd Fayetteville, TN 37			Certificate #	CO080420JM-03
Serial Numbe	r 62-1625			Department	Quality			Temp	70°F
Cal Procedur	e QS0011JB2	010		Status	In Service			Humidity	57%
				Calibrat	ion Specifications	5			
	Group#1 1p Name Ohn	n - Source							
Nom In Val / In Val	In Type	Std Accy	Acc %	<u>+/-</u>	Out Val	Out Type	Fnd As	Lft As	In Tol
1.000 / 1.000	Ohm	Pct of Reading	0.040000	0.0000	1.0000	Ohm	0.9998	0.9998	Yes
10.000 / 10.000	Ohm	Pct of Reading	0.040000	0.000	10.000	Ohm	9.999	9.999	Yes
100.000 / 100.000	Ohm	Pct of Reading	0.040000	0.00	100.00	Ohm	99.99	99.99	Yes
<mark>Test Instruments Use</mark> Test Instrument ID Z-EL-020 DECADE	Description	<u>Calibration</u> io Small Decade 30x	<u>Manufa</u> General	the second second	<u>Model Number</u> 1433-U	<u>Serial</u> 2545	<u>Number</u>	<u>(As Of C</u> Last Cal) 12/18/20	

Uncertainty = ± 2 mOhm (95%CL; K=2)

Calibration Result Calibration Successful Who Calibrated James Meadows Finalized By James Meadows Date Finalized 8/4/2020 12:47:33PM

Total expanded massurement uncertainties expressed are based on a confidence level of 95%, coverage factor of (k=2). Decision Bule: The statement of compliance in this certificate was issued without taking the uncertainty of measurement into consideration. The customer shall assess the result and uncertainty when determining if the results meet their meets. This is considered "shared responsibility," This columnton was conducted using standards tractable to the 51 through MIST. The results on this certificate of accuracy apply only to the item described above. Accessing of Discourse Tractable to the state of the results on this certificate of accuracy apply only to the item described above.

Laboratory Authorized Signature Regiment Fact

Revision Date:05/08/2020 Rev: 04

Page 1 of 1

QF0016

Follow-up Service Inspection Report E4911851200827165202

Date:	2020-08-27	File Number.:	E491185
Responsible Office:	Melville	Volume:	1
Inspection Center:	232	CCN:	DVVU2
Product Type:	CCA Conductor	UL Rep Name:	Gregory Cornett
Deliverable Type:	Recognized	UL Rep ID:	20708
Party Site Number:	1626131	Subscriber Factory No.:	
Manufacturer Name:	Copperweld Bimetallics LLC	Factory Rep Name	Mr. Sammy Hampton
Manufacturer Address:	254 Cotton Mill Rd	Factory Rep Phone:	931-433-0495
	Fayetteville, TN 37334	Factory Rep Email:	shampton@copperweld.com
Nature of visit:	Regular Inspection	Sample Status:	Sample requirements fulfilled for sample period
UL Marks Used?	Yes	UL Marks Removed?	No
Variation Notice Issued?	No	Inspection Conducted Remotely?	Yes
Comments After Submission			
PRODUCT DOCUMEN	TS/PRODUCTION READY V	VISIT	
Model	Product	Section	Multiple Listed
14 Awg Class 10A	Copper Clad Aluminum	1	No
SAMPLE DOCUMENTS	S		
If samples are required to be ser	nt to UL, indicate below. If required sam	ples are not sent, explain in the C	omments area.
No Samples			
Additional Comments	14 Awg conductors from the NME Tensile, Elongation, copper thick		the UL tests for DVVU2, including

In addition to the requirements specified in the applicable UL Services agreement and Follow-Up Service Procedure, UL further defines responsibilities, duties and requirements for both manufacturers and UL representatives in the document titled "UL Mark Surveillance Requirements" that can be located at <u>www.ul.com/fus</u>, and in accordance with the applicable terms and conditions of the document at <u>www.ul.com/responsibilities</u>. Manufacturers without Internet access may obtain the current versions of these documents from their local UL customer service representative or UL field representative.

					Calculated	d Temperat	ure Rise
data logger CH #	Location	Record	ed Temperat	ures (°C)		(°C)	
scan #		124	129	134			
time <mark>(HH:MM:</mark> SS)		1:53:00	1:58:00	2:03:00			
1a	Mfg. 11 - 1	28.70	28.86	28.73	6.47	6.63	6.50
2a	Mfg. 11 - 2	28.89	29.01	28.84	6.66	6.78	6.61
3a	Mfg. 11 - 3	27.88	28.00	27.72	5.65	5.77	5.49
4a	Mfg. 8 - 1	29.18	29.27	29.25	6.95	7.04	7.02
5a	Mfg. 8 - 2	28.99	29.11	28.99	6.76	6.88	6.76
ба	Mfg. 8 - 3	29.00	29.15	28.92	6.77	6.92	6.69
7a	circuit breaker	32.68	32.65	32.75	10.45	10.42	10.52
8a	line wire	32.25	32.29	32.43	10.02	10.06	10.20
	line wire splicing						
9a	device	29.84	29.65	29.07	7.61	7.42	6.84
10a	load wire	30.67	30.92	30.94	8.44	8.69	8.71
	load wire splicing						
11a	device	30.11	29.88	29.27	7.88	7.65	7.04
12a	room ambient	22.39	22.44	21.87			
13a	current (amps)	10.03	10.03	10.03			

					Calculated	d Temperat	ure Rise	
data logger CH #	Location	Recorde	d Tempera	tures (°C)	(°C)			
scan #		80	85	90				
time (HH:MM:SS)		1:17:00	1:22:00	1:27:00				
1a	Mfg. 11 - 1	33.06	33.61	33.40	11.02	11.58	11.36	
2a	Mfg. 11 - 2	33.64	33.95	33.94	11.60	11.91	11.90	
3a	Mfg. 11 - 3	31.05	31.56	31.60	9.01	9.52	9.56	
4a	Mfg. 8 - 1	34.10	34.15	34.23	12.06	12.11	12.19	
5a	Mfg. 8 - 2	33.60	34.20	33.86	11.56	12.16	11.82	
ба	Mfg. 8 - 3	32.94	33.68	33.29	10.91	11.64	11.25	
7a	circuit breaker	40.86	40.44	40.64	18.82	18.41	18.60	
8a	line wire	33.93	34.21	33.87	11.89	12.17	11.83	
	line wire splicing							
9a	device	36.89	37.11	36.82	14.85	15.07	14.78	
10a	load wire	32.70	33.48	32.99	10.66	11.44	10.95	
	load wire splicing							
11a	device	32.72	33.49	32.70	10.68	11.45	10.66	
12a	room ambient	21.84	22.27	22.01				
13a	current (amps)	15.02	15.01	15.02				

					Calculated Temperature Rise					
data logger CH #	Location	Recorded Temperatures (°C)				(°C)				
scan #		124	129	134						
time (HH:MM:SS)		1:53:00	1:58:00	2:03:00						
1b	Mfg. 11 - 1	28.57	28.60	28.36	6.49	6.52	6.27			
2b	Mfg. 11 - 2	28.65	28.68	28.48	6.57	6.60	6.40			
3b	Mfg. 11 - 3	27.37	27.39	27.10	5.28	5.31	5.02			
4b	Mfg. 8 - 1	29.14	29.23	29.15	7.05	7.15	7.07			
5b	Mfg. 8 - 2	30.65	30.75	30.48	8.57	8.66	8.40			
6b	Mfg. 8 - 3	28.04	28.10	27.73	5.96	6.02	5.64			
7b	circuit breaker	36.63	36.79	37.20	14.55	14.70	15.12			
8b	line wire	30.98	31.03	30.93	8.90	8.95	8.85			
	line wire splicing									
9b	device	28.97	28.69	28.06	6.89	6.61	5.98			
10b	load wire	28.60	28.55	28.00	6.52	6.47	5.92			
	load wire splicing									
11b	device	28.64	28.49	27.92	6.56	6.41	5.84			
12b	room ambient	22.35	22.28	21.62						
13b	current (amps)	10.00	10.00	10.00						

					Calculated	d Temperat	ure Rise
data logger CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #		80	85	90			
time <mark>(HH:MM:</mark> SS)		1:17:00	1:22:00	1:27:00			
1b	Mfg. 11 - 1	33.38	33.85	33.55	11.43	11.89	11.59
2b	Mfg. 11 - 2	33.29	33.49	33.67	11.34	11.54	11.72
3b	Mfg. 11 - 3	30.94	31.47	31.45	8.99	9.52	9.49
4b	Mfg. 8 - 1	34.03	34.28	34.44	12.07	12.32	12.48
5b	Mfg. 8 - 2	33.61	34.03	33.75	11.66	12.08	11.80
6b	Mfg. 8 - 3	33.00	33.71	33.25	11.05	11.75	11.29
7b	circuit breaker	44.97	44.86	45.02	23.02	22.91	23.06
8b	line wire	33.21	33.70	33.32	11.25	11.74	11.37
	line wire splicing						
9b	device	30.81	31.77	30.80	8.86	9.82	8.85
10b	load wire	32.53	33.49	32.83	10.58	11.54	10.88
	load wire splicing						
11b	device	31.51	32.52	31.43	9.56	10.56	9.47
12b	room ambient	21.76	22.22	21.88			
13b	current (amps)	15.01	15.01	15.01			

					Calculate	d Temperat	ure Rise
data logger CH #	Location	Recorde	ed Temperat	ures (°C)		(°C)	
scan #		124	129	134			
time (HH:MM:SS)		1:53:00	1:58:00	2:03:00			
1c	Mfg. 11 - 1	29.46	29.56	29.18	7.40	7.50	7.12
2c	Mfg. 11 - 2	28.97	29.12	28.68	6.91	7.06	6.62
3c	Mfg. 11 - 3	27.82	28.02	27.47	5.76	5.96	5.41
4c	Mfg. 8 - 1	29.30	29.40	29.33	7.24	7.34	7.27
5c	Mfg. 8 - 2	28.68	28.72	28.43	6.62	6.66	6.37
бс	Mfg. 8 - 3	28.19	28.27	27.81	6.13	6.21	5.75
7c	circuit breaker	35.04	35.28	35.13	12.98	13.22	13.07
8c	line wire	31.23	31.27	30.87	9.17	9.21	8.81
	line wire splicing						
9c	device	28.59	28.61	27.53	6.53	6.55	5.47
10c	load wire	30.74	30.84	30.26	8.68	8.78	8.20
	load wire splicing						
11c	device	29.74	29.67	28.50	7.68	7.61	6.44
12c	room ambient	22.29	22.23	21.67			
13c	current (amps)	10.01	10.01	10.01			

					Calculated	d Temperat	ure Rise		
data logger CH #	Location	Recorde	d Temperat	tures (°C)	(°C)				
scan #		80	85	90					
time (HH:MM:SS)		1:17:00	1:22:00	1:27:00					
1c	Mfg. 11 - 1	32.95	33.38	33.25	11.06	11.48	11.36		
2c	Mfg. 11 - 2	33.50	33.89	33.73	11.61	12.00	11.84		
3c	Mfg. 11 - 3	32.27	32.60	32.50	10.38	10.71	10.61		
4c	Mfg. 8 - 1	33.33	33.66	33.62	11.44	11.77	11.72		
<mark>5</mark> c	Mfg. 8 - 2	33.87	34.28	34.11	11.98	12.39	12.21		
бс	Mfg. 8 - 3	32.50	32.88	32.80	10.61	10.99	10.91		
7c	circuit breaker	42.51	42.65	42.50	20.62	20.75	20.60		
<mark>8</mark> c	line wire	31.74	32.44	32.16	9.84	10.54	10.27		
	line wire splicing								
<mark>9</mark> c	device	32.46	33.55	32.53	10.57	11.66	10.64		
10c	load wire	32.23	33.29	32.70	10.34	11.40	10.81		
	load wire splicing								
11c	device	29.96	31.50	30.18	8.07	9.61	8.29		
12c	room ambient	21.65	22.13	21.90					
13c	current (amps)	15.02	15.02	15.02					

					Calculate	d Temperat	ure Rise		
data logger CH #	Location	Recorde	ed Temperat	ures (°C)	(°C)				
scan #		67	72	77					
time (HH:MM:SS)		1:04:00	1:09:00	1:14:00					
1a	Mfg. 10 - 1	33.35	33.09	33.35	11.17	10.90	11.17		
2a	Mfg. 10 - 2	29.93	29.88	29.88	7.75	7.70	7.70		
3a	Mfg. 10 - 3	28.83	28.80	28.74	6.65	6.62	6.56		
4a	Mfg. 9 - 1	28.96	28.89	28.94	6.78	6.71	6.76		
5a	Mfg. 9 - 2	29.33	29.07	29.09	7.15	6.89	6.91		
ба	Mfg. 9 - 3	28.20	28.02	27.93	6.01	5.84	5.75		
7a	circuit breaker	32.75	32.55	32.65	10.57	10.37	10.47		
<mark>8</mark> a	line wire	32.76	32.27	32.44	10.58	10.09	10.26		
	line wire splicing								
9a	device	29.85	29.45	29.15	7.67	7.27	6.97		
10a	load wire	31.09	30.73	31.01	8.91	8.55	8.83		
	load wire splicing								
11a	device	30.90	30.16	30.15	8.72	7.98	7.97		
12a	room ambient	22.53	22.20	21.82					
13a	current (amps)	10.02	10.02	10.02					

					Calculated	d Temperat	ure Rise			
data logger CH #	Location	Recorde	Recorded Temperatures (°C)			(°C)				
scan #		122	127	132						
time (HH:MM:SS)		2:00:00	2:05:00	2:10:00						
1a	Mfg. 10 - 1	38.41	38.10	38.31	17.09	16.78	16.99			
2a	Mfg. 10 - 2	39.48	39.23	39.28	18.16	17.91	17.96			
3a	Mfg. 10 - 3	34.47	34.18	34.12	13.15	12.87	12.80			
4a	Mfg. 9 - 1	37.47	37.35	37.38	16.16	16.03	16.06			
5a	Mfg. 9 - 2	38.46	38.17	38.12	17.14	16.85	16.80			
ба	Mfg. 9 - 3	31.54	31.29	31.18	10.22	9.97	9.86			
7a	circuit breaker	40.70	40.66	40.65	19.38	19.34	19.33			
<mark>8</mark> a	line wire	34.07	34.00	34.12	12.75	12.69	12.80			
	line wire splicing									
9a	device	35.66	35.31	35.13	14.34	13.99	13.81			
10a	load wire	32.81	32.43	32.75	11.49	11.11	11.43			
	load wire splicing									
11a	device	33.16	32.96	32.94	11.84	11.64	11.62			
12a	room ambient	21.37	21.31	21.27						
13a	current (amps)	15.02	15.02	15.02						

					Calculated	d Temperat	ure Rise
data logger CH #	Location	Recorde	ed Temperat	ures (°C)		(°C)	
scan #		129	134	139			
time <mark>(HH:MM:</mark> SS)		2:06:07	2:11:06	2:16:07			
1b	Mfg. 10 - 1	31.13	31.54	31.37	9.64	10.05	9.88
2b	Mfg. 10 - 2	30.12	30.39	30.44	8.63	8.90	8.95
3b	Mfg. 10 - 3	28.95	29.13	29.19	7.46	7.64	7.70
4b	Mfg. 9 - 1	28.47	28.67	28.85	6.98	7.18	7.36
5b	Mfg. 9 - 2	28.62	29.01	28.85	7.13	7.52	7.36
6b	Mfg. 9 - 3	29.94	30.21	30.11	8.45	8.72	8.62
7b	circuit breaker	41.81	41.46	41.80	20.32	19.97	20.31
8b	line wire	31.66	31.83	32.15	10.17	10.34	10.66
	line wire splicing						
9b	device	29.57	30.02	30.13	8.08	8.53	8.64
10b	load wire	28.92	29.64	29.57	7.43	8.15	8.08
	load wire splicing						
11b	device	30.62	31.06	31.03	9.13	9.57	9.54
12b	room ambient	21.30	21.89	21.28			
13b	current (amps)	10.01	10.01	10.01			

					Calculated	d Temperat	ure Rise
data logger CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #		122	127	132			
time (HH:MM:SS)		2:00:00	2:05:00	2:10:00			
1b	Mfg. 10 - 1	39.02	38.87	38.81	17.86	17.72	17.65
2b	Mfg. 10 - 2	38.54	38.42	38.37	17.38	17.26	17.22
3b	Mfg. 10 - 3	35.00	34.94	34.56	13.84	13.78	13.40
4b	Mfg. 9 - 1	34.32	34.17	34.19	13.16	13.01	13.03
5b	Mfg. 9 - 2	33.68	33.52	33.44	12.52	12.36	12.29
6b	Mfg. 9 - 3	32.62	32.41	32.27	11.46	11.25	11.11
7b	circuit breaker	44.60	44.48	44.38	23.44	23.32	23.22
8b	line wire	33.27	33.12	33.14	12.11	11.96	11.98
9b	line wire splicing device	31.50	31.19	31.26	10.34	10.03	10.10
10b	load wire	31.96	31.65	31.72	10.81	10.49	10.56
	load wire splicing						
11b	device	30.27	29.89	29.93	9.12	8.73	8.78
12b	room ambient	21.26	21.14	21.08			
13b	current (amps)	15.01	15.01	15.01			

					Calculated	d Temperat	ure Rise	
data logger CH #	Location	Recorde	d Temperat	ures (°C)	(°C)			
scan #		67	72	77				
time <mark>(HH:MM:</mark> SS)		1:04:00	1:09:00	1:14:00				
1c	Mfg. 10 - 1	31.05	30.92	30.45	9.04	8.91	8.44	
2c	Mfg. 10 - 2	32.97	32.85	32.26	10.96	10.84	10.25	
3c	Mfg. 10 - 3	29.07	28.94	28.28	7.06	6.93	6.27	
4c	Mfg. 9 - 1	29.52	29.28	29.21	7.51	7.27	7.20	
5c	Mfg. 9 - 2	30.06	29.90	29.40	8.05	7.89	7.39	
бс	Mfg. 9 - 3	28.41	28.41	27.55	6.40	6.40	5.54	
7c	circuit breaker	34.97	34.66	34.67	12.96	12.65	12.66	
<mark>8</mark> c	line wire	31.77	31.18	30.88	9.76	9.17	8.87	
	line wire splicing							
9c	device	28.89	28.20	27.63	6.88	6.19	5.62	
10c	load wire	31.27	30.69	30.26	9.26	8.68	8.25	
	load wire splicing							
11c	device	31.39	30.47	29.53	9.38	8.46	7.52	
12c	room ambient	22.35	21.99	21.69				
13c	current (amps)	10.01	10.01	10.01				

					Calculated	d Temperat	ure Rise	
data logger CH #	Location	Recorde	d Temperat	tures (°C)	(°C)			
scan #		122	127	132				
time (HH:MM:SS)		2:00:00	2:05:00	2:10:00				
1c	Mfg. 10 - 1	36.19	35.94	35.85	15.02	14.77	14.68	
2c	Mfg. 10 - 2	39.95	39.76	39.70	18.78	18.59	18.53	
3c	Mfg. 10 - 3	39.01	39.15	38.69	17.85	17.98	17.52	
4c	Mfg. 9 - 1	33.32	33.13	33.09	12.15	11.96	11.92	
5c	Mfg. 9 - 2	34.01	33.90	33.74	12.84	12.74	12.57	
бс	Mfg. 9 - 3	32.95	32.95	32.64	11.78	11.78	11.47	
7c	circuit breaker	41.75	41.55	41.58	20.59	20.38	20.41	
<mark>8</mark> c	line wire	30.73	30.68	30.61	9.56	9.51	9.44	
	line wire splicing							
9c	device	32.20	31.82	31.87	11.04	10.65	10.70	
10c	load wire	31.34	31.12	31.14	10.17	9.95	9.97	
	load wire splicing							
11 c	device	29.64	29.52	29.42	8.47	8.35	8.25	
12c	room ambient	21.29	21.13	21.09				
13c	current (amps)	15.01	15.01	15.01				

		temps, r	eading ev	ery zus				
data logger					Calculated	d Temperat	ure Rise	
CH #	Location	Recorde	Recorded Temperatures (°C) (°C)					
scan #								
time (MM:SS)	•	7:20	7:40	8:00				
	Breaker trip time	8:20						
1a	Mfg. 11 - 1	30.60	30.69	30.76	8.65	8.73	8.80	
2a	Mfg. 11 - 2	30.73	30.83	30.87	8.78	8.88	8.92	
3a	Mfg. 11 - 3	29.72	29.82	29.85	7.76	7.87	7.89	
4a	Mfg. 8 - 1	30.66	30.77	30.88	8.70	8.81	8.93	
5a	Mfg. 8 - 2	30.87	30.96	31.05	8.91	9.01	9.09	
бa	Mfg. 8 - 3	30.39	30.50	30.55	8.43	8.54	8.59	
7a	circuit breaker	34.21	34.43	34.65	12.26	12.47	12.70	
8a	line wire	38.55	38.70	38.80	16.59	16.74	16.85	
	line wire splicing							
9a	device	34.64	34.68	34.50	12.68	12.72	12.55	
10a	load wire	36.44	36.44	36.36	14.49	14.48	14.40	
	load wire splicing							
11a	device	35.04	35.05	34.84	13.09	13.09	12.88	
12a	room ambient	22.00	21.97	21.91				
13a	current (amps)	13.52	13.52	13.52				

4 40 + 4250/ + /104 * 125% 42 EAV 41. 4.0 .

Test 2a - thru Mfg. 1 15-amp breaker at 135% current (15A * 135% = 20.25A); max temps, reading every 20s

data logger							
CH #	Location	Recorde	d Temperat	tures (°C)	Calculate	d Temperat	ure Rise (°C)
scan #		60	61	62			
time (MM:SS)		18:20	18:40	19:00			
	Breaker trip time	19:20					
1a	Mfg. 11 - 1	39.87	39.91	39.90	18.05	18.09	18.08
2a	Mfg. 11 - 2	40.66	40.69	40.70	18.84	18.87	18.88
3a	Mfg. 11 - 3	36.77	36.77	36.76	14.95	14.95	14.94
4a	Mfg. 8 - 1	40.83	40.88	40.89	19.01	19.06	19.07
5a	Mfg. 8 - 2	40.41	40.45	40.47	18.59	18.63	18.65
6a	Mfg. 8 - 3	39.06	39.09	39.15	17.24	17.27	17.33
7a	circuit breaker	51.78	51.96	52.02	29.96	30.14	30.20
8a	line wire	43.47	43.51	43.49	21.65	21.69	21.67
9a	line wire splicing device	48.83	48.80	48.22	27.02	26.99	26.40
10a	load wire	41.01	41.02	41.12	19.19	19.20	19.30
11a	load wire splicing device	42.69	42.60	42.48	20.87	20.78	20.66
12a	room ambient	21.84	21.84	21.78			
13a	current (amps)	19.97	19.97	20.24			

data logger				-	Calculated Temperature				
CH #	Location	Recorde	d Temperat	tures (°C)		(°C)			
scan #		16	17	18					
time (MM:SS)		4:20	4:40	5:00					
	Breaker trip time	5:20							
1b	Mfg. 11 - 1	29.25	29.41	29.55	6.91	7.07	7.21		
2b	Mfg. 11 - 2	28.86	29.03	29.22	6.52	6.69	6.88		
3b	Mfg. 11 - 3	28.34	28.44	28.54	6.00	6.10	6.20		
4b	Mfg. 8 - 1	29.37	29.59	29.79	7.03	7.25	7.45		
5b	Mfg. 8 - 2	30.27	30.43	30.67	7.93	8.09	8.33		
6b	Mfg. 8 - 3	28.84	28.97	29.10	6.50	6.63	6.76		
7b	circuit breaker	34.99	35.63	36.29	12.65	13.29	13.95		
8b	line wire	34.20	34.58	34.92	11.86	12.24	12.58		
	line wire splicing								
9b	device	33.21	33.11	33.12	10.87	10.77	10.78		
10b	load wire	30.95	31.14	31.38	8.61	8.80	9.04		
	load wire splicing								
11b	device	32.76	32.73	32.78	10.42	10.39	10.44		
12b	room ambient	22.40	22.34	22.29					
13b	current (amps)	13.51	13.51	13.51					

+ /404 * 4950/ 2 40 + 4250/ 42 5 4 1 -+ 01-41

Test 2b - thru Mfg. 2 15-amp breaker at 135% current (15A * 135% = 20.25A); max temps, reading every 20s

data logger				(0 -)			-1 (0)
CH #	Location		d Temperat	tures (°C)	Calculate	d Temperat	ure Rise (°C)
scan #	► ►	13	14	15			
time (MM:SS)		2:20	2:40	3:00			
	Breaker trip time	3:20					
1b	Mfg. 11 - 1	31.85	32.56	33.17	9.91	10.62	11.23
2b	Mfg. 11 - 2	31.27	32.00	32.64	9.33	10.05	10.70
3b	Mfg. 11 - 3	30.01	30.61	31.08	8.07	8.67	9.14
4b	Mfg. 8 - 1	31.78	32.43	33.07	9.84	10.49	11.13
5b	Mfg. 8 - 2	32.35	32.97	33.48	10.41	11.03	11.54
6b	Mfg. 8 - 3	31.74	32.37	32.83	9.80	10.42	10.89
7b	circuit breaker	36.50	38.10	39.50	14.56	16.16	17.56
8b	line wire	32.89	33.90	34.83	10.95	11.96	12.89
	line wire splicing						
9b	device	34.98	35.61	36.11	13.04	13.67	14.17
10b	load wire	33.90	34.76	35.58	11.96	12.82	13.64
	load wire splicing						
11b	device	35.84	36.48	37.04	13.90	14.54	15.10
12b	room ambient	21.94	21.93	21.96			
13b	current (amps)	20.28	20.27	20.27			

		temps, re	eading ev	ery 20s			
data logger					Calculated	d Temperat	ure Rise
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #	▲	59	60	61			
time (MM:SS)		18:40	19:00	19:20			
	Breaker trip time	19:40					
1c	Mfg. 11 - 1	34.08	34.15	34.18	11.70	11.78	11.81
2c	Mfg. 11 - 2	33.23	33.27	33.31	10.85	10.89	10.93
3c	Mfg. 11 - 3	31.22	31.25	31.28	8.85	8.87	8.90
4c	Mfg. 8 - 1	33.48	33.50	33.56	11.10	11.13	11.19
5c	Mfg. 8 - 2	32.68	32.75	32.80	10.31	10.37	10.42
6c	Mfg. 8 - 3	31.96	32.03	32.09	9.58	9.66	9.71
7c	circuit breaker	43.05	43.08	43.19	20.67	20.71	20.81
8c	line wire	38.04	38.09	38.14	15.67	15.72	15.76
	line wire splicing						
9c	device	33.55	33.75	33.89	11.17	11.38	11.51
10c	load wire	37.55	37.62	37.70	15.17	15.24	15.33
	load wire splicing						
11c	device	35.83	36.09	36.28	13.46	13.71	13.91
12c	room ambient	22.51	22.28	22.34			
13c	current (amps)	13.51	13.51	13.51			

Test 2c - thru Mfg. 3 15-amp breaker at 135% current (15A * 135% = 20.25A); max temps, reading every 20s

data logger							
CH #	Location	Recorde	d Tempera	tures (°C)	Calculate	d Temperati	ure Rise (°C)
scan #		20	21	22			
time (MM:SS)		5:00	5:20	5:40			
	Breaker trip time	6:00					
1c	Mfg. 11 - 1	34.62	34.96	35.21	12.63	12.97	13.22
2c	Mfg. 11 - 2	35.65	35.96	36.17	13.65	13.97	14.18
3c	Mfg. 11 - 3	33.85	34.05	34.25	11.85	12.05	12.25
4c	Mfg. 8 - 1	34.94	35.23	35.47	12.95	13.24	13.48
5c	Mfg. 8 - 2	35.87	36.13	36.37	13.87	14.13	14.38
6c	Mfg. 8 - 3	34.38	34.60	34.74	12.38	12.61	12.75
7c	circuit breaker	42.69	43.47	44.15	20.69	21.47	22.16
8c	line wire	36.07	36.49	36.77	14.08	14.50	14.78
	line wire splicing						
9c	device	38.93	39.23	39.49	16.94	17.24	17.49
10c	load wire	37.64	37.92	38.15	15.64	15.92	16.16
	load wire splicing						
11c	device	35.65	35.84	35.95	13.66	13.85	13.96
12c	room ambient	21.95	22.09	21.93			
13c	current (amps)	20.19	20.19	20.17			

		temps, I	reading e	very 20s					
data logger					Calculated Temperature Rise				
CH #	Location	Recorde	d Temperat	tures (°C)		(°C)			
scan #		26	27	28					
time (MM:SS)		7:40	8:00	8:20					
	Breaker trip time	8:40							
1a	Mfg. 10 - 1	33.38	33.55	33.72	11.54	11.72	11.89		
2a	Mfg. 10 - 2	32.41	32.50	32.60	10.58	10.67	10.77		
3a	Mfg. 10 - 3	30.50	30.58	30.68	8.66	8.75	8.85		
4a	Mfg. 9 - 1	30.51	30.62	30.74	8.67	8.79	8.91		
5a	Mfg. 9 - 2	30.63	30.73	30.86	8.80	8.89	9.02		
6a	Mfg. 9 - 3	29.45	29.52	29.63	7.62	7.69	7.79		
7a	circuit breaker	34.35	34.60	34.84	12.51	12.77	13.00		
8a	line wire	38.69	38.85	39.02	16.85	17.01	17.18		
	line wire splicing								
9a	device	34.03	34.11	34.24	12.19	12.27	12.40		
10a	load wire	36.42	36.48	36.58	14.59	14.65	14.74		
	load wire splicing								
11a	device	36.28	36.41	36.59	14.45	14.58	14.76		
12a	room ambient	21.84	21.90	21.76					
13a	current (amps)	13.52	13.52	13.52					

Test 2a - thru Mfg. 1 15-amp breaker at 135% current (15A * 135% = 20.25A); max temps, reading every 20s

data logger							
CH #	Location	Recorde	d Tempera	tures (°C)	Calculate	d Temperat	ure Rise (°C)
scan #		65	66	67			
time (MM:SS)		20:00	20:20	20:40			
	Breaker trip time	21:00					
1a	Mfg. 10 - 1	47.14	47.05	47.05	26.19	26.10	26.09
2a	Mfg. 10 - 2	49.33	49.35	49.30	28.38	28.39	28.35
3a	Mfg. 10 - 3	43.32	43.29	43.14	22.36	22.34	22.19
4a	Mfg. 9 - 1	45.67	45.67	45.73	24.72	24.71	24.78
5a	Mfg. 9 - 2	46.98	46.95	46.85	26.03	25.99	25.90
6a	Mfg. 9 - 3	38.91	38.80	38.65	17.95	17.84	17.69
7a	circuit breaker	52.18	52.30	52.40	31.23	31.34	31.45
8a	line wire	43.36	43.34	43.31	22.40	22.39	22.35
	line wire splicing						
9a	device	46.95	46.94	46.87	26.00	25.99	25.91
10a	load wire	41.51	41.36	41.20	20.56	20.41	20.25
	load wire splicing						
11a	device	42.93	42.85	42.57	21.97	21.89	21.62
12a	room ambient	20.94	20.94	20.98			
13a	current (amps)	20.29	20.28	20.28			

data logger		temps, reading every 20s Calculated Temperature								
				(0.0)	Calculated		ure Rise			
CH #	Location		d Tempera			(°C)				
scan #		21	22	23						
time (MM:SS)	>	5:40	6:00	6:20						
	Breaker trip time	6:40								
1b	Mfg. 10 - 1	31.86	32.13	32.38	9.94	10.21	10.46			
2b	Mfg. 10 - 2	32.09	32.28	32.45	10.17	10.36	10.53			
3b	Mfg. 10 - 3	30.06	30.24	30.38	8.14	8.32	8.46			
4b	Mfg. 9 - 1	29.45	29.60	29.73	7.53	7.68	7.81			
5b	Mfg. 9 - 2	30.16	30.32	30.49	8.23	8.40	8.57			
6b	Mfg. 9 - 3	29.34	29.52	29.64	7.42	7.60	7.72			
7b	circuit breaker	37.11	37.68	38.17	15.19	15.76	16.25			
8b	line wire	35.37	35.59	35.81	13.44	13.67	13.88			
	line wire splicing									
9b	device	32.21	32.37	32.46	10.28	10.45	10.54			
10b	load wire	31.36	31.58	31.73	9.44	9.66	9.80			
	load wire splicing									
11b	device	35.28	35.40	35.49	13.36	13.47	13.56			
12b	room ambient	21.93	21.95	21.88						
13b	current (amps)	13.50	13.50	13.50						

Test 2b - thru Mfg. 2 15-amp breaker at 135% current (15A * 135% = 20.25A); max temps, reading every 20s

data logger							
CH #	Location	Recorde	d Tempera	tures (°C)	Calculate	d Temperat	ure Rise (°C)
scan # —	►	13	14	15			
time (MM:SS)		2:40	3:00	3:20			
	Breaker trip time	3:40					
1b	Mfg. 10 - 1	34.43	35.44	36.33	13.42	14.43	15.32
2b	Mfg. 10 - 2	35.56	36.51	37.33	14.56	15.51	16.33
3b	Mfg. 10 - 3	33.00	33.73	34.31	12.00	12.73	13.30
4b	Mfg. 9 - 1	32.70	33.42	34.00	11.69	12.41	13.00
5b	Mfg. 9 - 2	32.65	33.31	33.89	11.64	12.30	12.89
6b	Mfg. 9 - 3	30.85	31.44	31.99	9.85	10.43	10.98
7b	circuit breaker	36.44	37.96	39.35	15.44	16.96	18.34
8b	line wire	32.46	33.42	34.28	11.45	12.41	13.28
	line wire splicing						
9b	device	35.23	35.84	36.40	14.22	14.84	15.39
10b	load wire	33.42	34.26	35.03	12.42	13.26	14.02
	load wire splicing						
11b	device	33.28	33.92	34.50	12.27	12.91	13.49
12b	room ambient	20.93	21.01	21.08			
13b	current (amps)	20.28	20.28	20.28			

		temps, i	reading e			1.7	D'		
data logger					Calculated Temperature Rise				
CH #	Location	Recorde	d Tempera	tures (°C)	(°C)				
scan #		53	54	55					
ime (MM:SS)		16:20	16:40	17:00					
	Breaker trip time	17:20							
1c	Mfg. 10 - 1	35.58	35.62	35.62	13.37	13.41	13.41		
2c	Mfg. 10 - 2	36.59	36.62	36.62	14.38	14.41	14.41		
3c	Mfg. 10 - 3	32.94	32.95	32.98	10.73	10.74	10.77		
4c	Mfg. 9 - 1	33.08	33.07	33.07	10.87	10.86	10.86		
5c	Mfg. 9 - 2	33.95	33.93	33.90	11.73	11.72	11.69		
6c	Mfg. 9 - 3	31.62	31.62	31.58	9.40	9.41	9.37		
7c	circuit breaker	41.72	41.81	41.92	19.51	19.60	19.71		
8c	line wire	38.68	38.60	38.52	16.47	16.39	16.31		
	line wire splicing								
9c	device	33.41	33.23	33.04	11.19	11.02	10.83		
10c	load wire	37.53	37.41	37.27	15.31	15.20	15.06		
	load wire splicing								
11c	device	38.23	37.83	37.38	16.01	15.62	15.17		
12c	room ambient	22.28	22.22	22.14					
13c	current (amps)	13.50	13.50	13.50					

Test 2c - thru Mfg 3 10-amp, breaker at 135% current (104 * 135% = 13 54); max

Test 2c - thru Mfg. 3 15-amp breaker at 135% current (15A * 135% = 20.25A); max temps, reading every 20s

data logger							
CH #	Location	Recorde	d Tempera	tures (°C)	Calculate	d Temperat	ure Rise (°C)
scan #		22	23	24			
time (MM:SS)		5:40	6:00	6:20			
	Breaker trip time	6:40					
1c	Mfg. 10 - 1	37.66	38.19	38.64	16.09	16.61	17.07
2c	Mfg. 10 - 2	44.95	45.50	45.96	23.38	23.93	24.39
3c	Mfg. 10 - 3	44.95	45.37	45.69	23.38	23.80	24.12
4c	Mfg. 9 - 1	35.48	35.83	36.20	13.90	14.26	14.63
5c	Mfg. 9 - 2	38.33	38.69	39.10	16.75	17.12	17.52
6с	Mfg. 9 - 3	36.86	37.22	37.59	15.28	15.65	16.02
7c	circuit breaker	42.83	43.50	44.14	21.26	21.93	22.56
8c	line wire	35.89	36.21	36.61	14.32	14.64	15.04
	line wire splicing						
9c	device	40.91	41.17	41.52	19.33	19.60	19.95
10c	load wire	37.99	38.35	38.72	16.42	16.78	17.15
	load wire splicing						
11c	device	39.30	39.51	39.86	17.72	17.93	18.29
12c	room ambient	21.55	21.59	21.59			
13c	current (amps)	20.30	20.26	20.27			

		temps, r	eading ev	very 10s					
data logger					Calculated Temperature Rise				
CH #	Location	Recorde	d Temperat	tures (°C)	(°C)				
scan #	•	19	20	21					
time (MM:SS)		2:00	2:10	2:20					
	Breaker trip time	2:30							
1a	Mfg. 11 - 1	27.90	28.21	28.45	5.51	5.83	6.06		
2a	Mfg. 11 - 2	27.85	28.17	28.44	5.46	5.79	6.06		
3a	Mfg. 11 - 3	27.44	27.71	27.97	5.05	5.32	5.58		
4a	Mfg. 8 - 1	28.03	28.30	28.55	5.64	5.91	6.17		
5a	Mfg. 8 - 2	28.67	28.93	29.21	6.28	6.55	6.83		
ба	Mfg. 8 - 3	28.12	28.37	28.63	5.73	5.98	6.24		
7a	circuit breaker	29.23	29.65	30.04	6.84	7.27	7.65		
8a	line wire	33.45	33.99	34.55	11.06	11.60	12.16		
	line wire splicing								
9a	device	33.38	33.88	34.38	10.99	11.49	11.99		
10a	load wire	32.35	32.80	33.28	9.96	10.41	10.89		
	load wire splicing								
11a	device	34.69	35.13	35.60	12.30	12.74	13.21		
12a	room ambient	22.40	22.39	22.37					
13a	current (amps)	15.02	15.02	15.02					

+ 2 +1 N/F 1 10 . + 150% + /104 * 150% 1541

Test 3a - thru Mfg. 1 15-amp breaker at 150% current (15A * 150% = 22.5A); max temps, reading every 10s

data logger					Calculate	d Temperat	ure Rise
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #	►	31	32	33			
time (MM:SS)		3:40	3:50	4:00			
	Breaker trip time	4:10					
1a	Mfg. 11 - 1	36.08	36.34	36.60	13.46	13.72	13.98
2a	Mfg. 11 - 2	36.41	36.67	36.97	13.79	14.05	14.35
3a	Mfg. 11 - 3	34.72	34.88	35.08	12.10	12.26	12.46
4a	Mfg. 8 - 1	36.33	36.58	36.86	13.71	13.96	14.24
5a	Mfg. 8 - 2	37.14	37.38	37.62	14.53	14.76	15.00
6a	Mfg. 8 - 3	36.40	36.56	36.84	13.78	13.94	14.22
7a	circuit breaker	40.83	41.35	41.83	18.21	18.73	19.21
8a	line wire	39.85	40.31	40.75	17.23	17.69	18.13
9a	line wire splicing device	49.53	49.93	50.18	26.91	27.31	27.56
10a	load wire	40.21	40.60	40.99	17.60	17.98	18.37
	load wire splicing						
11a	device	45.48	45.83	46.22	22.86	23.21	23.60
12a	room ambient	22.65	22.62	22.58			
13a	current (amps)	22.56	22.53	22.53			

		temps, n	eading ev	ery 105					
data logger					Calculated Temperature Rise				
CH #	Location	Recorded Temperatures (°C)			(°C)				
scan #		19	20	21					
time (MM:SS)		2:00	2:10	2:20					
	Breaker trip time	2:30							
1b	Mfg. 11 - 1	28.11	28.40	28.72	5.67	5.96	6.28		
2b	Mfg. 11 - 2	27.73	27.97	28.26	5.29	5.53	5.82		
3b	Mfg. 11 - 3	27.57	27.80	28.05	5.12	5.36	5.60		
4b	Mfg. 8 - 1	28.38	28.63	28.91	5.93	6.19	6.47		
5b	Mfg. 8 - 2	29.23	29.50	29.82	6.79	7.06	7.37		
6b	Mfg. 8 - 3	28.00	28.25	28.53	5.56	5.81	6.09		
7b	circuit breaker	30.38	30.93	31.50	7.94	8.48	9.06		
8b	line wire	31.30	31.79	32.30	8.85	9.34	9.86		
	line wire splicing								
9b	device	32.82	33.29	33.71	10.38	10.84	11.27		
10b	load wire	28.66	29.10	29.50	6.21	6.66	7.06		
	load wire splicing								
11b	device	33.26	33.63	33.95	10.82	11.18	11.51		
12b	room ambient	22.47	22.43	22.43					
13b	current (amps)	15.01	15.01	15.01					

Test 3b - thru Mfg. 2 10-amp breaker at 150% current (10A * 150% = 15A); max

Test 3b - thru Mfg. 2 15-amp breaker at 150% current (15A * 150% = 22.5A); max temps, reading every 10s

data logger					Calculated	d Temperat	ure Rise
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #		13	14	15			
time (MM:SS)		:40	:50	1:00			
	Breaker trip time	1:10					
1b	Mfg. 11 - 1	26.84	27.76	28.60	4.39	5.31	6.15
2b	Mfg. 11 - 2	26.26	27.11	27.94	3.81	4.66	5.49
3b	Mfg. 11 - 3	26.03	26.75	27.44	3.58	4.30	4.99
4b	Mfg. 8 - 1	26.61	27.54	28.41	4.16	5.09	5.96
5b	Mfg. 8 - 2	27.59	28.55	29.46	5.14	6.10	7.01
6b	Mfg. 8 - 3	27.23	28.09	28.93	4.78	5.64	6.48
7b	circuit breaker	27.33	28.59	29.90	4.88	6.14	7.45
8b	line wire	26.59	27.53	28.44	4.14	5.08	5.99
	line wire splicing						
9b	device	29.28	30.58	31.77	6.83	8.13	9.32
10b	load wire	27.88	28.93	29.91	5.43	6.48	7.46
	load wire splicing						
11b	device	29.84	31.22	32.45	7.39	8.77	10.00
12b	room ambient	22.46	22.43	22.45			
13b	current (amps)	22.51	22.49	22.49			

data la asso			eading ev		Calandata	1	D:-		
data logger			· · · · · · · · · · · · · · · · · · ·			Calculated Temperature Rise			
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)			
scan #		37	38	39					
time (MM:SS)		5:00	5:10	5:20					
	Breaker trip time	5:30							
1c	Mfg. 11 - 1	32.34	32.46	32.62	9.83	9.96	10.12		
2c	Mfg. 11 - 2	31.80	31.94	32.06	9.30	9.44	9.56		
Зc	Mfg. 11 - 3	29.96	30.07	30.17	7.46	7.56	7.67		
4c	Mfg. 8 - 1	31.82	31.94	32.07	9.32	9.44	9.57		
5c	Mfg. 8 - 2	31.64	31.77	31.86	9.13	9.26	9.36		
6c	Mfg. 8 - 3	31.07	31.17	31.31	8.57	8.67	8.81		
7c	circuit breaker	37.24	37.53	37.80	14.74	15.03	15.30		
8c	line wire	38.50	38.75	39.00	16.00	16.25	16.50		
	line wire splicing								
9c	device	35.73	35.83	35.94	13.23	13.33	13.43		
10c	load wire	37.84	38.06	38.26	15.33	15.56	15.75		
	load wire splicing								
11c	device	38.75	38.81	38.93	16.24	16.31	16.43		
12c	room ambient	22.50	22.49	22.52					
13c	current (amps)	15.01	15.01	15.01					

Test 3c - thru Mfg. 3 15-amp breaker at 150% current (15A * 150% = 22.5A); max temps, reading every 10s

data logger		Calculated Temperature Ris					ure Rise	
CH #	Location	Recorded Temperatures (°C)			(°C)			
scan #		23	24	25				
time (MM:SS)		2:20	2:30	2:40				
	Breaker trip time	2:50						
1c	Mfg. 11 - 1	32.80	33.29	33.73	10.40	10.89	11.33	
2c	Mfg. 11 - 2	34.13	34.67	35.12	11.73	12.27	12.72	
3c	Mfg. 11 - 3	32.29	32.77	33.17	9.89	10.37	10.77	
4c	Mfg. 8 - 1	33.21	33.67	34.07	10.81	11.27	11.67	
5c	Mfg. 8 - 2	34.62	35.08	35.48	12.22	12.68	13.08	
6c	Mfg. 8 - 3	32.76	33.21	33.64	10.36	10.81	11.24	
7c	circuit breaker	37.29	38.07	38.83	14.89	15.67	16.43	
8c	line wire	33.28	33.93	34.55	10.88	11.53	12.15	
	line wire splicing							
9c	device	40.01	40.55	41.07	17.61	18.15	18.67	
10c	load wire	36.15	36.74	37.30	13.75	14.34	14.90	
	load wire splicing							
11c	device	37.79	38.32	38.82	15.39	15.92	16.42	
12c	room ambient	22.38	22.41	22.41				
13c	current (amps)	22.43	22.44	22.42				

			eading ev	.,	Calaulata			
data logger					Calculated Temperature Rise			
CH #	Location	Recorded Temperatures (°C)			(°C)			
scan # 🛛 🚽	•	23	24	25				
time (MM:SS)		2:20	2:30	2:40				
	Breaker trip time	2:50						
1a	Mfg. 10 - 1	29.81	30.21	30.55	7.56	7.96	8.30	
2a	Mfg. 10 - 2	29.70	30.02	30.29	7.44	7.77	8.04	
3a	Mfg. 10 - 3	28.37	28.62	28.85	6.12	6.37	6.60	
4a	Mfg. 9 - 1	28.22	28.46	28.69	5.97	6.21	6.44	
5a	Mfg. 9 - 2	28.46	28.71	28.94	6.21	6.46	6.69	
6a	Mfg. 9 - 3	27.73	27.96	28.13	5.48	5.71	5.88	
7a	circuit breaker	29.83	30.21	30.53	7.58	7.96	8.28	
8a	line wire	34.40	34.90	35.38	12.15	12.65	13.13	
	line wire splicing							
9a	device	32.53	32.88	33.18	10.28	10.63	10.93	
10a	load wire	33.43	33.88	34.25	11.17	11.63	12.00	
	load wire splicing							
11a	device	37.25	37.47	37.66	15.00	15.22	15.41	
12a	room ambient	22.28	22.24	22.24				
13a	current (amps)	15.02	15.02	15.02				

Test 3a - thru Mfg. 1 15-amp breaker at 150% current (15A * 150% = 22.5A); max temps, reading every 10s

data logger					Calculated Temperature Rise			
CH #	Location	Recorded Temperatures (°C)			(°C)			
scan #	►	38	39	40				
time (MM:SS)		4:00	4:10	4:20				
	Breaker trip time	4:30						
1a	Mfg. 10 - 1	40.53	40.89	41.27	18.74	19.10	19.48	
2a	Mfg. 10 - 2	42.28	42.67	43.05	20.49	20.88	21.26	
3a	Mfg. 10 - 3	39.25	39.54	39.81	17.46	17.75	18.02	
4a	Mfg. 9 - 1	39.03	39.37	39.68	17.24	17.58	17.89	
5a	Mfg. 9 - 2	40.06	40.40	40.75	18.27	18.61	18.96	
6a	Mfg. 9 - 3	35.92	36.14	36.35	14.14	14.35	14.56	
7a	circuit breaker	41.66	42.13	42.62	19.87	20.34	20.83	
8a	line wire	40.15	40.56	40.91	18.36	18.77	19.12	
	line wire splicing							
9a	device	47.60	47.94	48.23	25.81	26.16	26.44	
10a	load wire	40.83	41.12	41.46	19.04	19.33	19.67	
	load wire splicing							
11a	device	46.50	46.62	46.74	24.72	24.83	24.95	
12a	room ambient	21.81	21.79	21.76				
13a	current (amps)	22.35	22.35	22.35				

		temps, re	eading ev	very 10s			
data logger					Calculated	d Temperat	ure Rise
CH #	Location	Recorde	d Tempera	tures (°C)	(°C)		
scan #		21	22	23			
time (MM:SS)		2:00	2:10	2:20			
	Breaker trip time	2:30					
1b	Mfg. 10 - 1	28.72	29.12	29.50	6.58	6.98	7.36
2b	Mfg. 10 - 2	29.55	29.94	30.33	7.41	7.80	8.19
3b	Mfg. 10 - 3	28.01	28.30	28.56	5.87	6.16	6.42
4b	Mfg. 9 - 1	27.72	28.02	28.27	5.58	5.88	6.13
5b	Mfg. 9 - 2	27.97	28.28	28.55	5.83	6.14	6.41
6b	Mfg. 9 - 3	27.58	27.82	28.09	5.44	5.68	5.95
7b	circuit breaker	30.55	31.13	31.74	8.41	8.99	9.60
8b	line wire	31.18	31.69	32.20	9.04	9.55	10.06
	line wire splicing						
9b	device	31.46	31.83	32.14	9.32	9.69	10.00
10b	load wire	28.42	28.81	29.21	6.28	6.67	7.07
	load wire splicing						
11b	device	36.24	36.63	36.93	14.10	14.49	14.79
12b	room ambient	22.20	22.13	22.09			
13b	current (amps)	15.00	15.00	15.00			

Test 3b - thru Mfg. 2 15-amp breaker at 150% current (15A * 150% = 22.5A); max temps, reading every 10s

data logger					Calculated	d Temperat	ure Rise
CH #	Location	Recorde	d Temperat	tures (°C)		(°C)	
scan #		18	19	20			
time (MM:SS)		:40	:50	1:00			
	Breaker trip time	1:10					
1b	Mfg. 10 - 1	25.84	26.82	27.77	4.13	5.12	6.06
2b	Mfg. 10 - 2	29.58	31.10	32.54	7.88	9.40	10.83
3b	Mfg. 10 - 3	32.64	34.09	35.41	10.93	12.39	13.71
4b	Mfg. 9 - 1	25.84	26.77	27.65	4.14	5.07	5.94
5b	Mfg. 9 - 2	27.74	28.90	29.94	6.03	7.19	8.24
6b	Mfg. 9 - 3	27.36	28.35	29.32	5.65	6.65	7.62
7b	circuit breaker	26.69	27.90	29.05	4.98	6.20	7.35
8b	line wire	25.29	26.13	26.94	3.59	4.42	5.23
9b	line wire splicing device	28.85	30.25	31.50	7.14	8.54	9.80
10b	load wire	27.35	28.42	29.40	5.65	6.72	7.70
11b	load wire splicing device	29.03	30.42	31.68	7.33	8.71	9.98
12b	room ambient	21.68	21.70	21.73			
13b	current (amps)	22.56	22.55	22.52			

		temps, re	eading ev	ery ius	-			
data logger					Calculated	d Temperat	ure Rise	
CH #	Location	Recorde	d Temperat	tures (°C)	(°C)			
scan #		44	45	46				
time (MM:SS)		5:50	6:00	6:10				
	Breaker trip time	6:20						
1c	Mfg. 10 - 1	33.95	34.06	34.18	12.26	12.38	12.49	
2c	Mfg. 10 - 2	34.86	35.03	35.17	13.17	13.34	13.48	
Зc	Mfg. 10 - 3	32.06	32.16	32.23	10.37	10.47	10.55	
4c	Mfg. 9 - 1	31.67	31.77	31.89	9.98	10.08	10.20	
5c	Mfg. 9 - 2	31.89	31.99	32.07	10.20	10.30	10.39	
бc	Mfg. 9 - 3	30.51	30.58	30.63	8.82	8.89	8.94	
7c	circuit breaker	37.51	37.73	37.94	15.82	16.04	16.25	
8c	line wire	38.17	38.32	38.46	16.48	16.63	16.77	
	line wire splicing							
9c	device	33.48	33.53	33.58	11.79	11.84	11.89	
10c	load wire	37.25	37.38	37.51	15.57	15.70	15.82	
	load wire splicing							
11c	device	39.05	39.08	39.09	17.36	17.39	17.40	
12c	room ambient	21.68	21.69	21.69				
13c	current (amps)	15.00	15.00	15.00				

Test 3c - thru Mfg 3 10-amp, breaker at 150% current (104 * 150% = 154); may

Test 3c - thru Mfg. 3 15-amp breaker at 150% current (15A * 150% = 22.5A); max temps, reading every 10s

data logger					Calculated	d Temperat	ure Rise
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #	•	28	29	30			
time (MM:SS)		2:20	2:30	2:40			
	Breaker trip time	2:50					
1c	Mfg. 10 - 1	28.08	27.72	27.38	6.22	5.87	5.53
2c	Mfg. 10 - 2	27.85	27.43	27.08	5.99	5.58	5.23
3c	Mfg. 10 - 3	26.82	26.45	26.13	4.97	4.59	4.27
4c	Mfg. 9 - 1	26.62	26.30	26.02	4.76	4.45	4.17
5c	Mfg. 9 - 2	26.78	26.44	26.12	4.92	4.58	4.27
6c	Mfg. 9 - 3	26.00	25.71	25.47	4.15	3.86	3.62
7c	circuit breaker	30.09	29.81	29.54	8.23	7.95	7.68
<mark>8</mark> c	line wire	27.46	27.28	27.08	5.61	5.42	5.22
	line wire splicing						
9c	device	27.03	26.55	26.12	5.18	4.69	4.26
10c	load wire	27.36	27.10	26.84	5.50	5.24	4.98
	load wire splicing						
11c	device	27.70	27.09	26.53	5.84	5.23	4.67
12c	room ambient	21.89	21.86	21.82			
13c	current (amps)	22.40	22.39	22.39			

	,	temps, r	eading e	very /s	1			
data logger					Calculated	d Temperat	ure Rise	
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)		
scan #		10	11	12				
time (MM:SS)		:15	:21	:28				
	Breaker trip time	:35						
1a	Mfg. 11 - 1	24.11	24.67	25.32	2.07	2.62	3.28	
2a	Mfg. 11 - 2	24.06	24.59	25.25	2.02	2.55	3.20	
3a	Mfg. 11 - 3	24.07	24.57	25.16	2.03	2.52	3.12	
4a	Mfg. 8 - 1	24.08	24.69	25.40	2.03	2.64	3.35	
5a	Mfg. 8 - 2	24.66	25.33	26.11	2.61	3.28	4.06	
6a	Mfg. 8 - 3	24.22	24.83	25.55	2.17	2.79	3.50	
7a	circuit breaker	24.11	24.82	25.62	2.07	2.77	3.57	
8a	line wire	27.40	28.75	30.11	5.35	6.71	8.06	
	line wire splicing							
9a	device	25.44	26.76	28.29	3.40	4.72	6.24	
10a	load wire	26.61	27.77	28.96	4.57	5.72	6.91	
	load wire splicing							
11a	device	26.63	28.24	30.08	4.59	6.20	8.04	
12a	room ambient	22.05	22.06	22.03				
13a	current (amps)	19.99	20.01	20.01				

Test 4a - thru Mfg, 1 10-amp, breaker at 200% current (10A * 200% = 20A); max

Test 4a - thru Mfg. 1 15-amp breaker at 200% current (15A * 200% = 30A); max temps, reading every 7s

data logger					Calculated	d Temperat	ure Rise
CH #	Location	Recorde	d Temperat	tures (°C)		(°C)	
scan #		20	21	22			
time (MM:SS)	>	:28	:35	:42			
	Breaker trip time	:49					
1a	Mfg. 11 - 1	27.71	28.87	30.04	5.22	6.37	7.55
2a	Mfg. 11 - 2	27.71	28.87	30.05	5.22	6.38	7.56
3a	Mfg. 11 - 3	27.95	28.97	30.04	5.46	6.47	7.54
4a	Mfg. 8 - 1	27.60	28.90	30.19	5.11	6.40	7.70
5a	Mfg. 8 - 2	28.56	29.91	31.25	6.06	7.42	8.76
6a	Mfg. 8 - 3	29.13	30.23	31.51	6.63	7.73	9.02
7a	circuit breaker	27.85	29.29	30.80	5.35	6.80	8.30
8a	line wire	29.17	30.44	31.74	6.68	7.95	9.24
	line wire splicing						
9a	device	36.20	38.78	41.38	13.71	16.28	18.89
10a	load wire	29.69	31.07	32.48	7.20	8.58	9.98
	load wire splicing						
11a	device	36.64	39.18	41.65	14.14	16.69	19.15
12a	room ambient	22.48	22.48	22.52			
13a	current (amps)	29.87	29.79	29.76			

		, -	reading ev	,				
data logger					Calculated Temperature Rise			
CH #	Location	Recorde	Recorded Temperatures (°C) (°C)					
scan #		10	11	12				
time (MM:SS)		:15	:21	:28				
	Breaker trip time	:35						
1b	Mfg. 11 - 1	23.92	24.53	25.23	2.00	2.60	3.30	
2b	Mfg. 11 - 2	23.87	24.40	25.03	1.95	2.48	3.10	
3b	Mfg. 11 - 3	24.04	24.56	25.19	2.11	2.64	3.27	
4b	Mfg. 8 - 1	24.03	24.67	25.43	2.11	2.74	3.51	
5b	Mfg. 8 - 2	24.81	25.54	26.38	2.89	3.62	4.46	
6b	Mfg. 8 - 3	24.09	24.69	25.38	2.17	2.77	3.46	
7b	circuit breaker	23.99	24.68	25.52	2.07	2.75	3.60	
8b	line wire	25.64	26.65	27.71	3.72	4.73	5.78	
	line wire splicing							
9b	device	25.15	26.44	27.96	3.22	4.52	6.03	
10b	load wire	23.65	24.33	25.10	1.73	2.41	3.18	
	load wire splicing							
11b	device	26.05	27.55	29.19	4.13	5.63	7.27	
12b	room ambient	21.94	21.92	21.90				
13b	current (amps)	20.00	20.00	20.00				

u Mfa 2 10 broak at 200% ou rt (100 * 200% - 200)et (h th -

Test 4b - thru Mfg. 2 15-amp breaker at 200% current (15A * 200% = 30A); max temps, reading every 7s

data logger					Calculated	d Temperat	ure Rise
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #		16	17	18			
time (MM:SS)		:00	:09	:15			
	Breaker trip time	:21					
1b	Mfg. 11 - 1	22.78	24.58	25.64	0.28	2.08	3.14
2b	Mfg. 11 - 2	22.55	23.95	24.94	0.05	1.45	2.44
3b	Mfg. 11 - 3	22.78	24.32	25.15	0.28	1.82	2.65
4b	Mfg. 8 - 1	22.67	24.22	25.26	0.17	1.72	2.76
5b	Mfg. 8 - 2	23.01	25.35	26.56	0.52	2.85	4.06
6b	Mfg. 8 - 3	23.06	25.22	26.32	0.57	2.72	3.83
7b	circuit breaker	22.89	24.64	25.66	0.39	2.15	3.17
8b	line wire	22.78	24.14	25.26	0.28	1.64	2.76
9b	line wire splicing device	22.80	25.27	27.08	0.30	2.77	4.59
10b	load wire	22.73	25.29	26.72	0.23	2.79	4.22
	load wire splicing						
11b	device	22.84	25.76	27.75	0.34	3.26	5.26
12b	room ambient	22.49	22.49	22.51			
13b	current (amps)	29.72	29.67	29.65			

data logger				Calculate	d Temperat	ure Ris	
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #		16	17	18			
time (MM:SS)		:56	1:03	1:10			
	Breaker trip time	1:17					
1c	Mfg. 11 - 1	27.91	28.45	29.02	5.96	6.50	7.07
2c	Mfg. 11 - 2	27.83	28.34	28.85	5.88	6.39	6.90
3c	Mfg. 11 - 3	26.46	26.84	27.26	4.51	4.89	5.31
4c	Mfg. 8 - 1	28.33	28.89	29.46	6.38	6.94	7.51
5c	Mfg. 8 - 2	28.77	29.28	29.81	6.82	7.33	7.86
6c	Mfg. 8 - 3	27.76	28.25	28.71	5.81	6.30	6.76
7c	circuit breaker	30.95	31.72	32.52	8.99	9.77	10.56
8c	line wire	32.07	32.86	33.68	10.12	10.91	11.73
	line wire splicing						
9c	device	31.50	32.36	33.19	9.54	10.41	11.24
10c	load wire	32.53	33.29	34.09	10.58	11.34	12.14
	load wire splicing						
11c	device	36.35	37.44	38.34	14.40	15.49	16.39
12c	room ambient	22.03	21.91	21.92			
13c	current (amps)	20.00	20.00	20.00			

Test 4c - thru Mfg. 3 15-amp breaker at 200% current (15A * 200% = 30A); max temps, reading every 7s

data logger					Calculated	d Temperat	ure Rise
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #	•	18	19	20			
time (MM:SS)		:15	:21	:28			
	Breaker trip time	:35					
1c	Mfg. 11 - 1	24.86	25.82	26.97	2.56	3.52	4.67
2c	Mfg. 11 - 2	25.87	27.00	28.27	3.57	4.70	5.97
3c	Mfg. 11 - 3	25.45	26.38	27.49	3.15	4.08	5.19
4c	Mfg. 8 - 1	25.11	26.19	27.48	2.81	3.89	5.18
5c	Mfg. 8 - 2	26.49	27.73	29.14	4.19	5.43	6.85
6с	Mfg. 8 - 3	25.08	26.08	27.24	2.78	3.78	4.94
7c	circuit breaker	25.44	26.60	28.04	3.14	4.30	5.74
8c	line wire	24.49	25.44	26.52	2.20	3.15	4.22
9c	line wire splicing device	27.39	29.24	31.37	5.09	6.95	9.07
10c	load wire	26.18	27.74	29.43	3.88	5.44	7.13
11c	load wire splicing device	26.21	27.89	29.79	3.91	5.59	7.49
12c	room ambient	22.31	22.30	22.29			
13c	current (amps)	29.59	29.78	29.83			

		tompo, i	eading e					
data logger					Calculated	l Temperat	ture Rise	
CH #	Location	Recorde	d Temperat	tures (°C)	(°C)			
scan #		27	28	29				
time (MM:SS)		:15	:21	:28				
	Breaker trip time	:35						
1a	Mfg. 10 - 1	24.20	24.89	25.74	2.53	3.23	4.07	
2a	Mfg. 10 - 2	24.11	24.81	25.65	2.45	3.14	3.99	
3a	Mfg. 10 - 3	23.82	24.42	25.12	2.16	2.76	3.45	
4a	Mfg. 9 - 1	23.70	24.28	24.96	2.04	2.62	3.29	
5a	Mfg. 9 - 2	23.89	24.51	25.23	2.22	2.84	3.57	
ба	Mfg. 9 - 3	23.66	24.22	24.90	1.99	2.55	3.23	
7a	circuit breaker	23.81	24.47	25.29	2.14	2.80	3.63	
8a	line wire	26.99	28.37	29.76	5.32	6.71	8.09	
	line wire splicing							
9a	device	24.05	25.15	26.46	2.39	3.48	4.79	
10a	load wire	26.61	27.85	29.13	4.94	6.19	7.47	
	load wire splicing							
11a	device	28.24	30.24	32.42	6.58	8.58	10.75	
12a	room ambient	21.68	21.67	21.66				
13a	current (amps)	20.02	20.03	20.03				

Test 4a - thru Mfg 1 10-amp breaker at 200% current (10A * 200% = 20A); max

Test 4a - thru Mfg. 1 15-amp breaker at 200% current (15A * 200% = 30A); max temps, reading every 7s

data logger					Calculated	d Temperat	ure Rise
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #		17	18	19			
time (MM:SS)		:28	:35	:42			
	Breaker trip time	:49					
1a	Mfg. 10 - 1	27.27	28.75	30.17	5.77	7.24	8.67
2a	Mfg. 10 - 2	28.89	30.53	32.07	7.38	9.02	10.56
3a	Mfg. 10 - 3	27.89	29.33	30.74	6.38	7.82	9.24
4a	Mfg. 9 - 1	27.16	28.54	29.90	5.66	7.04	8.39
5a	Mfg. 9 - 2	28.09	29.55	30.97	6.58	8.05	9.46
6a	Mfg. 9 - 3	27.93	29.14	30.27	6.43	7.64	8.77
7a	circuit breaker	26.82	28.27	29.71	5.32	6.77	8.20
8a	line wire	28.15	29.45	30.67	6.65	7.95	9.17
	line wire splicing						
9a	device	34.08	36.63	38.99	12.57	15.13	17.49
10a	load wire	28.54	29.95	31.29	7.03	8.45	9.79
	load wire splicing						
11a	device	35.97	38.68	41.18	14.47	17.17	19.67
12a	room ambient	21.49	21.52	21.51			
13a	current (amps)	29.88	29.83	29.82			

		temps, r	eading e	very 7s			
data logger		Calculated Temperature Ris					ture Rise
CH #	Location	Recorde	d Tempera	tures (°C)		(°C)	
scan #		27	28	29			
time (MM:SS)		:15	:21	:28			
	Breaker trip time	:35					
1b	Mfg. 10 - 1	23.68	24.31	25.08	2.15	2.79	3.55
2b	Mfg. 10 - 2	24.00	24.79	25.66	2.47	3.26	4.13
3b	Mfg. 10 - 3	23.96	24.59	25.27	2.43	3.06	3.74
4b	Mfg. 9 - 1	23.67	24.25	24.93	2.14	2.73	3.40
5b	Mfg. 9 - 2	23.75	24.36	25.10	2.22	2.84	3.58
6b	Mfg. 9 - 3	23.79	24.37	25.03	2.26	2.84	3.50
7b	circuit breaker	23.69	24.36	25.21	2.16	2.84	3.69
8b	line wire	25.34	26.37	27.40	3.81	4.84	5.88
	line wire splicing						
9b	device	24.37	25.54	26.91	2.84	4.01	5.38
10b	load wire	23.38	24.06	24.84	1.86	2.54	3.32
	load wire splicing						
11b	device	28.62	30.57	32.60	7.09	9.05	11.07
12b	room ambient	21.54	21.54	21.50			
13b	current (amps)	19.99	19.99	19.99			

Test 4b - thru Mfg. 2 10-amp breaker at 200% current (10A * 200% = 20A); max

Test 4b - thru Mfg. 2 15-amp breaker at 200% current (15A * 200% = 30A); max temps, reading every 7s

data logger		Calculated Temperature Ris					ure Rise	
CH #	Location	Recorded Temperatures (°C)				(°C)		
scan #		13	14	15				
time (MM:SS)		0:00	:09	:15				
	Breaker trip time	:21						
1b	Mfg. 10 - 1	21.91	23.26	24.56	0.52	1.87	3.16	
2b	Mfg. 10 - 2	21.93	24.79	26.37	0.54	3.40	4.97	
3b	Mfg. 10 - 3	21.91	23.93	25.26	0.52	2.54	3.87	
4b	Mfg. 9 - 1	21.95	24.22	25.49	0.56	2.83	4.10	
5b	Mfg. 9 - 2	21.93	24.57	25.87	0.54	3.18	4.48	
6b	Mfg. 9 - 3	21.90	24.12	25.30	0.51	2.73	3.90	
7b	circuit breaker	22.03	23.68	24.72	0.64	2.28	3.33	
8b	line wire	22.07	23.08	24.22	0.68	1.69	2.83	
	line wire splicing							
9b	device	21.89	24.14	26.27	0.50	2.75	4.87	
10b	load wire	21.93	24.17	25.69	0.54	2.78	4.30	
	load wire splicing							
11b	device	21.95	26.40	28.99	0.56	5.01	7.60	
12b	room ambient	21.40	21.38	21.40				
13b	current (amps)	30.03	29.98	29.94				

		temps, r	eading ev	very 7s				
data logger					Calculated Temperature Rise			
CH #	Location	Recorde	d Temperat	tures (°C)		(°C)		
scan #		33	34	35				
time (MM:SS)		:56	1:03	1:10				
	Breaker trip time	1:17						
1c	Mfg. 10 - 1	28.89	29.56	30.22	7.33	8.01	<mark>8.67</mark>	
2c	Mfg. 10 - 2	29.13	29.80	30.47	7.57	8.25	8.92	
3c	Mfg. 10 - 3	28.24	28.82	29.43	6.69	7.27	7.87	
4c	Mfg. 9 - 1	27.96	28.54	29.11	6.41	6.98	7.56	
5c	Mfg. 9 - 2	27.95	28.55	29.13	6.40	6.99	7.58	
6c	Mfg. 9 - 3	27.87	28.37	28.89	6.31	6.82	7.34	
7c	circuit breaker	30.46	31.20	31.96	8.91	9.65	10.41	
<mark>8</mark> c	line wire	31.76	32.54	33.32	10.20	10.99	11.77	
	line wire splicing							
9c	device	30.32	31.15	31.96	8.77	9.60	10.41	
10c	load wire	32.17	32.94	33.69	10.62	11.39	12.14	
	load wire splicing							
11 c	device	39.40	40.57	41.66	17.85	19.02	20.11	
12c	room ambient	21.59	21.54	21.53				
13c	current (amps)	20.00	20.00	20.00				

Test 4c - thru Mfg. 3 10-amp breaker at 200% current (10A * 200% = 20A); max

Test 4c - thru Mfg. 3 15-amp breaker at 200% current (15A * 200% = 30A); max temps, reading every 7s

data logger		Calculated Temperature R					ure Rise	
CH #	Location	Recorde	Recorded Temperatures (°C)			(°C)	(°C)	
scan #		16	17	18				
time (MM:SS)		:21	:28	:35				
	Breaker trip time	:42						
1c	Mfg. 10 - 1	24.57	25.84	27.05	3.19	4.45	5.67	
2c	Mfg. 10 - 2	28.42	30.54	32.56	7.04	9.16	11.18	
3c	Mfg. 10 - 3	33.47	35.78	37.86	12.09	14.40	16.48	
4c	Mfg. 9 - 1	24.87	26.08	27.27	3.49	4.70	5.89	
5c	Mfg. 9 - 2	27.04	28.63	30.11	5.66	7.25	8.73	
6c	Mfg. 9 - 3	26.95	28.35	29.72	5.57	6.97	8.34	
7c	circuit breaker	25.75	27.15	28.60	4.37	5.77	7.22	
<mark>8</mark> c	line wire	24.57	25.65	26.68	3.19	4.27	5.30	
9c	line wire splicing device	27.76	29.81	31.74	6.38	8.43	10.35	
10c	load wire	26.52	28.22	29.72	5.14	6.84	8.34	
11c	load wire splicing device	27.66	29.85	31.88	6.28	8.47	10.49	
12c	room ambient	21.40	21.37	21.36				
13c	current (amps)	29.34	29.29	30.17				

		every	60s					
						Calculated Temperature Rise		
data logger CH #	Location	Recorde	ed Temperat	ures (°C)		(°C)		
scan #	•	67	72	77				
time (HH:MM:SS)		1:04:00	1:09:00	1:14:00				
1b	Mfg. 10 - 1	33.66	33.62	33.48	12.17	12.13	11.99	
2b	Mfg. 10 - 2	30.46	30.56	30.61	8.97	9.07	9.12	
3b	Mfg. 10 - 3	28.97	29.03	28.87	7.48	7.54	7.38	
4b	Mfg. 9 - 1	28.59	28.61	28.68	7.10	7.12	7.19	
5b	Mfg. 9 - 2	29.99	29.94	29.81	8.50	8.45	8.32	
6b	Mfg. 9 - 3	28.44	28.40	28.15	6.95	6.91	6.66	
7b	circuit breaker	41.26	41.48	41.60	19.77	19.99	20.11	
8b	line wire	31.15	30.97	30.89	9.66	9.48	9.40	
	line wire splicing							
9b	device	28.63	28.27	28.01	7.14	6.78	6.52	
10b	load wire	28.45	28.20	28.09	6.96	6.71	6.60	
	load wire splicing							
11b	device	30.47	29.94	29.87	8.98	8.45	8.38	
12b	room ambient	22.46	22.07	21.66				
13b	current (amps)	10.01	10.01	10.01				

Test 2b - thru Mfg. 2 10-amp breaker at 135% current (10A * 135% = 13.5A); max temps, reading every 20s

data logger		Calculated Temperature				ure Rise	
CH #	Location	Recorde	d Tempera	tures (°C)	(°C)		
scan #		202	203	204			
time (MM:SS)		66:20	66:40	67:00			
	Breaker trip time	> 67 mins.	(no trip)				
1b	Mfg. 10 - 1	40.89	40.89	40.88	18.96	18.97	18.96
2b	Mfg. 10 - 2	37.03	37.03	37.04	15.11	15.11	15.12
3b	Mfg. 10 - 3	34.24	34.26	34.21	12.31	12.34	12.29
4b	Mfg. 9 - 1	33.52	33.50	33.53	11.60	11.58	11.61
5b	Mfg. 9 - 2	35.79	35.78	35.75	13.87	13.86	13.83
6b	Mfg. 9 - 3	33.44	33.45	33.39	11.52	11.53	11.47
7b	circuit breaker	56.60	56.56	56.59	34.68	34.64	34.67
<mark>8</mark> b	line wire	38.73	38.68	38.65	16.81	16.76	16.72
	line wire splicing						
9b	device	33.69	33.57	33.57	11.76	11.65	11.65
10b	load wire	33.57	33.50	33.50	11.65	11.57	11.58
	load wire splicing						
11b	device	37.08	36.99	37.04	15.16	15.07	15.12
12b	room ambient	22.10	22.03	21.97			
13b	current (amps)	13.49	13.49	13.49			

Appendix D Flexing Tests

		pass / fail	
test #	wire connection method	(10x flexion)	comments
			ends of hot and neutral wires broke when
			removing them from their terminals after
6-1	wrap around terminal screw	pass	the test
6-2	single compression	pass	
6-3	double compression	pass	
			retest of 6-1; hot wire (black) broke on 8th
6-1-1	wrap around terminal screw	failed	flexion
6-1-2	wrap around terminal screw	pass	retest of 6-1 using copper wire
6-1-3	wrap around terminal screw	pass	retest of 6-1
			-

Conductor Flexing tests on 14-2 AWG copper-clad aluminum NMB cable:

NOTE: One Legrand receptacle was used for all 3 tests above and 9in/lbs was applied to all three terminal screws.

PO Box 2363, Clackamas, OR 97015 15648 114th Ave. Suite 109, Clackamas OR 97015 Phone: 503-406-4373 Fax: 503 905 0457 www.pacifictestandmeasurement.com

Certificate of Conformance

Issued to:

Customer PO: Model: Lot Number: Report: Description: CDCMello Consulting LLC PO Box 872317 Vancouver, WA 98687 Verbal Chuck Mello UL3055 952103-019 JK202006300-003 Type J, 30 Gauge FEP/FEP Teflon, Special Limits of Error Tolerance, 15 feet length, Thermocouple

Pacific Test and Measurement Inc certifies that the order of thermocouples meets all applicable instructions, specifications, and in accordance with DAP UL 00-OP-C0037 version 10.0. The preferred method of welding to produce a single point weld or bead using ThermX model 258B welder has been used to assemble the thermocouple junction which has been proven as reliable and repeatable through validation. The finish products were assembled from UL4047, a spool of described wire calibrated to accredited standards as described in the calibration report.

Certified by: Date: 7-10-2020 (Quality Department)

Appen	dix E - Certificates of Calibration Report of Calibration	on
ACCREDITED CERT #2496.01	Eustis Co.,Inc./Pyrocom Calibration lab 12407-B Mukilteo Speedway #200 Lynnwood, wa 98087	Report No: JK202006300-003 Page 1 of 2
Model: UL4047 Serial: 952103-019 Description: TYPE J, 30AWG, FEP/FEI Calibration Range: Limited Received Condition: New Current: N/A Procedure: ECP 339/341	Customer: CDCMello Co PO Box 8723 Vancouver, W	17

The unit under test (UUT) on this certificate has been calibrated by comparison method as covered by ASTM E220-13, and calibrated against standards traceable to the National Institute of Standards and Technology (NIST). Eustis Co., Inc./Pyrocom Calibration Lab meets the requirements of ANSI/NCSL Z540-1-1994 and ISO/IEC 17025 and is accredited by A2LA via Certificate Number 2496.01 for calibrations within the scope to which it applies. The uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. All results contained within this certificate relate only to the item calibrated. Any number of factors may cause the calibrated item to drift out of calibration.

Nominal Value (Set-point) (C)	Actual Value (Reference) (C)	UUT (Test Sensor) (C)	Error (C)	Measurement Uncertainty (C)	Method of Realization
21.00	21.41	21.38	-0.03	+/- 0.31	COMP
40.00	40.08	40.02	-0.06	+/- 0.40	COMP
95.00	95.02	94.97	-0.05	+/- 0.40	COMP
150.00	150.02	150.10	0.08	+/- 0.50	COMP
200.00	200.01	200.23	0.22	+/- 0.50	COMP

Test Equipment							
Manufacturer	Model	Description	Serial Number	Recall Date			
Hart Scientific	1560	"Black Stack" Base Unit	96539	NCR			
Hart Scientific	2560	SPRT Module	A25631	3/24/2021			
Fluke	5628	4 Wire SPRT	4303	3/26/2021			
Fluke	2566	Thermocouple Scanner	B7A380	3/24/2021			
Fluke	9173	Metrology Well, 700 C	B47975	NCR			
Fluke	7380	Bath, Ultra Low-Temperature	B2A527	NCR			

Calibration Date: 6/18/2020 Temperature: 23.0 C Humidity: 47% Customer Order: 74523 Technician:

Approved By:

Walter Paulson OA Manager

Julia Kalin

This report shall not be reproduced except in full without written approval of Eustis Co., Inc./Pyrocom Calibration lab.

Report of Calibration

Report No: JK202006300-003 Page 2 of 2

Notes: The thermocouple wire meets or exceeds the criteria established for type "J" SPECIAL LIMITS OF ERROR per ASTM E230/E230M-17 table 1 & ISA-MC96.1-1982 Par. 2.5 Table 8 +/- 1.1°C OR +/- .4% whichever is greater. Lot calibration data supplied for your reference.

Calibrated item meets special limits of error for all results given according to the comparison of "error" reading to the specifications found in ASTM E230/E230M-17 table 1 & MC96.1-1982 table 8; acceptance determination is ultimately the responsibility of the customer, taking into account all uncertainties and other factors. The closer the results are to the specification limits, the greater the risk that the unit under test will be out of tolerance.

Report issue date: JUN 1 9 2020

Fox Valley Metr 114 Medalist Drive shkosh, WI 54902 20) 426-5894 • Fax ttp://www.FoxValley	(920) 426-8120	CERTIFI	CATE OF RATION			ALIBRATION AND TESTIN LABORATORY 0. ACT-1272
Certification Number For Eaton Corpora W126 N7250 F Menomonee Fa	tion - ICD lint Drive		Procedures Folia FVE-000 rev. 2 FVE-006 rev. 2	owed	in any form or r in full, without p from originating	shall not be altered reproduced, except prior written approval J lab. These results the item(s) calibrated. 6: 02/04/2012
Purchase Order # Test Instrument Make Model Serial Number Identification Customer Location	4044-671109 Data Acquisition Unit Keysight 34972A MY49002695 EM7054 ICD		Standards Used Instrument FVS-275A FVS-737	Serial Number RY11838 4542903	Trace Number CJ191-70508-513 CK041-57440-531	Next Cal 07/28/2020 02/28/2021
Condition Received Condition Returned Calibrated By Technical Review By Calibration Location Calibration Conditions Calibration Date Recalibration Due	In Tolerance In Tolerance Alex Paulsen Tim Bending FVM 67.8°F, 19.9°C, 57.3%R 07/16/2020 07/16/2021	Ή	confidence level of 9 compliance in this ce measurement into co uncertainty when det considered "shared r All instruments have Calibration was comp	5%; coverage factor rtificate was issued w nsideration. The cus ermining if the result esponsibility.") Unce been calibrated agai pleted in accordance	es expressed are base of (k=2). The stateme without taking the unce tomer shall assess the s meet their needs. (T ertainties expressed in inst standards traceabl with ISO/IEC 17025:2 L Z540.3-2006. Other	nt of ertainty of e results and his is nominal units. le to NIST. 017,
alibration Results			-	*	denotes "Out of To	olerance"
Feature	Nominal Lower Limit	Uppe	r Limit As	Found	As Left	Uncertainty
Root Difference Square guardbanding method used. UUT IDENTIFICATION						

Serial Number: MY49002695 Firmware Level: 1.11-1.12-02-01

INPUT MODULE CHARACTERISTI CS

Model: 34901A Firmware Level: 2.3

SELF TEST

Certification Number CK198-33105-466

Pass

Pass

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 ● Fax (920) 426-8120 http://www.FoxValleyMetrology.com CERTIFICATE OF CALIBRATION

					Certificate	No. ACT-1272
Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
INTERNAL DMM VERIFICATION						
ZERO OFFSET VERIFICATION						
DC CURRENT						
10 mA Range 0.00000 mA	0.00000	-0.00200	0.00200	0.00003	0.00003	0.000007
100 mA Range 0.0000 mA	0.0000	-0.0050	0.0050	0.0000	0.0000	0.00006
1 A Range 0.000000 A	0.000000	-0.000100	0.000100	0.000001	0.000001	0.0000006
DC VOLTS						
100 mV Range 0.0000 mV	0.0000	-0.0040	0.0040	0.0004	0.0004	0.00007
1 V Range 0.000000 V	0.000000	-0.000007	0.000007	0.000001	0.000001	0.0000007
10 V Range 0.00000 V	0.00000	-0.00005	0.00005	0.00000	0.00000	0.000007
100 V Range 0.0000 V	0.0000	-0.0006	0.0006	0.0000	0.0000	0.00006
300 V Range 0.000 V	0.000	-0.009	0.009	0.000	0.000	0.0006
2 WIRE						
100 Range 0.0000 Ohm	0.0000	-4.0040	4.0040	0.0626	0.0626	0.00007
1 k Range 0.000000 kOhm	0.000000	-0.004010	0.004010	0.000065	0.000065	0.0000006
10 k Range 0.00000 kOhm	0.00000	-0.00410	0.00410	0.00008	0.00008	0.000006
100 k Range 0.0000 kOhm	0.0000	-0.0050	0.0050	0.0002	0.0002	0.00007
1 M Range 0.000000 MOhm	0.000000	-0.000014	0.000014	0.000000	0.000000	0.0000007
10 M Range						

Certification Number CK198-33105-466

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com **CERTIFICATE OF** CALIBRATION

Certificate No. ACT-1272

		Certificate No. ACT-1272				
Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
0.00000 MOhm	0.00000	-0.00010	0.00010	0.00000	0.00000	0.000007
100 M? Range 0.0000 MOhm	0.0000	-0.0100	0.0100	0.0000	0.0000	0.00006
4 WIRE						
100 Range 0.0000 Ohm	0.0000	-0.0040	0.0040	-0.0023	-0.0023	0.00006
1 k Range 0.000000 kOhm	0.000000	-0.000010	0.000010	0.000000	0.000000	0.0000006
10 k Range 0.00000 kOhm	0.00000	-0.00010	0.00010	0.00000	0.00000	0.000007
100 k Range 0.0000 kOhm	0.0000	-0.0010	0.0010	0.0000	0.0000	0.00007
1 M Range 0.000000 MOhm	0.000000	-0.000010	0.000010	0.000000	0.000000	0.000006
10 M Range 0.00000 MOhm	0.00000	-0.00010	0.00010	0.00000	0.00000	0.000006
100 M Range 0.0000 MOhm	0.0000	-0.0100	0.0100	0.0000	0.0000	0.00007
GAIN VERIFICATION						
DC VOLTS						
100 mV Range 100.0000 mV -100.0000 mV	100.0000 -100.0000	99.9910 -100.0090	100.0090 -99.9910	100.0000 -99.9987	100.0000 -99.9987	0.00006 0.00007
1 V Range 1.000000 V -1.000000 V	1.000000 -1.000000	0.999953 -1.000047	1.000047 -0.999953	0.999993 -0.999989	0.999993 -0.999989	0.0000007 0.0000007
10 V Range 10.00000 V -10.00000 V	10.00000 -10.00000	9.99960 -10.00040	10.00040 -9.99960	9.99994 -9.99992	9.99994 -9.99992	0.000006 0.000006
100 V Range 100.0000 V -100.0000 V	100.0000 -100.0000	99.9949 -100.0051	100.0051 -99.9949	99.9996 -99.9993	99.9996 -99.9993	0.00007 0.00007
300 V Range 300.000 V	300.000	299.978	300.022	299.998	299.998	0.0006

Certification Number CK198-33105-466

Page 3 of 6

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com **CERTIFICATE OF** CALIBRATION

∄

Certificate No. ACT-1272

				Certificate No. ACT-1272			
Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty	
2 WIRE							
100 Range 100.0000 Ohm	100.0000	95.9860	104.0140	100.0067	100.0067	0.00007	
1 k Range 1.000000 kOhm	1.000000	0.995890	1.004110	1.000032	1.000032	0.0000006	
10 k Range 10.00000 kOhm	10.00000	9.99490	10.00510	10.00035	10.00035	0.000007	
100 k Range 100.0000 kOhm	100.0000	99.9850	100.0150	100.0029	100.0029	0.00006	
1 M Range 1.000000 MOhm	1.000000	0.999886	1.000114	1.000016	1.000016	0.0000006	
10 M Range 10.00000 MOhm	10.00000	9.99590	10.00410	9.99768	9.99768	0.000006	
100 M Range 100.0000 MOhm	100.0000	99.1900	100.8100	100.3688	100.3688	0.00007	
4 WIRE							
100 Range 100.0000 Ohm	100.0000	99.9860	100.0140	100.0039	100.0039	0.00006	
1 k Range 1.000000 kOhm	1.000000	0.999890	1.000110	1.000030	1.000030	0.0000007	
10 k Range 10.00000 kOhm	10.00000	9.99890	10.00110	10.00032	10.00032	0.000006	
100 k Range 100.0000 kOhm	100.0000	99.9890	100.0110	100.0021	100.0021	0.00007	
1 M Range 1.000000 MOhm	1.000000	0.999890	1.000110	0.999970	0.999970	0.0000007	
10 M Range 10.00000 MOhm	10.00000	9.99590	10.00410	9.99595	9.99595	0.000006	
100 M Range 100.0000 MOhm	100.0000	99.1900	100.8100	99.8275	99.8275	0.00006	
DC CURRENT							
10 mA Range 10.00000 mA -10.00000 mA	10.00000 -10.00000	9.99300 -10.00700	10.00700 -9.99300	9.99898 -9.99887	9.99898 -9.99887	0.000007 0.000007	

Certification Number CK198-33105-466

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com **CERTIFICATE OF** CALIBRATION

Certificate No. ACT-1272

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
100 mA Range						
100.0000 mA	100.0000	99.9450	100.0550	99.9882	99.9882	0.00006
-100.0000 mA	-100.0000	-100.0550	-99.9450	-99.9879	-99.9879	0.00006
1 A Range	4 000000	0.000000	4 004400	0.000504	0.000504	0.000000
1.000000 A -1.000000 A	1.000000 -1.000000	0.998900 -1.001100	1.001100 -0.998900	0.999534 -0.999537	0.999534 -0.999537	0.0000006 0.0000006
-1.000000 A	-1.000000	-1.001100	-0.998900	-0.999537	-0.999537	0.000006
AC VOLTS						
100 mV Range						
10.0000 mV @ 1	10.0000	9.9540	10.0460	9.9997	9.9997	0.00006
kHz	100 0000	~~~~~	100 1000	00.0040	00.0010	0.00000
100.0000 mV @ 1 kHz	100.0000	99.9000	100.1000	99.9912	99.9912	0.00006
100.0000 mV @	100.0000	99.8300	100.1700	99.9383	99.9383	0.00006
50 kHz						
1 V Range						
1.000000 V @ 20	1.000000	0.999000	1.001000	0.999803	0.999803	0.0000006
Hz 1.000000 V @ 1	1.000000	0.999000	1.001000	0.999950	0.999950	0.0000006
kHz	4 000000	0.000000	4 004000	0.000000	0.000000	0.000000
1.000000 V @ 20 kHz	1.000000	0.999000	1.001000	0.999888	0.999888	0.0000006
1.000000 V @ 50	1.000000	0.998300	1.001700	0.999504	0.999504	0.0000007
kHz 1.000000 V @	1.000000	0.993200	1.006800	0.998811	0.998811	0.0000006
100 kHz	1 000000	0.055000	1.045000	0.000000	0.000000	0.0000000
1.000000 V @ 200 kHz	1.000000	0.955000	1.045000	0.999068	0.999068	0.0000006
1.000000 V @	1.000000	0.955000	1.045000	0.999202	0.999202	0.0000007
250 kHz 1.000000 V @	1.000000	0.955000	1.045000	0.998797	0.998797	0.0000006
300 kHz						
10 V Range						
0.10000 V @ 1	0.10000	0.08594	0.11406	0.10086	0.10086	0.000006
kHz 1.00000 V @ 1	1.00000	0.99540	1.00460	0.99992	0.99992	0.000006
kHz 10.00000 V @ 10	10.00000	9.99000	10.01000	9.99743	9.99743	0.000007
Hz	10.00000	9.99000	10.01000	9.99743	9.99743	0.000007
10.00000 V @ 1 kHz	10.00000	9.99000	10.01000	9.99855	9.99855	0.000006
۲0.00000 V @ 50	10.00000	9.98300	10.01700	9.99499	9.99499	0.000006
kHz						
100 V Range						
100.0000 V @ 1	100.0000	99.9000	100.1000	99.9653	99.9653	0.00006
kHz 100.0000 V @ 50	100.0000	99.8300	100.1700	99.8943	99.8943	0.00006
kHz						

Certification Number CK198-33105-466

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com

CERTIFICATE OF CALIBRATION

Certificate No. ACT-1272

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
300 V Range						
300.000 V @ 1 kHz	300.000	299.580	300.420	299.884	299.884	0.0006
200.000 V @ 50 kHz	200.000	199.400	200.600	199.750	199.750	0.0007
AC CURRENT						
10 mA Range						
10.00000 mA @ 1 kHz	10.00000	9.98600	10.01400	9.99766	9.99766	0.000007
100 mA Range						
100.0000 mA @ 1 kHz	100.0000	99.4000	100.6000	99.9484	99.9484	0.00007
1 A Range						
0.010000 A @ 1 kHz	0.010000	0.008590	0.011410	0.009960	0.009960	0.0000007
1.000000 A @ 1 kHz	1.000000	0.998600	1.001400	0.999502	0.999502	0.000006
FREQUENCY						
100 Hz Range						
100.0000 Hz	100.0000	99.9000	100.1000	100.0056	100.0056	0.00007
100 kHz Range						
100.0000 kHz	100.0000	99.9900	100.0100	100.0001	100.0001	0.00007

				icates of C CATE OF RATION	alibratio	tion BC-MRA ACCREDITED CONSTRUCTOR Certificate No. ACT-1272		
Certi For	fication Number CK Eaton Corporation W126 N7250 Flint I Menomonee Falls,	- ICD Drive		Procedures Follo FVE-000 rev. 2 FVE-001 rev. 2	wed	in any form or rep in full, without pri from originating l	hall not be altered produced, except or written approval ab. These results item(s) calibrated. 5 02/04/2012	
Test I Make Model Serial Identi		4044-671109 Multimeter Digital Multimeter Fluke 179 77840008 EM4437		Standards Used Instrument FVS-275A FVS-737	Serial Number RY11838 4542903	Trace Number CJ191-70508-513 CK041-57440-531	Next Cal 07/28/2020 02/28/2021	
Condi Calibr Techn Calibr Calibr Calibr	tion Received tion Returned rated By nical Review By ration Location ration Conditions ration Date ibration Due	In Tolerance In Tolerance Alex Paulsen Tim Bending FVM 68.3°F, 20.2°C, 56.2%R 07/16/2020 07/16/2021	Н	confidence level of 95 compliance in this cer measurement into coi uncertainty when dete considered "shared re All instruments have I Calibration was comp	5%; coverage factor tificate was issued v nsideration. The cus ermining if the result esponsibility.") Unce been calibrated agai leted in accordance	es expressed are based of (k=2). The statement without taking the uncert tomer shall assess the r s meet their needs. (This rtainties expressed in b nst standards traceable with ISO/IEC 17025:20 L Z540.3-2006. Other st	t of ainty of esults and s is ase units. to NIST. 17,	

Calibration Results

* denotes "Out of Tolerance"

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
AC VOLTS						
600 mV Range 300.0 mV @ 45 Hz	300.0	296.7	303.3	299.2	299.2	0.07
6 V Range						
5.000 V @ 500 Hz	5.000	4.947	5.053	4.987	4.987	0.0007
5.000 V @ 1 kHz	5.000	4.897	5.103	4.949	4.949	0.0007
60 V Range						
50.00 V @ 45 Hz	50.00	49.47	50.53	49.98	49.98	0.007
50.00 V @ 1 kHz	50.00	48.97	51.03	50.02	50.02	0.007
600 V Range						
300.0 V @ 45 Hz	300.0	296.7	303.3	299.9	299.9	0.07
500.0 V @ 500 Hz	500.0	494.7	505.3	500.5	500.5	0.06
500.0 V @ 1 kHz	500.0	489.7	510.3	500.5	500.5	0.06
1000 V Range						
1000 V @ 45 Hz	1000	987	1013	1002	1002	0.7

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com **CERTIFICATE OF** CALIBRATION

CALIBRATION AND TESTING LABORATORY Certificate No. ACT-1272

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
AC VOLTS						
FREQUENCY						
45.00 Hz @ 1 V	45.00	44.95	45.06	45.01	45.01	0.007
50.00 kHz @ 5 V	50.00	49.94	50.06	50.00	50.00	0.006
DC VOLTAGE						
6 V Range						
5.000 V	5.000	4.994	5.007	4.997	4.997	0.0006
600 V Range						
300.0 V	300.0	299.5	300.5	299.8	299.8	0.06
1000 V Range						
1000 V	1000	997	1004	999	999	0.6
-1000 V	-1000	-1004	-997	-1000	-1000	0.7
DC VOLTS						
FREQUENCY						
45.00 Hz @ 3 V	45.00	44.95	45.06	45.01	45.01	0.007
50.00 kHz @ 30 V	50.00	49.94	50.06	50.00	50.00	0.007
DC MILLIVOLTS						
30.0 mV	30.0	29.8	30.2	30.0	30.0	0.06
-300.0 mV	-300.0	-300.5	-299.5	-299.9	-299.9	0.06
600.0 mV	600.0	599.3	600.7	599.7	599.7	0.07
TEMPERATURE						
0.0 °C	0.0	-1.0	1.0	1.0	1.0	0.06
-40.0 °C	-40.0	-41.4	-38.6	-39.0	-39.0	0.07
400.0 °C	400.0	395.0	405.0	400.9	400.9	0.06
OHMS						
600 Ohm Range						
19.0 Ohm	19.0	18.6	19.4	19.3	19.3	0.07
50 MOhm Range						
19.00 MOhm	19.00	18.68	19.32	19.00	19.00	0.006
CAPACITANCE						
1000 nF Range						
900 nF	900	887	913	899	899	0.6
CONTINUITY						
0 Ohms: Beeper On				Pass	Pass	
190 Ohms: Beeper Off				Pass	Pass	
DIODE TEST						

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com **CERTIFICATE OF** CALIBRATION

ACCREDITED CALIBRATION AND TESTING LABORATORY

Certificate No. ACT-1272

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
2.000 V	2.000	1.978	2.022	2.000	2.000	0.0007
AC MILLIAMPS						
60 mA Range						
3.00 mA @ 45 Hz	3.00	2.92	3.08	3.00	3.00	0.007
50.00 mA @ 1 kHz	50.00	49.22	50.78	50.06	50.06	0.006
400 mA Range						
400.0 mA @ 1 kHz	400.0	393.7	406.3	400.4	400.4	0.07
AC AMPS						
6 A Range						
4.000 A @ 45 Hz	4.000	3.937	4.063	4.005	4.005	0.0007
10A Range						
9.00 A @ 1 kHz	9.00	8.84	9.16	9.04	9.04	0.007
DC MILLIAMPS						
60 mA Range						
3.00 mA	3.00	2.94	3.06	3.00	3.00	0.006
50.00 mA	50.00	49.47	50.53	49.92	49.92	0.007
400 mA Range						
-400.0 mA	-400.0	-404.3	-395.7	-399.8	-399.8	0.07
DC AMPS						
6 A Range						
4.000 Å	4.000	3.957	4.043	3.999	3.999	0.0007
10 A Range						
-9.00 A	-9.00	-9.12	-8.88	-9.01	-9.01	0.006

		Appendix E	- Certif	icates of C	alibratio	n	,
3114 N Oshko (920) 4	Valley Metrolo Iedalist Drive Ish, WI 54902 I26-5894 • Fax (920 www.FoxValleyMet)) 426-8120		CATE OF RATION		C-MRA C-MRA Call Certificate No.	ISO IEC 17025 IBRATION AND TESTING LABORATORY
Certi For	fication Number CK Eaton Corporation W126 N7250 Flint I Menomonee Falls,	- ICD Drive		Procedures Follo FVE-000 rev. 2 FVE-001 rev. 2	wed	in any form or rep in full, without pri from originating l	nall not be altered produced, except or written approval ab. These results item(s) calibrated. 02/04/2012
Test I Make Model Serial Identi	ase Order # nstrument Number fication mer Location	4044-671109 Multimeter Digital Multimeter Fluke 175 13700492 EM7014 ICD		Standards Used Instrument FVS-275A FVS-737	Serial Number RY11838 4542903	Trace Number CJ191-70508-513 CK041-57440-531	Next Cal 07/28/2020 02/28/2021
Condi Calibr Techn Calibr Calibr Calibr	tion Received tion Returned rated By nical Review By ration Location ration Conditions ration Date ibration Due	In Tolerance In Tolerance Alex Paulsen Tim Bending FVM 68.2°F, 20.1°C, 56.6%R 07/16/2020 07/16/2021	н	confidence level of 95 compliance in this ce measurement into co uncertainty when det considered "shared re All instruments have Calibration was comp	5%; coverage factor rtificate was issued v nsideration. The cus ermining if the result esponsibility.") Unce been calibrated agai pleted in accordance	es expressed are based of (k=2). The statement vithout taking the uncert tomer shall assess the r s meet their needs. (This rtainties expressed in bi- nst standards traceable with ISO/IEC 17025:20 _ Z540.3-2006. Other si	of ainty of esults and s is ase units. to NIST. 17,

Calibration Results

* denotes "Out of Tolerance"

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
AC VOLTS						
600 mV Range						
300.0 mV @ 45 Hz	300.0	296.7	303.3	299.9	299.9	0.07
6 V Range						
5.000 V @ 500 Hz	5.000	4.947	5.053	4.994	4.994	0.0007
5.000 V @ 1 kHz	5.000	4.897	5.103	4.955	4.955	0.0006
60 V Range						
50.00 V @ 45 Hz	50.00	49.47	50.53	49.94	49.94	0.007
50.00 V @ 1 kHz	50.00	48.97	51.03	50.06	50.06	0.006
600 V Range						
300.0 V @ 45 Hz	300.0	296.7	303.3	299.8	299.8	0.07
500.0 V @ 500 Hz	500.0	494.7	505.3	500.4	500.4	0.07
500.0 V @ 1 kHz	500.0	489.7	510.3	500.4	500.4	0.06
1000 V Range						
1000 V @ 45 Hz	1000	987	1013	996	996	0.6

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com **CERTIFICATE OF** CALIBRATION

CALIBRATION AND TESTING LABORATORY Certificate No. ACT-1272

					Certificate	e No. ACT-1272
Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
AC VOLTS FREQUENCY						
45.00 Hz @ 1 V	45.00	44.95	45.06	45.00	45.00	0.007
50.00 kHz @ 5 V	50.00	49.94	50.06	50.00	50.00	0.007
50.00 KHZ @ 5 V	50.00	-0.0-	50.00	30.00	30.00	0.007
DC VOLTAGE						
6 V Range						
5.000 V	5.000	4.990	5.010	5.000	5.000	0.0007
600 V Range						
300.0 V	300.0	299.4	300.6	300.0	300.0	0.06
1000 V Range						
1000 V	1000	997	1004	1000	1000	0.7
-1000 V	-1000	-1004	-997	-1000	-1000	0.7
DC VOLTS						
	45.00	44.05	45.00	45.00	45.00	0.007
45.00 Hz @ 3 V	45.00	44.95	45.06	45.00	45.00	0.007
50.00 kHz @ 30 V	50.00	49.94	50.06	50.00	50.00	0.007
DC MILLIVOLTS						
30.0 mV	30.0	29.8	30.2	30.0	30.0	0.07
-300.0 mV	-300.0	-300.6	-299.4	-299.9	-299.9	0.06
600.0 mV	600.0	598.9	601.1	599.9	599.9	0.06
OHMS						
600 Ohm Range						
19.0 Ohm	19.0	18.6	19.4	19.0	19.0	0.07
19.0 01111	19.0	10.0	19.4	19.0	19.0	0.07
50 MOhm Range						
19.00 MOhm	19.00	18.68	19.32	18.99	18.99	0.006
CAPACITANCE						
1000 nF Range	000	007	040	000	000	0.7
900 nF	900	887	913	900	900	0.7
CONTINUITY						
0 Ohms: Beeper				Pass	Pass	
On						
190 Ohms: Beeper Off				Pass	Pass	
DIODE TEST						
2.000 V	2.000	1.978	2.022	2.001	2.001	0.0006
AC MILLIAMPS						
60 mA Range						

60 mA Range

Certification Number CK198-38060-466

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com **CERTIFICATE OF** CALIBRATION

CALIBRATION AND TESTING LABORATORY Certificate No. ACT-1272

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
3.00 mA @ 45 Hz	3.00	2.92	3.08	3.01	3.01	0.007
50.00 mA @ 1	50.00	49.22	50.78	49.96	49.96	0.007
kHz						
400 mA Range						
400.0 mA @ 1	400.0	393.7	406.3	399.4	399.4	0.06
kHz						
AC AMPS						
6 A Range						
4.000 A @ 45 Hz	4.000	3.937	4.063	3.997	3.997	0.0007
10A Range	0.00	0.04	0.40	0.00	0.00	0.007
9.00 A @ 1 kHz	9.00	8.84	9.16	9.00	9.00	0.007
DC MILLIAMPS						
60 mA Range						
3.00 mA	3.00	2.94	3.06	3.02	3.02	0.006
50.00 mA	50.00	49.47	50.53	49.99	49.99	0.006
400 mA Range						
-400.0 mA	-400.0	-404.3	-395.7	-400.0	-400.0	0.07
DC AMPS						
6 A Range						
4.000 A	4.000	3.957	4.043	3.999	3.999	0.0007
4.000 A	4.000	0.007	070	0.000	0.000	0.0007
10 A Range						
-9.00 A	-9.00	-9.12	-8.88	-9.00	-9.00	0.007

3114 M Oshko (920) 4	Valley Metrolog ledalist Drive sh, WI 54902 26-5894 • Fax (920) www.FoxValleyMetro	426-8120	CERTIFI	CATE OF			ISO IECTRO25
Certi For	Fication Number CK1s Eaton Corporation - I W126 N7250 Flint Dr Menomonee Falls, W	CD ive		Procedures Follow FVE-000 rev. 2 FVE-001 rev. 2	wed	in any form or rep in full, without pri from originating l	hall not be altered produced, except or written approval ab. These results item(s) calibrated. 02/04/2012
Test I Make Model Serial Identi	ase Order # nstrument Number fication mer Location	4044-671109 Multimeter Digital Multimeter Fluke 179 14370601 EM7024 ICD		Standards Used Instrument FVS-275A FVS-737	Serial Number RY11838 4542903	Trace Number CJ191-70508-513 CK041-57440-531	Next Cal 07/28/2020 02/28/2021
Condi Calibr Techn Calibr Calibr Calibr	tion Received tion Returned ated By nical Review By ation Location ation Conditions ation Date ibration Due	In Tolerance In Tolerance Alex Paulsen Tim Bending FVM 68.2°F, 20.1°C, 56.6%R 07/16/2020 07/16/2021	Н	confidence level of 95 compliance in this cert measurement into con uncertainty when dete considered "shared re All instruments have b Calibration was compl	%; coverage factor ificate was issued v sideration. The cus rmining if the result sponsibility.") Unce een calibrated agai eted in accordance	es expressed are based of (k=2). The statement vithout taking the uncert tomer shall assess the r s meet their needs. (This rtainties expressed in no nst standards traceable with ISO/IEC 17025:20 L Z540.3-2006. Other st	of ainty of esults and s is ominal units. to NIST. 17,

Calibration Results

* denotes "Out of Tolerance"

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
AC VOLTS						
600 mV Range						
300.0 mV @ 45 Hz	300.0	296.7	303.3	300.0	300.0	0.06
6 V Range						
5.000 V @ 500 Hz	5.000	4.947	5.053	4.997	4.997	0.0006
5.000 V @ 1 kHz	5.000	4.897	5.103	4.961	4.961	0.0006
60 V Range						
50.00 V @ 45 Hz	50.00	49.47	50.53	49.97	49.97	0.006
50.00 V @ 1 kHz	50.00	48.97	51.03	50.10	50.10	0.007
600 V Range						
300.0 V @ 45 Hz	300.0	296.7	303.3	300.0	300.0	0.07
500.0 V @ 500 Hz	500.0	494.7	505.3	500.9	500.9	0.06
500.0 V @ 1 kHz	500.0	489.7	510.3	500.8	500.8	0.06
1000 V Range						
1000 V @ 45 Hz	1000	987	1013	997	997	0.7

Fox Valley Metrology

_

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com **CERTIFICATE OF** CALIBRATION

ACCREDITED ISO IE CALIBRATION AND TESTING LABORATORY Certificate No. ACT-1272

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
AC VOLTS						
FREQUENCY						
45.00 Hz @ 1 V	45.00	44.95	45.06	45.00	45.00	0.007
50.00 kHz @ 5 V	50.00	49.94	50.06	50.00	50.00	0.006
DC VOLTAGE						
6 V Range						
5.000 V	5.000	4.994	5.007	5.000	5.000	0.0006
600 V Range						
300.0 V	300.0	299.5	300.5	299.9	299.9	0.06
1000 V Range						
1000 V	1000	997	1004	1000	1000	0.7
-1000 V	-1000	-1004	-997	-1000	-1000	0.7
DC VOLTS						
FREQUENCY						
45.00 Hz @ 3 V	45.00	44.95	45.06	45.00	45.00	0.007
50.00 kHz @ 30 V	50.00	49.94	50.06	50.00	50.00	0.006
DC MILLIVOLTS						
30.0 mV	30.0	29.8	30.2	30.0	30.0	0.06
-300.0 mV	-300.0	-300.5	-299.5	-299.9	-299.9	0.06
600.0 mV	600.0	599.3	600.7	599.8	599.8	0.06
TEMPERATURE						
0.0 °C	0.0	-1.0	1.0	0.5	0.5	0.06
-40.0 °C	-40.0	-41.4	-38.6	-39.3	-39.3	0.06
400.0 °C	400.0	395.0	405.0	400.4	400.4	0.06
OHMS						
600 Ohm Range						
19.0 Ohm	19.0	18.6	19.4	19.0	19.0	0.06
50 MOhm Range						
19.00 MOhm	19.00	18.68	19.32	18.98	18.98	0.006
CAPACITANCE						
1000 nF Range						
900 nF	900	887	913	900	900	0.6
CONTINUITY				_	_	
0 Ohms: Beeper On				Pass	Pass	
190 Ohms:				Pass	Pass	
Beeper Off						
DIODE TEST						

Fox Valley Metrology

_

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com **CERTIFICATE OF** CALIBRATION

ACCREDITED CALIBRATION AND TESTING LABORATORY Certificate No. ACT-1272

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
2.000 V	2.000	1.978	2.022	2.001	2.001	0.0007
AC MILLIAMPS						
60 mA Range						
3.00 mA @ 45 Hz	3.00	2.92	3.08	3.02	3.02	0.006
50.00 mA @ 1 kHz	50.00	49.22	50.78	50.03	50.03	0.006
400 mA Range						
400.0 mA @ 1 kHz	400.0	393.7	406.3	399.9	399.9	0.06
AC AMPS						
6 A Range						
4.000 A @ 45 Hz	4.000	3.937	4.063	4.004	4.004	0.0006
10A Range						
9.00 A @ 1 kHz	9.00	8.84	9.16	9.01	9.01	0.007
DC MILLIAMPS						
60 mA Range						
3.00 mA	3.00	2.94	3.06	3.01	3.01	0.007
50.00 mA	50.00	49.47	50.53	49.99	49.99	0.007
400 mA Range						
-400.0 mA	-400.0	-404.3	-395.7	-399.9	-399.9	0.06
DC AMPS						
6 A Range						
4.000 A	4.000	3.957	4.043	3.998	3.998	0.0006
10 A Range						
-9.00 A	-9.00	-9.12	-8.88	-9.00	-9.00	0.007

Fox Valley Metro 3114 Medalist Drive Oshkosh, WI 54902 920) 426-5894 • Fax (http://www.FoxValleyM	920) 426-8120	CERTIF	ICATE OF RATION			ISOTECT7025
Certification Number For Eaton Corporati W126 N7250 FI Menomonee Fa	ion - ICD int Drive		Procedures Follo FVE-007 rev. 2	wed	in any form or rep in full, without pri from originating l	hall not be altered produced, except or written approval ab. These results item(s) calibrated. c 02/04/2012
Purchase Order # Test Instrument Make Model Serial Number Identification Customer Location	4044-671109 Clamp Meter AEMC SR759 224137GKDV EM6996 ICD		Standards Used Instrument FVS-275A FVS-546 FVS-737	Serial Number RY11838 24560221 4542903	Trace Number CJ191-70508-513 CK093-41519-573 CK041-57440-531	Next Cal 07/28/2020 04/30/2021 02/28/2021
Condition Received Condition Returned Calibrated By Technical Review By Calibration Location Calibration Conditions Calibration Date Recalibration Due	In Tolerance In Tolerance Alex Paulsen Tim Bending FVM 67.8°F, 19.9°C, 56.3%R 07/16/2020 07/16/2021	н	confidence level of 95 compliance in this cer measurement into cor uncertainty when dete considered "shared re All instruments have t Calibration was comp	5%; coverage factor rtificate was issued v nsideration. The cus ermining if the result esponsibility.") Unce been calibrated agai leted in accordance	es expressed are based of (k=2). The statement vithout taking the uncert tomer shall assess the r s meet their needs. (This rtainties expressed in no nst standards traceable with ISO/IEC 17025:20 _ Z540.3-2006. Other st	t of ainty of esults and s is ominal units. to NIST. 17,

Calibration Results

* denotes "Out of Tolerance"

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
1A Range; (mV AC) 1000mV/A @60 Hz		(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
10 mA	10.0	8.7	11.3	10.1	10.1	0.07
100 mA	100.0	96.0	104.0	101.3	101.3	0.06
500 mA	500.0	495.5	504.5	504.5	504.5	0.06
	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)
1 A	1.000	0.992	1.008	1.008	1.008	0.0006
10A Range; 100mV/A @60 Hz	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
100 mA	10.0	9.7	10.3	10.0	10.0	0.07
1 A	100.0	99.3	100.7	100.4	100.4	0.07
5 A	500.0	497.5	502.5	501.8	501.8	0.06
	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)
10 A	1.000	0.995	1.005	1.004	1.004	0.0007
100A Range; 10mV/A @60 Hz	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
1 A	10.0	9.7	10.3	10.0	10.0	0.07
10 A	100.0	99.3	100.7	100.1	100.1	0.06

Certification Number CK198-41226-466

Page 1 of 2

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com

CERTIFICATE OF CALIBRATION

Certificate No. ACT-1272

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
50 A	500.0	498.5	501.5	500.3	500.3	0.06
	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)
100 A	1.000	0.998	1.002	1.001	1.001	0.0006
1000A Range; 1mV/A	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
@60 Hz						
10 A	10.0	9.7	10.3	10.0	10.0	0.06
100 A	100.0	99.3	100.7	100.1	100.1	0.07
500 A	500.0	499.0	501.0	500.5	500.5	0.07
900 A	900.0	898.0	902.0	901.2	901.2	0.07

Fox Valley Metro 3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (9 http://www.FoxValleyM	920) 426-8120	CERTIF	ICATE OF RATION			ISO TECT 7025
Certification Number (For Eaton Corporation W126 N7250 Flin Menomonee Fall	on - ICD nt Drive		Procedures Follo FVE-007 rev. 2	wed	in any form or re in full, without pri from originating l	nall not be altered produced, except or written approval ab. These results item(s) calibrated. c 02/04/2012
Purchase Order # Test Instrument Make Model Serial Number Identification Customer Location	4044-671109 Clamp Meter AEMC SR759 224139GKDV EM6997 ICD		Standards Used Instrument FVS-275A FVS-546 FVS-737	Serial Number RY11838 24560221 4542903	Trace Number CJ191-70508-513 CK093-41519-573 CK041-57440-531	Next Cal 07/28/2020 04/30/2021 02/28/2021
Condition Received Condition Returned Calibrated By Technical Review By Calibration Location Calibration Conditions Calibration Date Recalibration Due	In Tolerance In Tolerance Alex Paulsen Tim Bending FVM 67.8°F, 19.9°C, 56.3%Rł 07/16/2020 07/16/2021	1	confidence level of 95 compliance in this cer measurement into cor uncertainty when dete considered "shared re All instruments have t Calibration was comp	%; coverage factor of tificate was issued v nsideration. The cus ermining if the result esponsibility.") Unce been calibrated again leted in accordance	es expressed are based of (k=2). The statement vithout taking the uncert tomer shall assess the r s meet their needs. (Thi rtainties expressed in n nst standards traceable with ISO/IEC 17025:20 _ Z540.3-2006. Other s	t of ainty of esults and s is ominal units. to NIST. 17,

Calibration Results

* denotes "Out of Tolerance"

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
1A Range; 1000mV/A @60 Hz	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
10 mA	10.0	8.7	11.3	10.1	10.1	0.06
100 mA	100.0	96.0	104.0	101.1	101.1	0.06
500 mA	500.0	495.5	504.5	504.5	504.5	0.06
	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)
1 A	1.000	0.992	1.008	1.008	1.008	0.0006
10A Range; 100mV/A @60 Hz	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
100 mA	10.0	9.7	10.3	10.0	10.0	0.07
1 A	100.0	99.3	100.7	100.2	100.2	0.06
5 A	500.0	497.5	502.5	500.9	500.9	0.06
	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)
10 A	1.000	0.995	1.005	1.002	1.002	0.0006
100A Range; 10mV/A @60 Hz	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
1 A	10.0	9.7	10.3	10.0	10.0	0.06
10 A	100.0	99.3	100.7	100.1	100.1	0.07

Certification Number CK198-40179-466

Job Number RK196-59146-463

Page 1 of 2

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com

CERTIFICATE OF CALIBRATION

Certificate No. ACT-1272

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
50 A	500.0	498.5	501.5	500.1	500.1	0.06
	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)
100 A	1.000	0.998	1.002	1.001	1.001	0.0006
1000A Range; 1mV/A	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
@60 Hz	10.0	0.7	40.0	10.0	40.0	0.07
10 A	10.0	9.7	10.3	10.0	10.0	0.07
100 A	100.0	99.3	100.7	100.1	100.1	0.06
500 A	500.0	499.0	501.0	500.3	500.3	0.06
900 A	900.0	898.0	902.0	901.4	901.4	0.06

Eax Vallay Mat		Certin	icates of C		ת אינ <i>ייויי</i> ,)
Fox Valley Met 3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax http://www.FoxValley	(920) 426-8120		ICATE OF RATION		Certificate No.	CREDITEE ECREDITEE BORNEDATOR LABORATORY ACT-1272
Certification Number For Eaton Corporative V126 N7250 Menomonee F	ation - ICD		Procedures Follor FVE-007 rev. 2	wed	in any form or rep in full, without pri from originating l	nall not be altered produced, except or written approval ab. These results item(s) calibrated. 02/04/2012
Purchase Order # Test Instrument Make Model Serial Number Identification Customer Location	4044-671109 Clamp Meter AEMC SR759 239584HKDV EM8032 ICD		Standards Used Instrument FVS-275A FVS-546 FVS-737	Serial Number RY11838 24560221 4542903	Trace Number CJ191-70508-513 CK093-41519-573 CK041-57440-531	Next Cal 07/28/2020 04/30/2021 02/28/2021
Condition Received Condition Returned Calibrated By Technical Review By Calibration Location Calibration Conditions Calibration Date Recalibration Due	In Tolerance In Tolerance Alex Paulsen Tim Bending FVM 67.8°F, 19.9°C, 56.3%RH 07/16/2020 07/16/2021	1	confidence level of 95 compliance in this cer measurement into cor uncertainty when dete considered "shared re All instruments have th Calibration was comp	%; coverage factor tificate was issued v ssideration. The cus rrmining if the result sponsibility.") Unce been calibrated agai leted in accordance	es expressed are based of (k=2). The statement vithout taking the uncert tomer shall assess the r s meet their needs. (This rtainties expressed in no nst standards traceable with ISO/IEC 17025:20 _ Z540.3-2006. Other st	t of ainty of esults and s is ominal units. to NIST. 17,

Calibration Results

* denotes "Out of Tolerance"

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
1A Range; 1000mV/A @60 Hz	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
10 mA	10.0	8.7	11.3	10.2	10.2	0.07
100 mA	100.0	96.0	104.0	101.1	101.1	0.07
500 mA	500.0	495.5	504.5	504.3	504.3	0.06
	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)
1 A	1.000	0.992	1.008	1.007	1.007	0.0007
10A Range; 100mV/A @60 Hz	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
100 mA	10.0	9.7	10.3	10.0	10.0	0.07
1 A	100.0	99.3	100.7	100.2	100.2	0.07
5 A	500.0	497.5	502.5	500.7	500.7	0.06
	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)
10 A	1.000	0.995	1.005	1.002	1.002	0.0006
100A Range; 10mV/A @60 Hz	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
1 A	10.0	9.7	10.3	10.0	10.0	0.07
10 A	100.0	99.3	100.7	100.0	100.0	0.07

Certification Number CK198-41583-466

Job Number RK196-59146-463

Page 1 of 2

Fox Valley Metrology

3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com

CERTIFICATE OF CALIBRATION

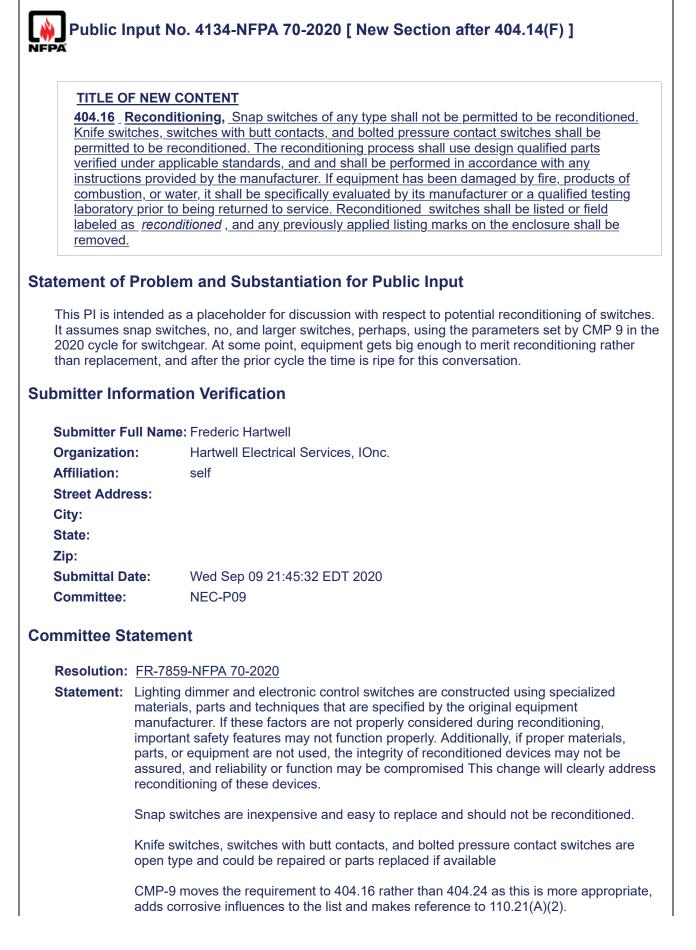
Certificate No. ACT-1272

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
50 A	500.0	498.5	501.5	500.0	500.0	0.07
	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)	(VAC)
100 A	1.000	0.998	1.002	1.000	1.000	0.0007
1000A Range; 1mV/A @60 Hz	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)	(mV AC)
10 A	10.0	9.7	10.3	10.0	10.0	0.07
100 A	100.0	99.3	100.7	100.0	100.0	0.06
500 A	500.0	499.0	501.0	500.3	500.3	0.07
900 A	900.0	898.0	902.0	900.6	900.6	0.07

Fox Valley Metro 3114 Medalist Drive Oshkosh, WI 54902 (920) 426-5894 • Fax (92 http://www.FoxValleyMe	20) 426-8120	CERTIF	ICATE OF RATION			ECT-1272
Certification Number C For Eaton Corporation W126 N7250 Flin Menomonee Falls	n - ICD t Drive		Procedures Follo FVE-014 rev. 2	wed	in any form or rep in full, without pri from originating l	hall not be altered produced, except or written approval ab. These results item(s) calibrated. 02/04/2012
Purchase Order # Test Instrument Make Model Serial Number Identification Customer Location	4044-671109 Torque Wrench CDI 1502LDIN (3%) 0312910937 EM8363 ICD		Standards Used Instrument FVS-093 FVS-275A	Serial Number 03111 RY11838	Trace Number CK191-31886-628 CJ191-70508-513	Next Cal 10/31/2020 07/28/2020
Condition Received Condition Returned Calibrated By Technical Review By Calibration Location Calibration Conditions Calibration Date Recalibration Due	In Tolerance In Tolerance Jim Peterson Kevin Dehne FVM 69.0°F, 20.6°C, 54.2%Rł 07/14/2020 07/14/2021	ł	confidence level of 95 compliance in this cer measurement into cor uncertainty when dete considered "shared re All instruments have th Calibration was comp	%; coverage factor tificate was issued was inderation. The cus ermining if the result esponsibility.") Unce been calibrated agai leted in accordance	es expressed are based of (k=2). The statement vithout taking the uncert tomer shall assess the r s meet their needs. (This rtainties expressed in no nst standards traceable with ISO/IEC 17025:20 L Z540.3-2006. Other st	t of ainty of esults and s is ominal units. to NIST. 17,

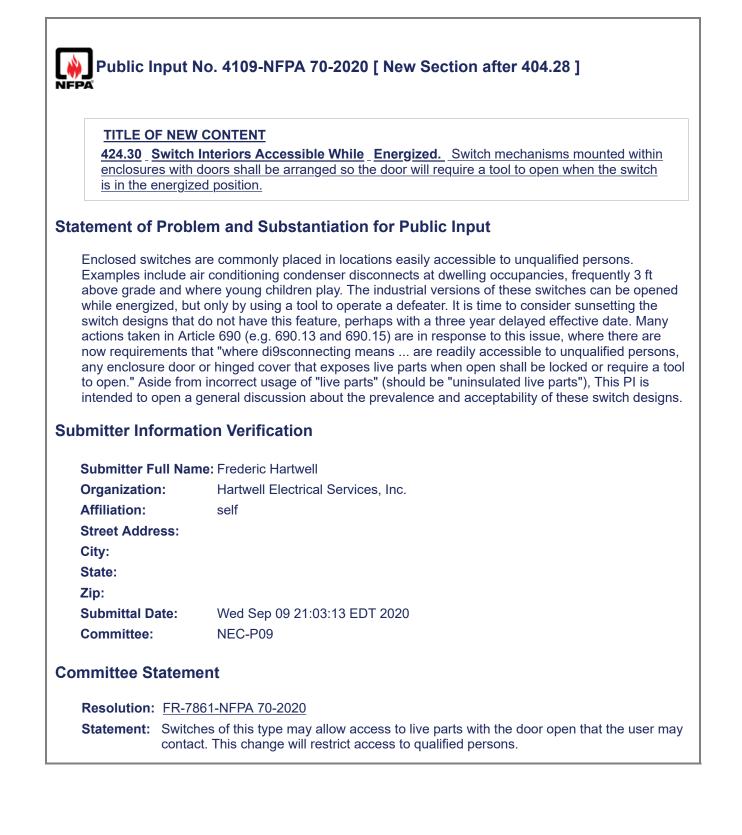
Calibration Results

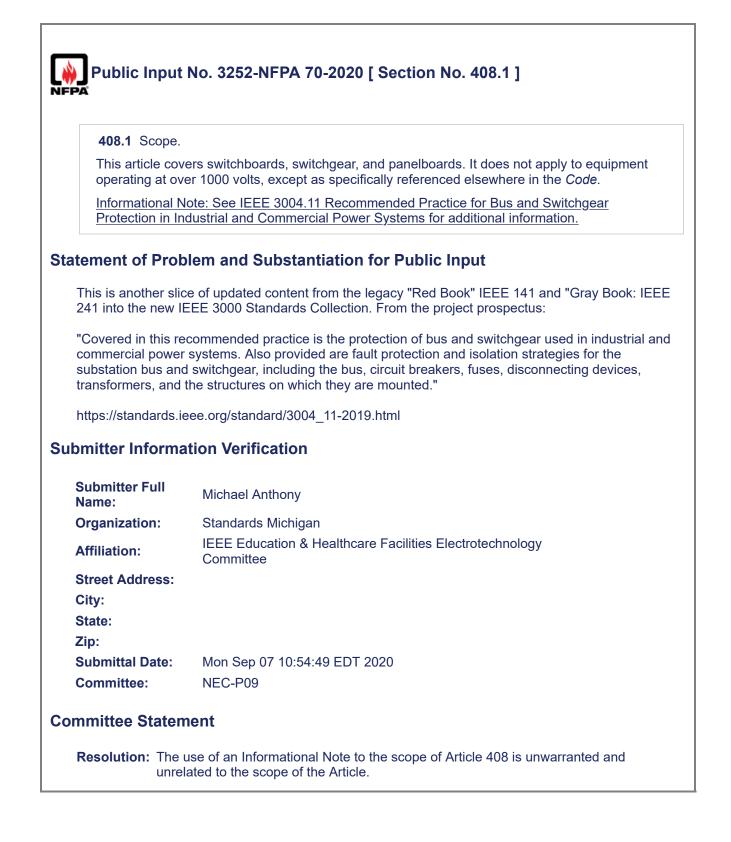
* denotes "Out of Tolerance"

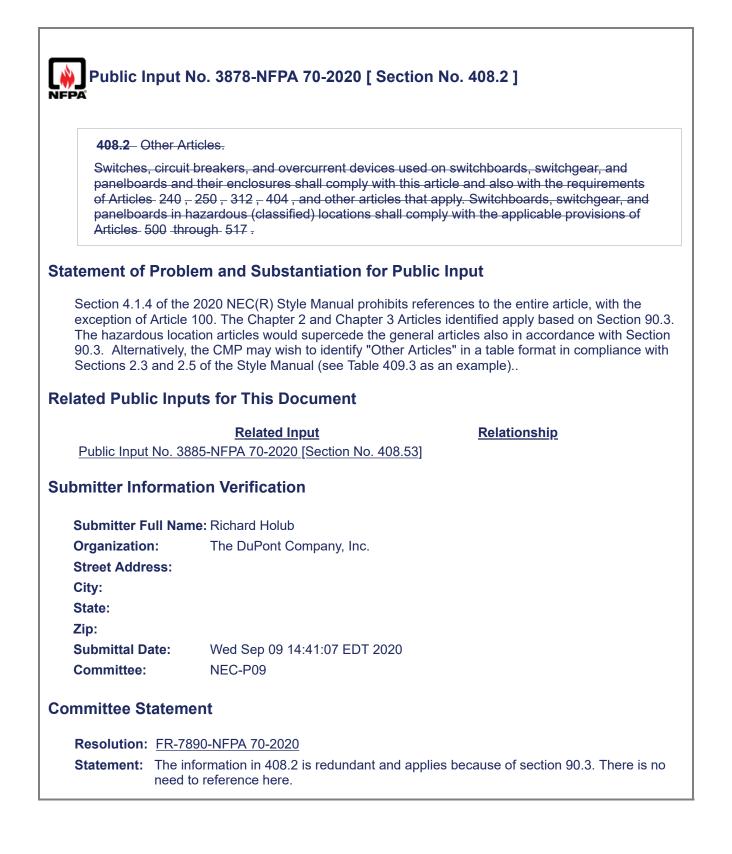

Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
Clockwise	(in lb)	(in lb)	(in lb)	(in lb)	(in lb)	(in lb)
	30.00	29.10	30.90	29.89	29.89	0.091
	90.00	87.30	92.70	90.23	90.23	0.271
	150.00	145.50	154.50	152.00	152.00	0.450
Counter	(in lb)	(in lb)	(in lb)	(in lb)	(in lb)	(in lb)
Clockwise						
	30.00	29.10	30.90	30.31	30.31	0.091
	90.00	87.30	92.70	89.53	89.53	0.271
	150.00	145.50	154.50	148.58	148.58	0.450

Fox Valley Metrology3114 Medalist DriveCER			ficates of Calibra ICATE OF BRATION		tion BC-MRA CCREDITED SOURCE FORMER CALIBRATION AND TESTING ABORATORY Certificate No. ACT-1272		
Certification Number CK For Eaton Corporation W126 N7250 Flint Menomonee Falls,	- ICD Drive		Procedures Follo FVM-042 rev. 1	wed	in any form or rep in full, without pri from originating la	or written approval ab. These results item(s) calibrated.	
Purchase Order # Test Instrument Make Model Serial Number Identification Customer Location	4044-671109 Tape Measure Stanley 30-824 EM6927 ICD Tony		Standards Used Instrument FVM-044 FVM-079A	Serial Number C404R RY11924	Trace Number CH121-20770-384 CJ191-72229-513	Next Cal 05/28/2022 07/28/2020	
Condition Received Condition Returned Calibrated By Technical Review By Calibration Location Calibration Conditions Calibration Date Recalibration Due	In Tolerance In Tolerance Matthew Roughen Laura Fuhrmann FVM 69.5°F, 20.8°C, 34.8%RH 07/16/2020 07/16/2021	1	confidence level of 95 compliance in this cer measurement into coi uncertainty when dete considered "shared re All instruments have I Calibration was comp	5%; coverage factor rtificate was issued w nsideration. The cus ermining if the result esponsibility.") Unce been calibrated agai pleted in accordance	es expressed are based of (k=2). The statement without taking the uncert tomer shall assess the r s meet their needs. (This rtainties expressed in no nst standards traceable with ISO/IEC 17025:20° L Z540.3-2006. Other st	of ainty of esults and s is ominal units. to NIST. 17,	

Calibration Results


* denotes "Out of Tolerance"


Feature	Nominal	Lower Limit	Upper Limit	As Found	As Left	Uncertainty
Length	(in)	(in)	(in)	(in)	(in)	
	12.000	11.969	12.031	11.995	11.995	0.0006
	24.000	23.938	24.062	23.995	23.995	0.0007
	48.000	47.938	48.062	47.995	47.995	0.0007
	72.000	71.938	72.062	71.995	71.995	0.0007
	144.000	143.938	144.062	143.995	143.995	0.0006
	216.000	215.938	216.062	215.995	215.995	0.0006
	312.000	311.938	312.062	311.995	311.995	0.0007
Length	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)
	500.00	499.00	501.00	499.87	499.87	0.007
	1000.00	999.00	1001.00	999.87	999.87	0.006
	5000.00	4999.00	5001.00	4999.87	4999.87	0.008
	8000.00	7999.00	8001.00	7999.87	7999.87	0.012



covered i	shall be listed and <u>used within</u> <u>marked with</u> their ratings. Switches of the types n 404.14(A) through (E) shall be limited to the control of loads as specified accordingly. used to control cord-and-plug-connected loads shall be limited as covered in).
Info	rmational Note No. 1: For switches for signs and outline lighting, see 600.6.
	ormational Note No. 2: For switches controlling motors, see 430.83, 430.109, and 0.110.
atement of	Problem and Substantiation for Public Input
	provides the AHJ with the intended rating for use. This new requirement will provide the necessary information to determine compliance with the installation.
bmitter Inf	ormation Verification
Submitter F	ull Name: Richard Hollander
Organizatio	n: Shums Coda Associates
Street Addre	ess:
City:	
State:	
Zip:	
Submittal D	3 • • • • • • • • • •
Committee:	NEC-P09
mmittee St	atement
Resolution:	FR-7881-NFPA 70-2020
Statement:	The UL standard and associated guide information under category code WJQR for sna switches with push in terminals permits only 14 AWG solid copper conductors to be us at this time.
	"Screwless terminal connectors of the conductor push-in type (also known as "push-in terminals") are restricted to 15 A branch circuits and are intended for connection with 1 AWG solid copper wire only. They are not intended for use with aluminum or copper-cl aluminum wire, 14 AWG stranded copper wire, or 12 AWG solid or stranded copper wire."
	The change to this section is to highlight this limitation for switches that may have push terminals provided. The introduction of 14 AWG copper-clad aluminum into the NEC for branch circuit wiring needs this limitation to ensure push-in terminals on wiring devices are being installed in accordance with their listing. Nothing in the proposed language mandates that the push-in terminals must be used.

Public li	nput No. 3047-NFPA 70-2020 [New Section after 404.22]
	Reconditioned Equipment Dimmers and Electronic Control Switches shall not be permitted to be reconditioned.
Statement of	Problem and Substantiation for Public Input
techniques th considered d proper mater assured, and Reconditione	mer and electronic control switches are constructed using specialized materials, parts and nat are specified by the original equipment manufacturer. If these factors are not properly luring reconditioning, important safety features may not function properly. Additionally, if rials, parts, or equipment are not used, the integrity of reconditioned devices may not be a reliability or function may be compromised. Accordingly, the NEMA Technical Position on ed Equipment, CS 100-2020, specifies that lighting controls are components or assemblies suitable for reconditioning. The proposed change will clearly address reconditioning of s.
Submitter Info	ormation Verification
Submitter Fr Organization Street Addre City: State: Zip:	
Submittal Da Committee:	
committee St	atement
Resolution:	FR-7859-NFPA 70-2020
Statement:	Lighting dimmer and electronic control switches are constructed using specialized materials, parts and techniques that are specified by the original equipment manufacturer. If these factors are not properly considered during reconditioning, important safety features may not function properly. Additionally, if proper materials, parts, or equipment are not used, the integrity of reconditioned devices may not be assured, and reliability or function may be compromised This change will clearly address reconditioning of these devices.
	Snap switches are inexpensive and easy to replace and should not be reconditioned. Knife switches, switches with butt contacts, and bolted pressure contact switches are
	open type and could be repaired or parts replaced if available CMP-9 moves the requirement to 404.16 rather than 404.24 as this is more appropriate, adds corrosive influences to the list and makes reference to 110.21(A)(2).

Public Input No. 206-NFPA 70-2019 [Section No. 408.4]

408.4 _ Field Identification Required.

(A)_ Circuit Directory or Circuit Identification.

Every circuit and circuit modification shall be legibly identified as to its clear, evident, and specific purpose or use. The identification shall include an approved degree of detail that allows each circuit to be distinguished from all others. Spare positions that contain unused overcurrent devices or switches shall be described accordingly. The identification shall be included in a circuit directory that is located on the face, inside of, or in an approved location adjacent to the panel door in the case of a panelboard and at each switch or circuit breaker in a switchboard or switchgear. No circuit shall be described in a manner that depends on transient conditions of occupancy.

(**B**)_ Source of Supply.

All switchboards, switchgear, and panelboards supplied by a feeder(s) in other than one- or twofamily dwellings shall be permanently marked to indicate each device or equipment where the power originates. The label shall be permanently affixed, of sufficient durability to withstand the environment involved, and not handwritten.

Statement of Problem and Substantiation for Public Input

I have received pushback from a handful of electrical engineers who feel that they have no role whatsoever with regard to panel circuit identification. It makes things very difficult when the electrical engineer hides behind the title of this section in an effort to shirk any responsibility. I run into this frequently during electrical plan review. Removing the word "field" helps the electrical plans examiner to request changes, should panel circuit identification need correction at the plan review stage.

To this day, I still get vague panel schedules that state, "receptacles" and "lights," or worse yet - "RCPT" and "LTS." Here is one example of a correction comment that I use quite often:

"There are multiple violations with the panel schedules and the circuit identification. For panel identification in 2017 NEC, an approved degree of detail is required. Please read 2017 NEC Article 408.4(A) and see 2017 NEC handbook page 438. Identification must be more descriptive. Label by area, by station, by number, by location (north, south, east, or west), etc., some method that helps to describe one from another. THIS LIST MAY NOT BE ALL-INCLUSIVE. There are approximately 22 circuits that say, "receptacle." There are approximately 10 circuits that say, "equipment." There are approximately 3 circuits that say, "lighting." This is what the code is trying to prohibit. Note: "Equipment" should be in concert with equipment that is indicated on the equipment schedule on page xxx. Revise all panel circuit identification to reflect 2017 NEC standards."

ALL electrical professionals share a responsibility for circuit identification - from design professional to the electrical plans examiner to the electrical worker on the jobsite. 95 times out of 100, the field identification is taken directly from the panel schedules on the approved set of plans. It is crucial and critical that electrical engineers realize their important contribution with regard to circuit descriptions. The starting point with any type of code enforcement is at plan review. This change is needed as it will assist the electrical plans examiner. The NEC is an enforcement document; this change will improve electrical code enforcement at the plan review stage. There is no reason to limit the scope of this provision solely to "the field." Please strike the word "FIELD."

In addition, mostly all architects and electrical engineers' practice acts (laws and rules) state that panel schedules must be provided as part of the minimum information to be contained on an electrical plan submittal. So in all reality, the counterargument becomes a logical fallacy.

All electrical professionals have a responsibility for circuit identification. All electrical professionals have a responsibility for circuit identification. All electrical professionals have a responsibility for circuit identification.

Submitter Information Verification

Submitter Full Name:	Nick Sasso
Organization:	Clark County Building and Fire
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Thu Dec 26 17:29:49 EST 2019
Committee:	NEC-P09

Committee Statement

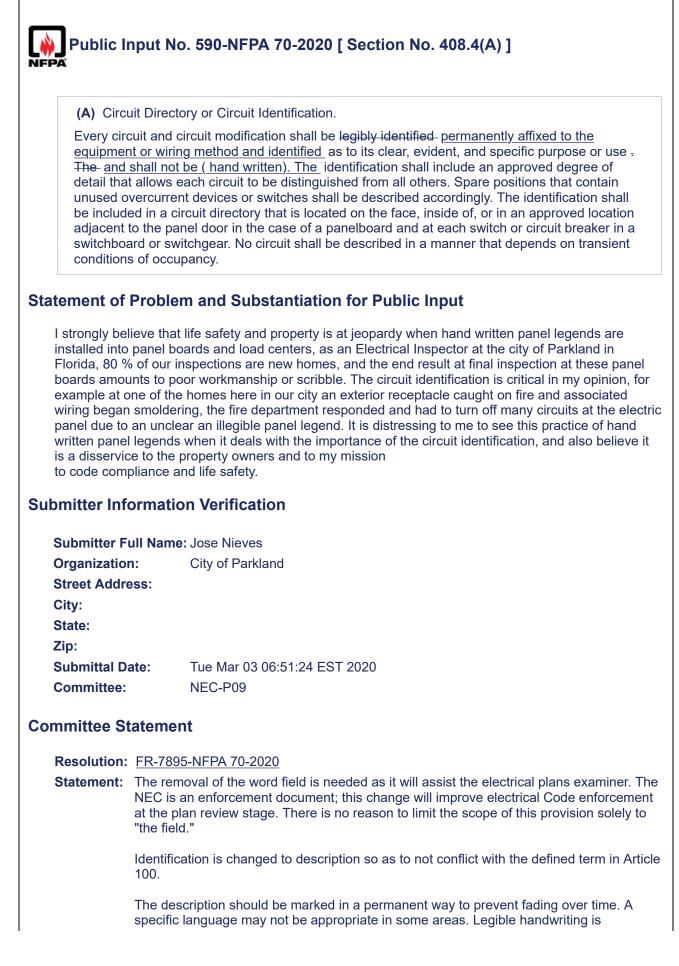
Resolution: FR-7895-NFPA 70-2020

Statement: The removal of the word field is needed as it will assist the electrical plans examiner. The NEC is an enforcement document; this change will improve electrical Code enforcement at the plan review stage. There is no reason to limit the scope of this provision solely to "the field."

Identification is changed to description so as to not conflict with the defined term in Article 100.

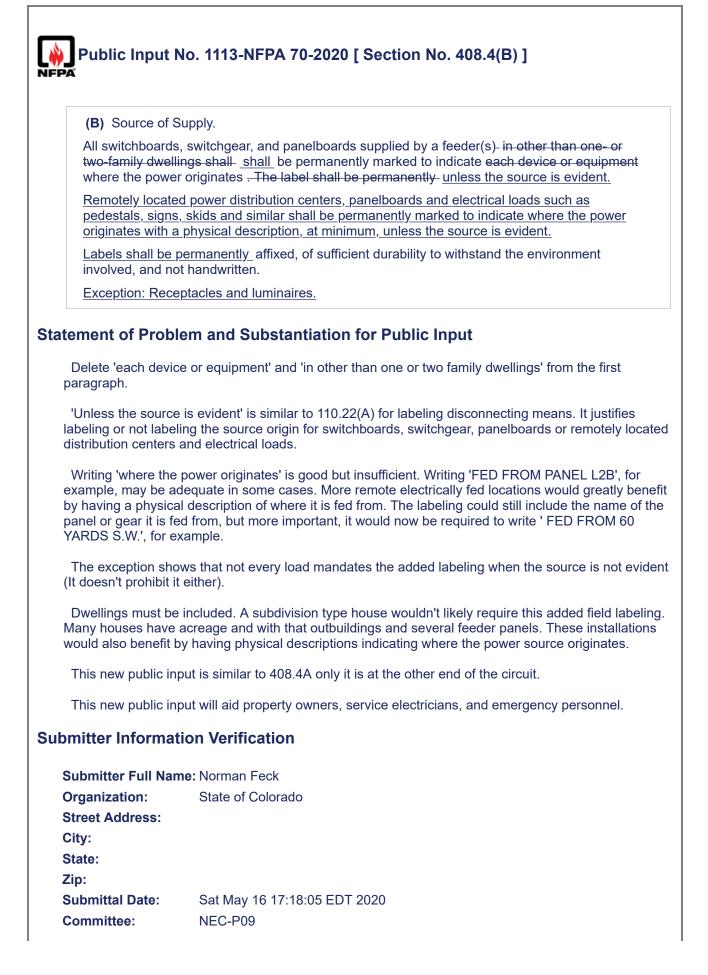
The description should be marked in a permanent way to prevent fading over time. A specific language may not be appropriate in some areas. Legible handwriting is acceptable.

CMP-9 adds physical location for clarity. The location of where power originates is critical information for inspectors, service persons, and other individuals that may have need to locate the supply source. It is not always readily apparent where the location of the source is. For this reason, an identification of the location of the source should be provided in addition to the identification of the source itself.

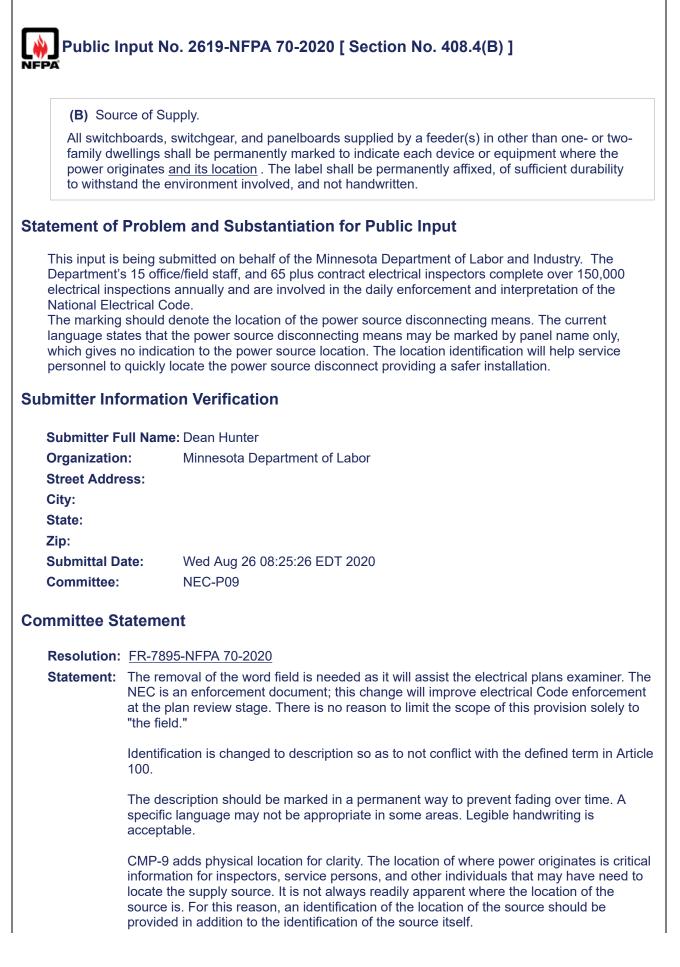

	uit Directory or Circuit Identification.
specific p <u>pencil typ</u> detail tha unused c be includ adjacent switchbo	cuit and circuit modification shall be legibly identified as to its clear, evident, and burpose or use. <u>The markings shall be completed with a permanent type marking, lead</u> <u>be markings are not permitted.</u> <u>The</u> identification shall include an approved degree of it allows each circuit to be distinguished from all others. Spare positions that contain overcurrent devices or switches shall be described accordingly. The identification shall ed in a circuit directory that is located on the face, inside of, or in an approved location to the panel door in the case of a panelboard and at each switch or circuit breaker in a ard or switchgear. No circuit shall be described in a manner that depends on transient s of occupancy.
tement of	Problem and Substantiation for Public Input
then become closed pane require ink c over time.	al language will help clarify pencil and similar types of markings which fade over time and e unreadable will not be allowed. These pencil markings, even when located inside of a lboard cover, will fade over time. Without this added language, it becomes difficult to or other similar type markers to be used which will be permanent and cannot fade away formation Verification
Submitter F	will Newson Debend Eak and
	ull Name: Robert Fahey
Organizatio	n: City of Janesville
Street Addr	n: City of Janesville
Street Addr City:	n: City of Janesville
Street Addr City: State:	n: City of Janesville
Street Addr City:	n: City of Janesville ess:
Street Addr City: State: Zip:	n: City of Janesville ess: ate: Sun Aug 23 08:15:16 EDT 2020
Street Addr City: State: Zip: Submittal D	n: City of Janesville ess: ate: Sun Aug 23 08:15:16 EDT 2020 NEC-P09
Street Addr City: State: Zip: Submittal D Committee: mmittee S	n: City of Janesville ess: ate: Sun Aug 23 08:15:16 EDT 2020 NEC-P09
Street Addr City: State: Zip: Submittal D Committee: mmittee S Resolution:	n: City of Janesville ess: ate: Sun Aug 23 08:15:16 EDT 2020 NEC-P09 tatement
Street Addr City: State: Zip: Submittal D Committee: mmittee S Resolution:	n: City of Janesville ess: ate: Sun Aug 23 08:15:16 EDT 2020 NEC-P09 tatement <u>FR-7895-NFPA 70-2020</u> The removal of the word field is needed as it will assist the electrical plans examiner. T NEC is an enforcement document; this change will improve electrical Code enforcement at the plan review stage. There is no reason to limit the scope of this provision solely to
Street Addr City: State: Zip: Submittal D Committee: mmittee S Resolution:	n: City of Janesville ess: ate: ate: Sun Aug 23 08:15:16 EDT 2020 NEC-P09 tatement FR-7895-NFPA 70-2020 The removal of the word field is needed as it will assist the electrical plans examiner. T NEC is an enforcement document; this change will improve electrical Code enforcement at the plan review stage. There is no reason to limit the scope of this provision solely to "the field." Identification is changed to description so as to not conflict with the defined term in Art

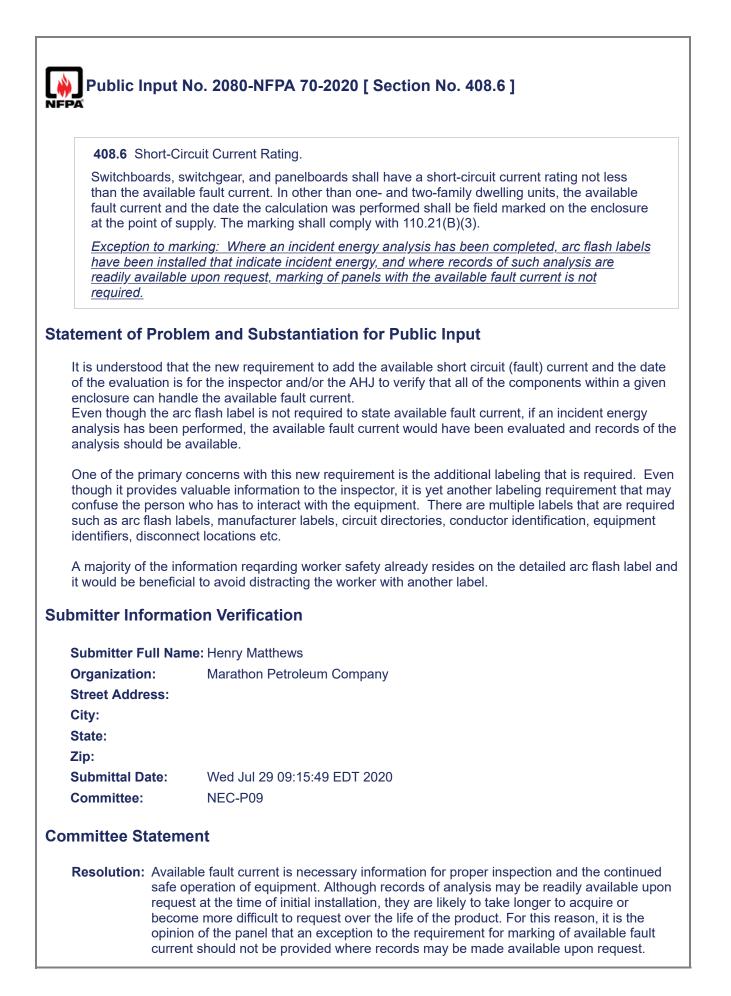
locate the supply source. It is not always readily apparent where the location of the source is. For this reason, an identification of the location of the source should be provided in addition to the identification of the source itself.

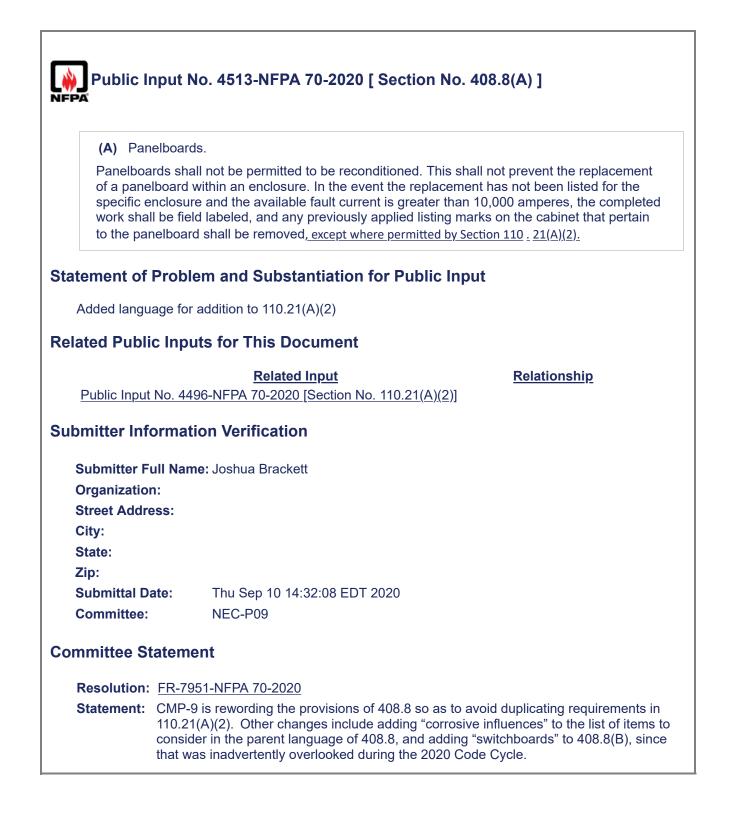
Public Input No. 2725-NFPA 70-2020 [Section No. 408.4(A)] (A) Circuit Directory or Circuit Identification. Every circuit and circuit modification shall be legibly identified in standard English as to its clear, evident, and specific purpose or use. The identification shall include an approved degree of detail that allows each circuit to be distinguished from all others. Spare positions that contain unused overcurrent devices or switches shall be described accordingly. The identification shall be included in a circuit directory that is located on the face, inside of, or in an approved location adjacent to the panel door in the case of a panelboard and at each switch or circuit breaker in a switchboard or switchgear. No circuit shall be described in a manner that depends on transient conditions of occupancy. Statement of Problem and Substantiation for Public Input Both Mr. Sasso and I documented the creative varieties of entries electricians put on circuit directories in the 2019 cycle. NFPA records will also show the science indicating that subject area specialists are prone to assume incorrectly that laypersons understand slang, abbreviations, and symbols with which only the experts--in this case electricians and inspectors--are familiar. In the 2019 cycle, the suggestion that directories be made intelligible to the intended users somehow was taken as meaning they should accommodate transient conditions of occupancy, which would directly contradict the final sentence of 408.4(A). Requiring standard English will simply mean that when someone needs to run to shut off a circuit, they don't have to run to a slang dictionary, a dictionary of abbreviations, or the original installer to figure out the entries. (In other countries that adopt NFPA 70, of course "English" could be replaced with the main language used by the AHJ.) Submitter Information Verification Submitter Full Name: David Shapiro **Organization:** Safety First Electrical **Street Address:** City: State: Zip: Submittal Date: Sat Aug 29 17:38:17 EDT 2020 Committee: NEC-P09 **Committee Statement** Resolution: FR-7895-NFPA 70-2020 **Statement:** The removal of the word field is needed as it will assist the electrical plans examiner. The NEC is an enforcement document; this change will improve electrical Code enforcement at the plan review stage. There is no reason to limit the scope of this provision solely to "the field." Identification is changed to description so as to not conflict with the defined term in Article 100. The description should be marked in a permanent way to prevent fading over time. A specific language may not be appropriate in some areas. Legible handwriting is acceptable.

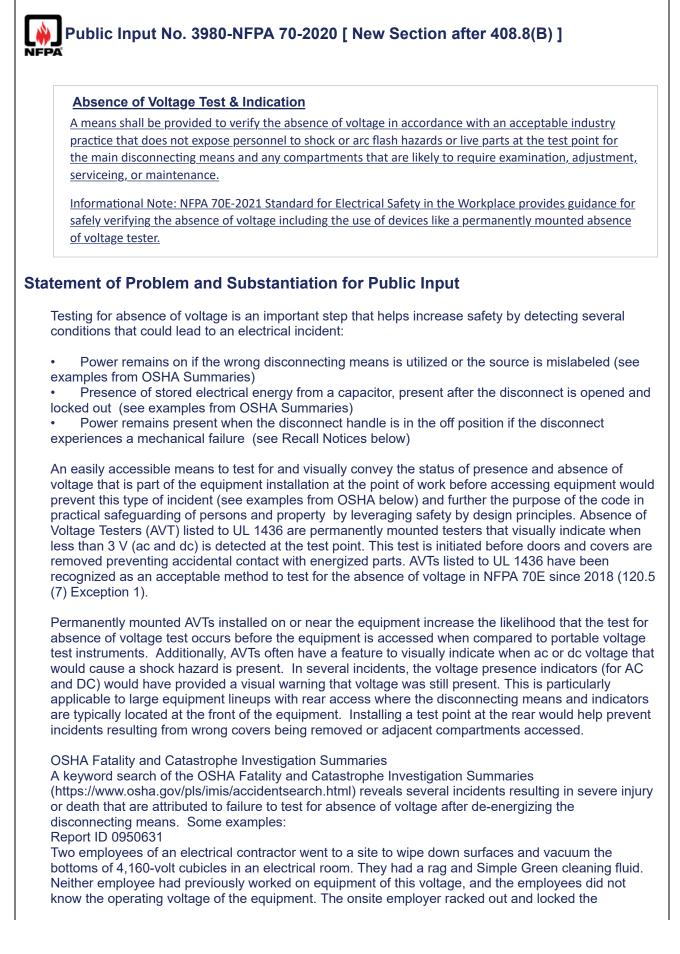

169 of 264

CMP-9 adds physical location for clarity. The location of where power originates is critical information for inspectors, service persons, and other individuals that may have need to locate the supply source. It is not always readily apparent where the location of the source is. For this reason, an identification of the location of the source should be provided in addition to the identification of the source itself.




acceptable.


CMP-9 adds physical location for clarity. The location of where power originates is critical information for inspectors, service persons, and other individuals that may have need to locate the supply source. It is not always readily apparent where the location of the source is. For this reason, an identification of the location of the source should be provided in addition to the identification of the source itself.



Committee St	tatement
Resolution:	FR-7895-NFPA 70-2020
Statement:	The removal of the word field is needed as it will assist the electrical plans examiner. The NEC is an enforcement document; this change will improve electrical Code enforcement at the plan review stage. There is no reason to limit the scope of this provision solely to "the field."
	Identification is changed to description so as to not conflict with the defined term in Article 100.
	The description should be marked in a permanent way to prevent fading over time. A specific language may not be appropriate in some areas. Legible handwriting is acceptable.
	CMP-9 adds physical location for clarity. The location of where power originates is critical information for inspectors, service persons, and other individuals that may have need to locate the supply source. It is not always readily apparent where the location of the source is. For this reason, an identification of the location of the source should be provided in addition to the identification of the source itself.
	In some circumstances the location of the supply source may be readily apparent, but it was determined that allowing for an exemption in these cases would lead to ambiguity and make the requirement too subjective. For this reason, the requirement is applied to all cases.

equipment to be cleaned, and Employee #1, an electrician, did a walk down with the employer to verify that the equipment was racked out. However, the two employees did not know that one of the cubicles remained energized from another source of electric energy. On the door of that cubicle was a red-stenciled sign that read, "CAUTION MAY BE ENERGIZED FROM AN ALTERNATE SOURCE." Neither employee noticed the sign, and the onsite employer did not mention the alternate energy source to the employees. The following day, after meeting with the onsite employer, the employees began to clean the cubicles. When Employee #2 was cleaning the still-energized cubicle, he felt a slight electric shock. He took out a 600-volt proximity tester, and it lit up without touching the conductors. Employee #1 retrieved a voltage meter rated for 750 volts and placed the meter leads on the conductors. The meter failed and the ensuing electric arc burned both employees. Employee #1 received second- and third-degree burns. He underwent skin graft surgery and was hospitalized for his injuries. Employee #2 was hospitalized for more than 24 hours. He received pain medication for his burns. (The original form did not list Employee #2 on an injury line.)

Disconnect Recall Notices

Several brands of disconnects that are commonly used in industrial and commercial applications have experienced recalls due to defects that allow power to remain present when the disconnect handle is in the off position, posing a shock hazard. This failure mode is an example of why testing for absence of voltage is critical in all applications.

Recalls (https://www.cpsc.gov/Recalls)

1. Example 1

Company A recalled more than a million safety switches manufactured between January 1, 2014 and January 18, 2018 because the power can stay on when the safety switch handle is in the off position, posing an electric shock or electrocution hazard. The switches may be installed in or around commercial buildings, outbuildings, apartments and homes with air conditioning units. 2. Example 2

Company B issued a safety recall of 26 models of safety switches that may not disconnect power when the handle is in the "off" position. The affected devices cover certain models of 30A and 60A heavy-duty safety switches manufactured between Nov. 19, 2015, and Jan. 23, 2018. 3. Example 3

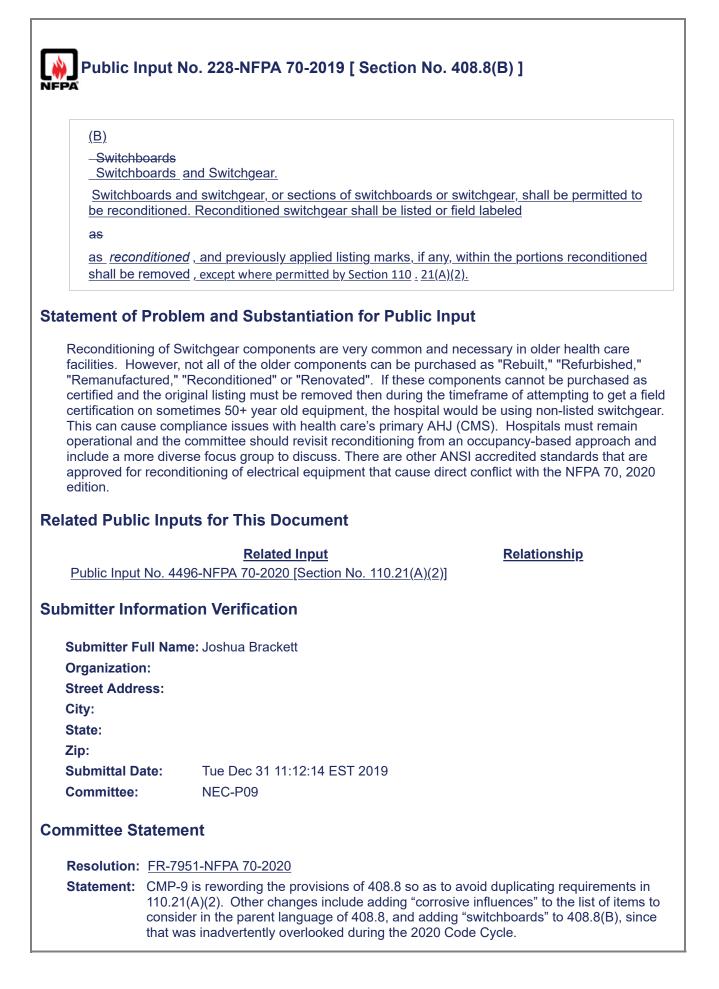
Company C recalled 19,000 toggle and rotary switches. When switched OFF, one electrical pole may remain energized, posing a risk of electrical shock hazard. The switches are typically used with HVAC units, electric distribution and control panels and industrial uses. Primarily the switches are used commercially, however they may also be found in residential applications.

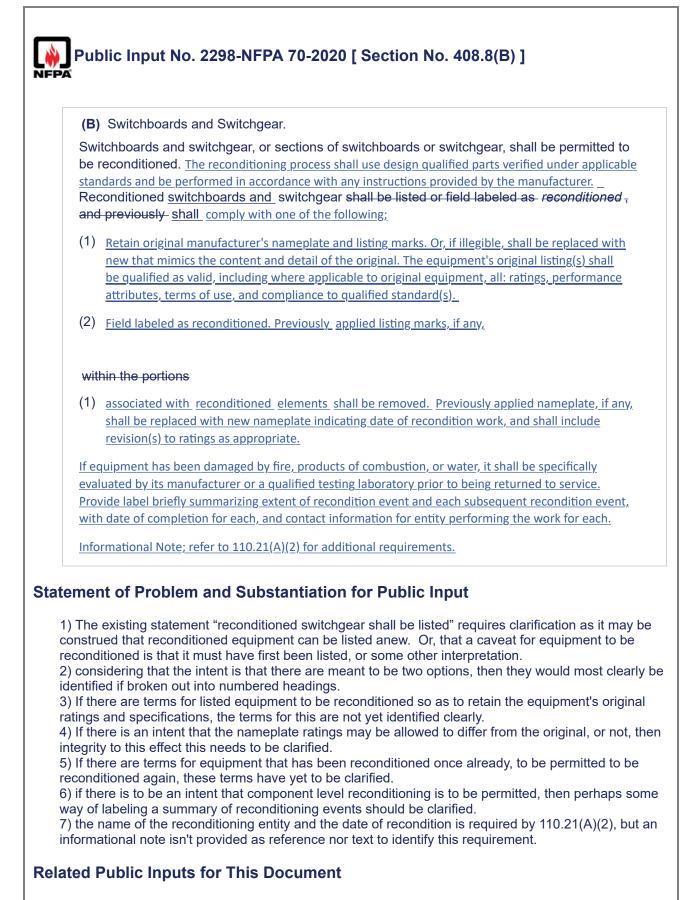
Related Public Inputs for This Document

Related Input

Relationship

Public Input No. 3835-NFPA 70-2020 [New Section after 110.25] Public Input No. 3908-NFPA 70-2020 [New Part after I.]


Submitter Information Verification


Submitter Full Name: Rachel BugarisOrganization:Panduit CorpStreet Address:City:State:Zip:Submittal Date:Wed Sep 09 16:39:47 EDT 2020Committee:NEC-P09

Committee Statement

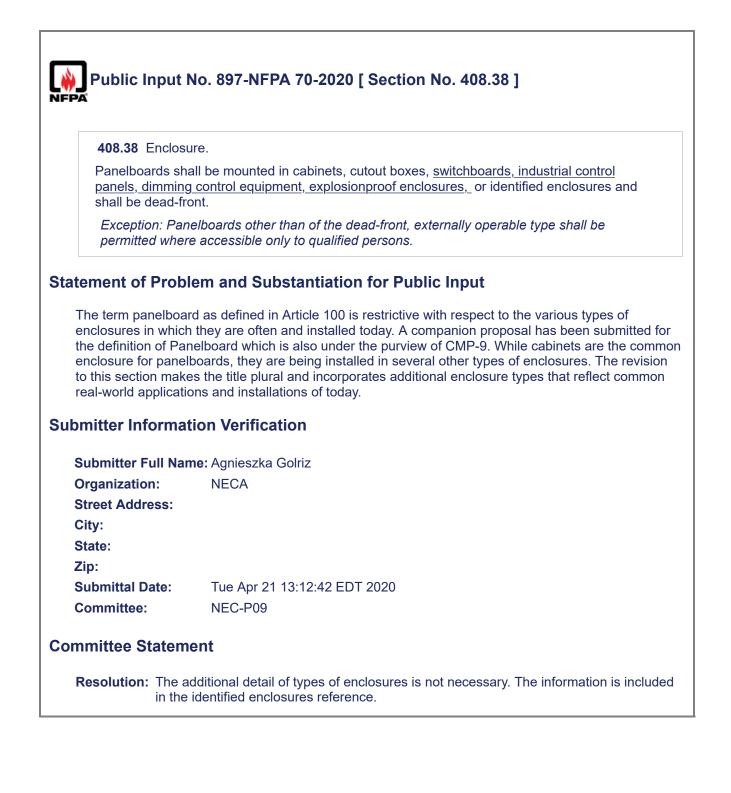
Resolution: An absence of voltage specific device should not be a requirement. Since it may be used without a reference in this document it should not be included as a specific allowance.

The Code does not prohibit the use of an absence of voltage listed device.

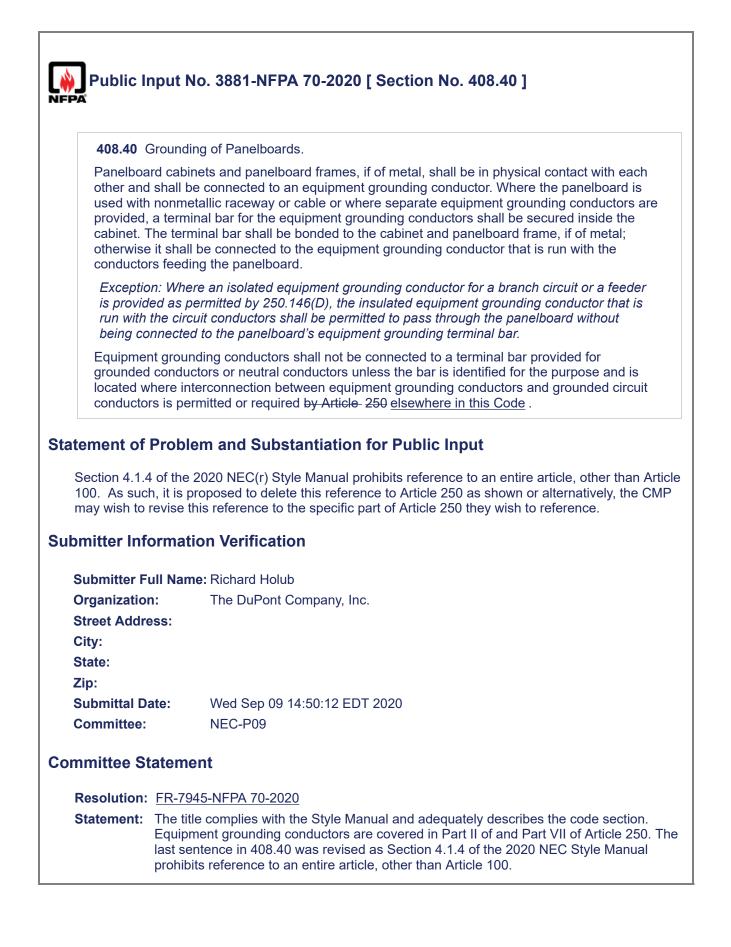
Related Input Public Input No. 2395-NFPA 70-2020 [Section No. 490.49] Relationship similar issues and intent

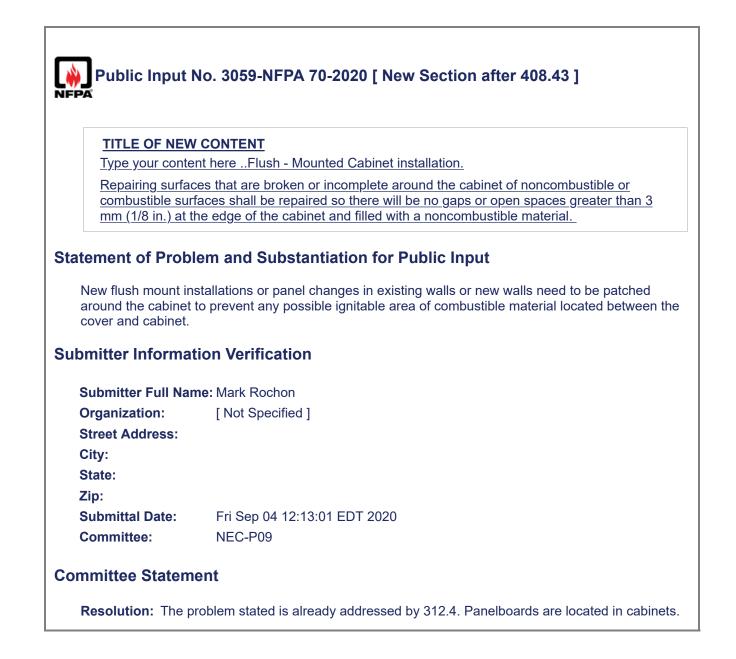
Public Input Public Input	t No. 2396-NFPA 70-2020 [Section No. 240.88] similar topic t No. 2395-NFPA 70-2020 [Section No. 490.49] topic t No. 2396-NFPA 70-2020 [Section No. 240.88] similar topic t ormation Verification topic
Submitter im	
Submitter F	ull Name: John Blissett
Organizatio	n: Bernhard TME
Street Addr	ess:
City:	
State:	
Zip:	
Submittal D	ate: Thu Aug 13 18:19:41 EDT 2020
Committee:	NEC-P09
Committee St	tatement
Resolution:	FR-7951-NFPA 70-2020
Statement:	CMP-9 is rewording the provisions of 408.8 so as to avoid duplicating requirements in 110.21(A)(2). Other changes include adding "corrosive influences" to the list of items to consider in the parent language of 408.8, and adding "switchboards" to 408.8(B), since that was inadvertently overlooked during the 2020 Code Cycle.

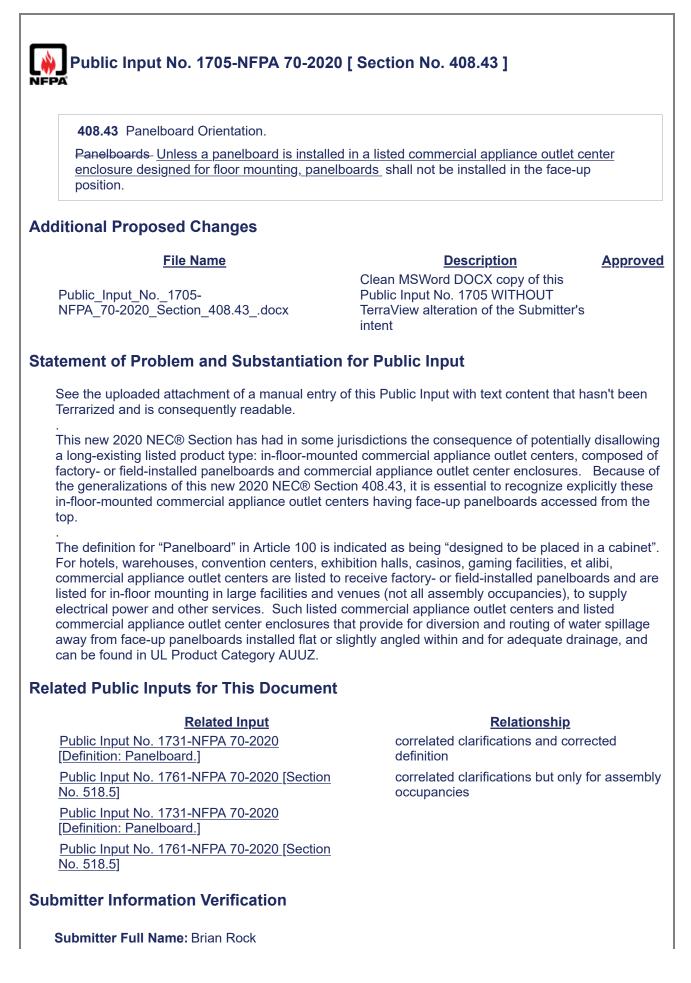
P A	nput No. 4151-NFPA 70-2020 [Section No. 408.8(B)]
(B) Swite	chboards and Switchgear.
be recond	ards and switchgear, or sections of switchboards or switchgear, shall be permitted to ditioned. Reconditioned <u>switchboards and</u> switchgear shall be listed or field labeled as <i>oned</i> , and previously applied listing marks, if any, within the portions reconditioned emoved.
atement of	Problem and Substantiation for Public Input
	an editorial oversight in the 2020 cycle. There was no intention of compromising the of this wording to switchboards.
bmitter Info	ormation Verification
Submitter F	ull Name: Frederic Hartwell
Organization	n: Hartwell Electrical Services, Inc.
Affiliation:	self
Street Addre	ess:
City:	
State:	
Zip:	
Submittal Da	ate: Wed Sep 09 22:27:17 EDT 2020
Committee:	NEC-P09
ommittee St	atement
Resolution:	FR-7951-NFPA 70-2020
• ••••	CMP-9 is rewording the provisions of 408.8 so as to avoid duplicating requirements in $110.21(A)(2)$. Other changes include adding "corrosive influences" to the list of items to

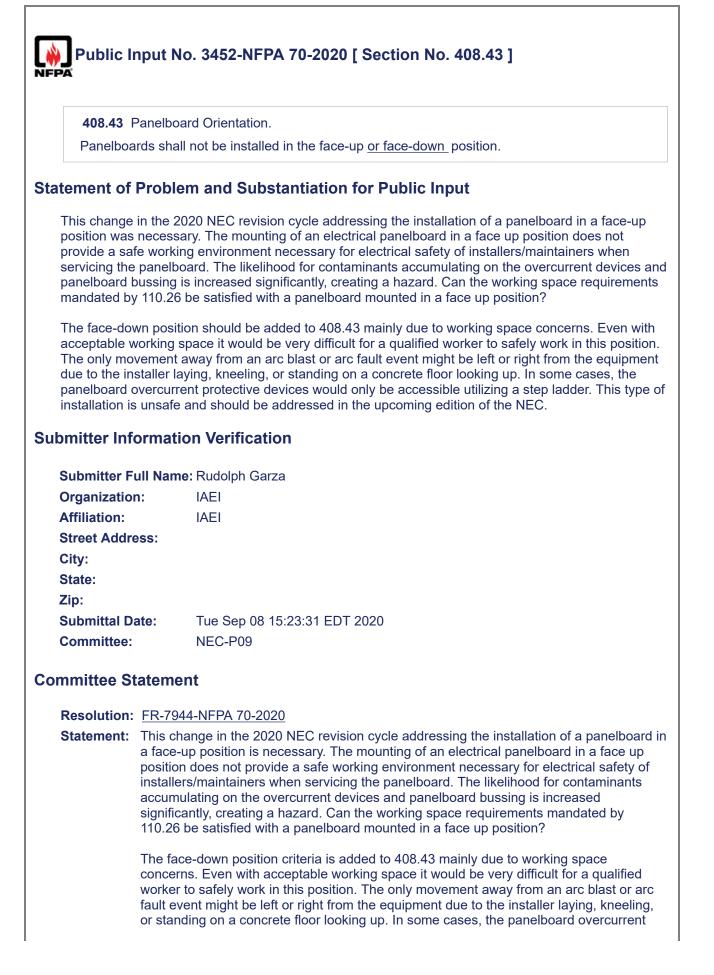

Public Input N	Public Input No. 1230-NFPA 70-2020 [New Section after 408.23]	
408.?? Grounding	g of Switchboards and Switchgear	
Adapt an article si	milar to 408.40 to cover Part II of chapter 408 switchboards and switchgear.	
Statement of Proble	em and Substantiation for Public Input	
Adapt an article sim	ilar to 408.40 to cover Part II of chapter 408 switchboards and switchgear.	
	ved significantly in large part due to improved formatting, use of language and irements and application. This change will continue the trend of making the NEC ictable.	
Submitter Informat	ion Verification	
Submitter Full Nam	ne: Gary Hein	
Organization:	Submission is independent of employer.	
Street Address:		
City:		
State:		
Zip:		
Submittal Date:	Sat May 23 12:04:06 EDT 2020	
Committee:	NEC-P09	
Committee Stateme	ent	
Resolution: The su section	ubstantiation does not provide adequate substantiation to warrant an additional n.	

(D) Back-Fed D	Devices.
and used to tern an additional fas	rcurrent protection devices or plug-in type main lug assemblies that are backfed ninate field-installed ungrounded supply conductors shall be secured in place by tener that requires other than a pull to release the device from the mounting anel panelboard.
atement of Probl	em and Substantiation for Public Input
The term "panelboa "panel" is used with	rd" is the correct term to use within this article covering panelboards. The term in Article 409.
bmitter Informat	ion Varification
	ion vernication
Submitter Full Nan	ne: Agnieszka Golriz
Submitter Full Nan Organization:	
	ne: Agnieszka Golriz
Organization:	ne: Agnieszka Golriz
Organization: Street Address:	ne: Agnieszka Golriz
Organization: Street Address: City:	ne: Agnieszka Golriz
Organization: Street Address: City: State:	ne: Agnieszka Golriz
Organization: Street Address: City: State: Zip:	ne: Agnieszka Golriz NECA
Organization: Street Address: City: State: Zip: Submittal Date: Committee:	ne: Agnieszka Golriz NECA Fri May 15 07:55:41 EDT 2020 NEC-P09
Organization: Street Address: City: State: Zip: Submittal Date:	ne: Agnieszka Golriz NECA Fri May 15 07:55:41 EDT 2020 NEC-P09

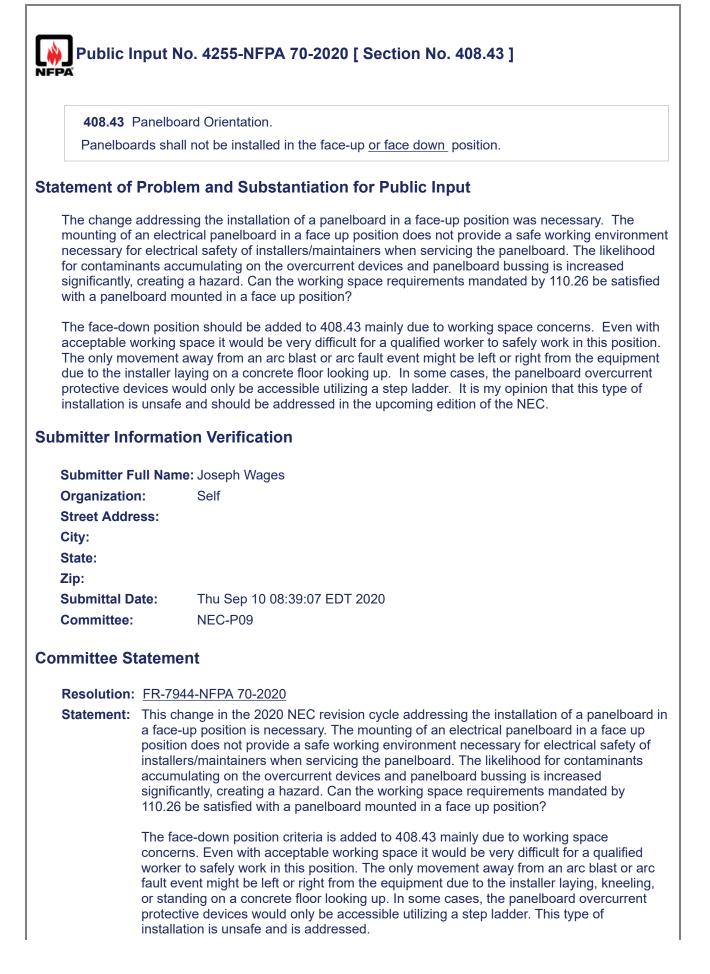

Public Input No. 1768-NFPA 70-2020 [Section No. 408.36 [Excluding any Sub-Sections]] In addition to the requirement of 408.30, a panelboard shall be protected by an overcurrent protective device-having a rating not greater than that of the panelboard. The ampere rating or setting of the overcurrent protective device shall not exceed the rating of the panelboard's bus or, where applicable, the panelboard's common power bus. This overcurrent protective device shall be located within or at any point on the supply side of the panelboard. Exception No. 1: Individual protection shall not be required for a panelboard protected by two main circuit breakers or two sets of fuses in other than service equipment, having a combined rating not greater than that of the panelboard. A panelboard constructed or wired under this exception shall not contain more than 42 overcurrent devices. For the purposes of determining the maximum of 42 overcurrent devices, a 2-pole or a 3-pole circuit breaker shall be considered as two or three overcurrent devices, respectively. Exception No. 2: For existing panelboards, individual protection shall not be required for a panelboard used as service equipment for an individual residential occupancy. Statement of Problem and Substantiation for Public Input Some panelboards, such as Square D's I-Line combo panelboards, have a main common power bus and reduced bus ratings that may feed smaller components within the panelboard. These reduced ratings are permitted by UL 67 section 29.2. This proposed change will align the NEC with the provisions of UL 67 section 29.2. Additionally, this proposed change aligns the overcurrent protection requirements for panelboards with the overcurrent protection requirements for motor control centers found in NEC section 430.94. **Submitter Information Verification** Submitter Full Name: Jason Rohe Organization: Schnackel Engineers Street Address: City: State: Zip: Submittal Date: Tue Jun 30 08:52:14 EDT 2020 Committee: NEC-P09 **Committee Statement** Resolution: There is no requirement in UL 67 for a main power bus rating. The existing wording properly covers the requirement.


Public Input No. 1894-NFPA 70-2020 [Section No. 408.36 [Excluding any Sub-Sections]] In addition to the requirement of 408.30, a panelboard shall be protected by an overcurrent protective device having a rating not greater than that of the panelboard. This overcurrent protective device shall be located within or at any point on the supply side of the panelboard. Exception No. 1: Individual protection shall not be required for a panelboard protected by two main circuit breakers or two sets of fuses in other than service equipment, having a combined rating not greater than that of the panelboard. A panelboard constructed or wired under this exception shall not contain more than 42 overcurrent devices. For the purposes of determining the maximum of 42 overcurrent devices, a 2-pole or a 3-pole circuit breaker shall be considered as two or three overcurrent devices, respectively. Exception No. 2: For existing panelboards, individual protection shall not be required for a panelboard used as service equipment for an individual residential occupancy. Informational Note: See section 240.6 of this document for information on how the ampere ratings of overcurrent protection devices are determined. Statement of Problem and Substantiation for Public Input This PI was created as a result of questions that have been posed related correctly matching adjustable trip circuit breakers and panel boards with respect to ampere rating. The change proposed in this PI improves code usability by pointing the reader to the section in this code that specifies how ampere ratings are determined for circuit breakers and fuses. Submitter Information Verification Submitter Full Name: John Cowans **Organization:** Siemens Street Address: City: State: Zip: Submittal Date: Tue Jul 14 09:40:02 EDT 2020 Committee: NEC-P09 **Committee Statement Resolution:** The existing text is sufficient to serve the needs of the electrical industry. The Informational Note would not provide significant additional usability of the code.


	rds in Damp or Wet Locations.
Panelboards in da to comply with 312	mp or wet locations <u>or installed within 1.8m (6 ft) of a sink</u> shall be installed 2.2 <u>.</u>
atement of Proble	m and Substantiation for Public Input
the wet sink equipme	within 6 ft. of the sink are getting wet and can be physically touched along with nt presenting an electric shock hazard. This spacing is needed in kitchens, os or any area where they are closer than 6 ft. apart.
bmitter Informatio	on Verification
Submitter Full Name	e: Mark Rochon
Organization:	[Not Specified]
Street Address:	
City:	
State:	
Zip:	
	Fri Sep 04 14:10:49 EDT 2020
Submittal Date:	
Submittal Date: Committee:	NEC-P09


A	
408.40	<u>Equipment</u> Grounding of <u>Conductors,</u> Panelboards.
other and used with provided, cabinet. otherwise	and cabinets and panelboard frames, if of metal, shall be in physical contact with each I shall be connected to an equipment grounding conductor. Where the panelboard is a nonmetallic raceway or cable or where separate equipment grounding conductors are a terminal bar for the equipment grounding conductors shall be secured inside the The terminal bar shall be bonded to the cabinet and panelboard frame, if of metal; a it shall be connected to the equipment grounding conductor that is run with the rs feeding the panelboard.
is provia run with	on: Where an isolated equipment grounding conductor for a branch circuit or a feeder led as permitted by 250.146(D), the insulated equipment grounding conductor that is the circuit conductors shall be permitted to pass through the panelboard without onnected to the panelboard's equipment grounding terminal bar.
grounded located w	nt grounding conductors shall not be connected to a terminal bar provided for I conductors or neutral conductors unless the bar is identified for the purpose and is where interconnection between equipment grounding conductors and grounded circuit
According to s about the	rs is permitted or required by Article 250. Problem and Substantiation for Public Input the NFPA Style Manual, the Section Title needs to reflect the content of the rule. The r equipment grounding conductor, not about 'Grounding.'
According to s about the mitter Inf	Problem and Substantiation for Public Input the NFPA Style Manual, the Section Title needs to reflect the content of the rule. The r equipment grounding conductor, not about 'Grounding.' ormation Verification
According to s about the mitter Inf Submitter F Drganizatio Street Addre City: State:	Problem and Substantiation for Public Input the NFPA Style Manual, the Section Title needs to reflect the content of the rule. The r equipment grounding conductor, not about 'Grounding.' ormation Verification ull Name: Mike Holt n: Mike Holt Enterprises Inc
According to s about the mitter Inf Submitter F Organizatio Street Addre City: State: Zip:	Problem and Substantiation for Public Input the NFPA Style Manual, the Section Title needs to reflect the content of the rule. The requipment grounding conductor, not about 'Grounding.' ormation Verification ull Name: Mike Holt n: Mike Holt Enterprises Inc ess:
According to s about the mitter Inf Submitter F Drganizatio Street Addre City: State:	Problem and Substantiation for Public Input the NFPA Style Manual, the Section Title needs to reflect the content of the rule. The requipment grounding conductor, not about 'Grounding.' ormation Verification ull Name: Mike Holt n: Mike Holt Enterprises Inc ess:
According to s about the mitter Inf Submitter F Drganizatio Street Addro City: State: Zip: Submittal D	Problem and Substantiation for Public Input the NFPA Style Manual, the Section Title needs to reflect the content of the rule. The requipment grounding conductor, not about 'Grounding.' ormation Verification ull Name: Mike Holt n: Mike Holt Enterprises Inc ess: ate: Mon Jun 01 17:39:15 EDT 2020 NEC-P09
According to s about the mitter Inf Submitter F Drganizatio Street Addre City: State: Zip: Submittal D Committee Si	Problem and Substantiation for Public Input the NFPA Style Manual, the Section Title needs to reflect the content of the rule. The requipment grounding conductor, not about 'Grounding.' ormation Verification ull Name: Mike Holt n: Mike Holt Enterprises Inc ess: ate: Mon Jun 01 17:39:15 EDT 2020 NEC-P09

	•		Hubbell Incorporated			
	Street Addre	ess:				
	City:					
	State: Zip: Submittal Date: Committee Statem Resolution: FR-7 Statement: This of a fact positi instal accur signif 110.2 The f conce worke fault of or sta prote instal Pane					
	Zip:					
	Submittal Da	ate:	Thu Jun 25 14:20:55 EDT 2020			
	Committee:		NEC-P09			
Co	mmittee St	tatemen	t			
	Resolution:	FR-7944	-NFPA 70-2020			
	Statement: This cha a face-u position installer accumu significa 110.26 I The face concern		ange in the 2020 NEC revision cycle addressing the installation of a panelboard in p position is necessary. The mounting of an electrical panelboard in a face up does not provide a safe working environment necessary for electrical safety of s/maintainers when servicing the panelboard. The likelihood for contaminants lating on the overcurrent devices and panelboard bussing is increased intly, creating a hazard. Can the working space requirements mandated by be satisfied with a panelboard mounted in a face up position? e-down position criteria is added to 408.43 mainly due to working space s. Even with acceptable working space it would be very difficult for a qualified o safely work in this position. The only movement away from an arc blast or arc			
		or standi protectiv	nt might be left or right from the equipment due to the installer laying, kneeling, ng on a concrete floor looking up. In some cases, the panelboard overcurrent e devices would only be accessible utilizing a step ladder. This type of on is unsafe and is addressed.			
	Panelbo position.		ards in general applications should not be installed in a face up or face down			
			cknowledges that conditions within special occupancies such as those in Article warrant a modification to this general rule.			
		PI-1761	may accomplish this and is under the purview of CMP-15.			



protective devices would only be accessible utilizing a step ladder. This type of installation is unsafe and is addressed.

Panelboards in general applications should not be installed in a face up or face down position.

CMP-9 acknowledges that conditions within special occupancies such as those in Article 518 may warrant a modification to this general rule.

PI-1761 may accomplish this and is under the purview of CMP-15.

Panelboards in general applications should not be installed in a face up or face down position.

CMP-9 acknowledges that conditions within special occupancies such as those in Article 518 may warrant a modification to this general rule.

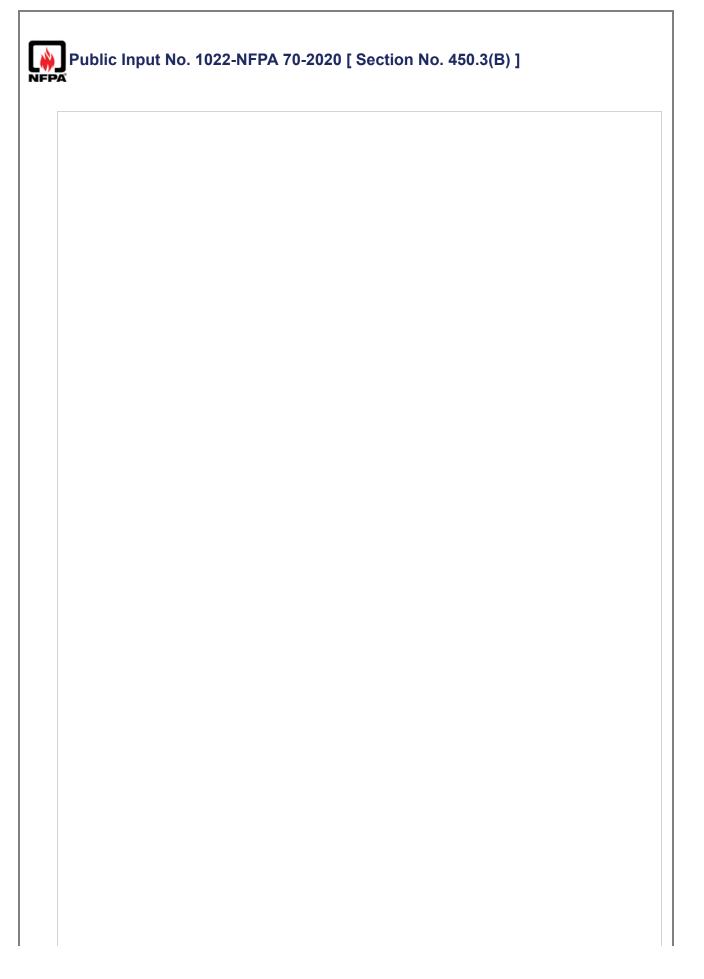
PI-1761 may accomplish this and is under the purview of CMP-15.

408.53	Component Parts.
	fuses, and fuseholders used on panelboards shall comply with the applicable ents of Articles- 240 -and- 404 -
atement of	Problem and Substantiation for Public Input
100. This re As stated in required by S	of the 2020 NEC(r) Style Manual prohibits reference to an entire article, other than Article of the 2020 NEC(r) Style Manual prohibits reference to an entire article, other than Article attraction and the comparison of the requirements formerly stated in Section 408.2. PI 3878, if the CMP wishes to identify "other articles", they should create a table as Sections 2.3 and 2.5 of the 2020 NEC(r) Style Manual. Alternatively, a reference to a of the referenced articles or section could be used here as well.
lated Publi	c Inputs for This Document
	Related Input Relationship
	No. 3878-NFPA 70-2020 [Section No. 408.2]
bmitter Info	ormation Verification
Submitter F	ull Name: Richard Holub
Organizatio	n: The DuPont Company, Inc.
Street Addre	ess:
City:	
State:	
Zip:	
Submittal Da	ate: Wed Sep 09 14:53:15 EDT 2020
Committee:	NEC-P09
ommittee St	atement
Resolution:	FR-7896-NFPA 70-2020
Statement:	408.53 refers to entire Articles and is deleted to comply with the NEC Style Manual. It i also noted that reference to specific sections of other articles is unnecessary for usabil

Public Input No. 2993-NFPA 70-2020 [Section No. 450.1] 450.1 Scope. This article covers the installation of all transformers. Exception No. 1: Current transformers. Exception No. 2: Dry-type transformers that constitute a component part of other apparatus and comply with the requirements for such apparatus. Exception No. 3: Transformers that are an integral part of an X-ray, high-frequency, or electrostatic-coating apparatus. Exception No. 4: Transformers used with Class 2 and Class 3 circuits that comply with Article 725. Exception No. 5: Transformers for sign and outline lighting that comply with Article 600. Exception No. 6: Transformers for electric-discharge lighting that comply with Article 410. Exception No. 7: Transformers used for power-limited fire alarm circuits that comply with Part III of Article 760. Exception No. 8: Transformers used for research, development, or testing, where effective arrangements are provided to safeguard persons from contacting energized parts. This article covers the installation of transformers dedicated to supplying power to a fire pump installation as modified by Article 695 703. This article also covers the installation of transformers in hazardous (classified) locations as modified by Articles 501 through 504. Statement of Problem and Substantiation for Public Input This public input was prepared by the correlating committee task group focused on alternative energy requirements. This task group consisted of the following members: Derrick Atkins (CMP 5), Greg Ball

(CMP 13) Ken Boyce (CMP 1), Bill Brooks (CMP 4), Bruce Campbell, Thomas Domitrovich (CMP 2, CMP 10), Jason Fisher (CMP 4), Scott Harding (CMP 5), Pete Jackson (CMP 8), David Kendall (CMP 8, CC), Chad Kennedy (CMP 13), Christine Porter (CMP 5, CC), Timothy Windey (CMP 13). This change aligns with an effort to re-organize the alternative energy sources NEC Articles into a series of articles closely located together. This reorganization places all sources alternate sources as follows: 689 On-Site Energy Sources 690 Solar Photovoltaic (PV) Systems 691 Large-Scale Photovoltaic (PV) Systems 692 Fuel Cell Systems 693 Generators 694 Wind Electric Systems 695 Energy Storage Systems 696 Storage Batteries This public input aligns with changes that movie 695 to 703. This input supports this effort and to better align with the fact that this Article is closely related to emergency systems. The requirements of this new 703 focus on more than just a fire pump and arguably more so focuses on fire pump systems which is closely aligned with Chapter 7 of the NEC. This moves makes way for alignment of alternative energy sources article arrangement. These articles are closely related to each other and this change is in alignment with the direction by the correlating committee to review alternative energy sources for conflicts and usability. This new alignment will create a similar structure as that found for hazardous locations. The new Article 689 is the a combination of Articles 705, 710 and 712 and will act to be the new general requirements for this series of alternative energy sources.

Related Public Inputs for This Document


Related Input Public Input No. 2987-NFPA 70-2020 [Article 695] Relationship Moving 695 to 703

Submitter Inf	omitter Information Verification							
Submitter F	ull Name: Thomas Domitrovich							
Organizatio	n: Eaton Corporation							
Street Addr	ess:							
City:								
State:								
Zip:								
Submittal D	ate: Thu Sep 03 19:57:04 EDT 2020							
Committee:	NEC-P09							
Committee S	tatement							
Resolution	FR-7782-NFPA 70-2020							
Statement:	The section is rewritten to meet the requirements of the Style Manual. The last two sentences of the section were removed based on the application of 90.3.							
	CMP-9 understands that the scope is within the purview of the Correlating Committee and recommends that the CC take this action.							

450.1 Scope	2.
	overs the installation of all transformers.
Exception N	o. 1: Current transformers.
Exception No	
This article d	oes not cover current transformers, dry -type transformers that constitute a art of other apparatus and comply with the requirements for such apparatus
- Exception N	o. 3: Transformers
<u>, transformer</u> apparatus	s that are an integral part of an X-ray, high-frequency, or electrostatic-coating
- Exception N	o. 4: Transformers
, transformer	s used with
Class 2	
Class 2 and	
Class 3 circu	its that comply with Article-725 - Exception No. 5: Transformers
Class 2 circu	its, transformers for sign and outline lighting
that comply v	with Article- 600 - Exception No. 6: Transformers
, transformer	s for electric-discharge lighting
that comply v	with Article 410 - Exception No. 7: Transformers
, transformer	s used for power-limited fire alarm circuits
that comply v	with Part III of Article- 760 - Exception No. 8:- Transformers
, and transfor	mers used for research, development
,	
or testing	
7	
where effect	ve arrangements are provided to safeguard persons from contacting energized
code articles installation of by Article 695	nsformers not covered by this article, the relevant parts of the applicable specifi shall be followed in lieu of the requirements in this article. This article covers the transformers dedicated to supplying power to a fire pump installation as modifi 5. This. Finally, this article also covers the installation of transformers in lassified) locations as modified by Articles 501 through 504 the hazardous irements -
code articles installation of by Article 69 hazardous (c location requ	shall be followed in lieu of the requirements in this article. This article covers th transformers dedicated to supplying power to a fire pump installation as modifi 5. This. Finally, this-article also-covers the installation of transformers in lassified) locations as modified by Articles-501 -through-504 the hazardous

Su	attempt to ensure that this has been achieved while conforming to Style Manual requirements. It is noted that the previous reference to "as modified by Articles 501 through 504" was not correct as it did not include the Zone articles nor the special occupancy articles 510-517. The more generic language recommended corrects this problem. It is recommended that this PI also be submitted to CMP14 for information and/or comment.							
ou								
	Submitter F	ull Name: Richard Holub						
	Organizatio	n: The DuPont Company, Inc.						
	Street Addre	ess:						
	City:							
	State:							
	Zip:							
	Submittal D	ate: Thu Sep 10 10:00:24 EDT 2020						
	Committee:	NEC-P09						
Со	mmittee St	atement						
	Resolution:	FR-7782-NFPA 70-2020						
	Statement:	The section is rewritten to meet the requirements of the Style Manual. The last two sentences of the section were removed based on the application of 90.3.						
		CMP-9 understands that the scope is within the purview of the Correlating Committee and recommends that the CC take this action.						

	<u>e all defin</u> an <u>y s</u> ubdiv	nitions in the <u>450.</u> 2 to Article 100, arrange them in alphabetical order and visions.)
<u>450.</u> 2 D	efinition.	
The defir	nitions in	this section shall apply only within this article.
Transfor		
		former, single- or polyphase, identified by a single nameplate, unless d in this article.
atement of	Proble	m and Substantiation for Public Input
relocated to	Article 10	ement. The revisions to the NEC Style Manual require all the definitions to be)0. In Verification
Submitter F	ull Name	: David Williams
Organizatio	n:	Delta Charter Township
Street Addr	ess:	
City		
City:		
State:		
-	ate:	Wed Sep 09 09:54:50 EDT 2020
State: Zip:	ate:	Wed Sep 09 09:54:50 EDT 2020 NEC-P09
State: Zip: Submittal D Committee:		NEC-P09
State: Zip: Submittal D Committee:	tatemer	NEC-P09
State: Zip: Submittal D Committee: ommittee St Resolution:	tatemer FR-797 This FR revises Addition	NEC-P09

(B) Transformers 1000 Volts, Nominal, or Less.

Overcurrent protection shall be provided in accordance with Table 450.3(B).

Exception: Where the transformer is installed as a motor control circuit transformer in accordance with 430.72(C)(1) through (C)(5).

Table 450.3(A) Maximum Rating or Setting of Overcurrent Protection for Transformers Over 1000 Volts (as a Percentage of Transformer-Rated Current)

	Transformer Rated	=	Primary = Protection over 1000 Volts =		=	<u>Seco</u> Protec No	_	
Location Limitations					= =	<u>Over 100</u>	<u>00 Volts</u>	1000 Volts or Less
	Impedance	Ξ	<u>Circuit</u> <u>Breaker</u> (<u>See</u> <u>Note 4.</u>)	<u>Fuse</u> Rating	-	<u>Circuit</u> <u>Breaker</u> (<u>See</u> <u>Note 4.</u>)	<u>Fuse</u> Rating ⁻	<u>Circuit</u> Breaker or <u>Fuse</u> <u>Rating</u>
			600%	300%		300%	250%	125%
A	Not more than _ 6%		(See Note 1.)	(See Note 1.)	-	(See Note 1.)	(See Note 1.)	(See Note 1.)
Any location	More than 6%		400%	300%		250%	225%	125%
	and not more than 10%		(See Note 1.)	(See Note 1.)	-	(See Note 1.)	(See Note 1.)	(See Note 1.)
	Any -		300% (See Note 1.)	250% (See Note 1.)		Not required	Not required ⁻	Not required
Supervised						300%	250%	250%
locations only (See Note 3.)	Not more than 6%		600%	300% -		(See Note 5.)	(See Note 5.)	(See Note 5.)
	More than 6%					250%	225%	250%
	and not more than 10%		400%	300% -		(See Note 5.)	(See Note 5.)	(See Note 5.)

Notes:

1. Where the required fuse rating or circuit breaker setting does not correspond to a standard rating or setting, a higher rating or setting that does not exceed the following shall be permitted:

a. The next higher standard rating or setting for fuses and circuit breakers 1000 volts and below, or

b. The next higher commercially available rating or setting for fuses and circuit breakers above 1000 volts.

2. Where secondary overcurrent protection is required, the secondary overcurrent device shall be permitted to consist of not more than six circuit breakers or six sets of fuses grouped in one location. Where multiple overcurrent devices are utilized, the total of all the device ratings shall not exceed the allowed value of a single overcurrent device. If both circuit breakers and fuses are used as the overcurrent device, the total of the device ratings shall not exceed that allowed for fuses.

3. A supervised location is a location where conditions of maintenance and supervision ensure that only qualified persons monitor and service the transformer installation.

4. Electronically actuated fuses that may be set to open at a specific current shall be set in

accordance with settings for circuit breakers.

5. A transformer equipped with a coordinated thermal overload protection by the manufacturer shall be permitted to have separate secondary protection omitted.

Table 450.3(B) Maximum Rating or Setting of Overcurrent Protection for Transformers 1000 Volts and Less (as a Percentage of Transformer-Rated Current)

	<u>P</u> 1	rimary Protect	Ξ	Secondary Protection (See Note 2.)		
Protection Method	Currents of <u>9 Amperes</u> or More	<u>Currents</u> Less Than 9 Amperes			Currents of 9 Amperes or More	<u>Currents</u> Less Than 9 Amperes
Primary only protection	125% (See Note 1.)	167%	300%	-	Not required	Not required
Primary and secondary protection	250% (See Note 3.)	250% (See Note 3.)	250% (See Note 3.)	-	125% (See Note 1.)	167%

Notes:

1. Where 125 percent of this current does not correspond to a standard rating of a fuse or nonadjustable circuit breaker, a higher rating that does not exceed the next higher standard rating shall be permitted.

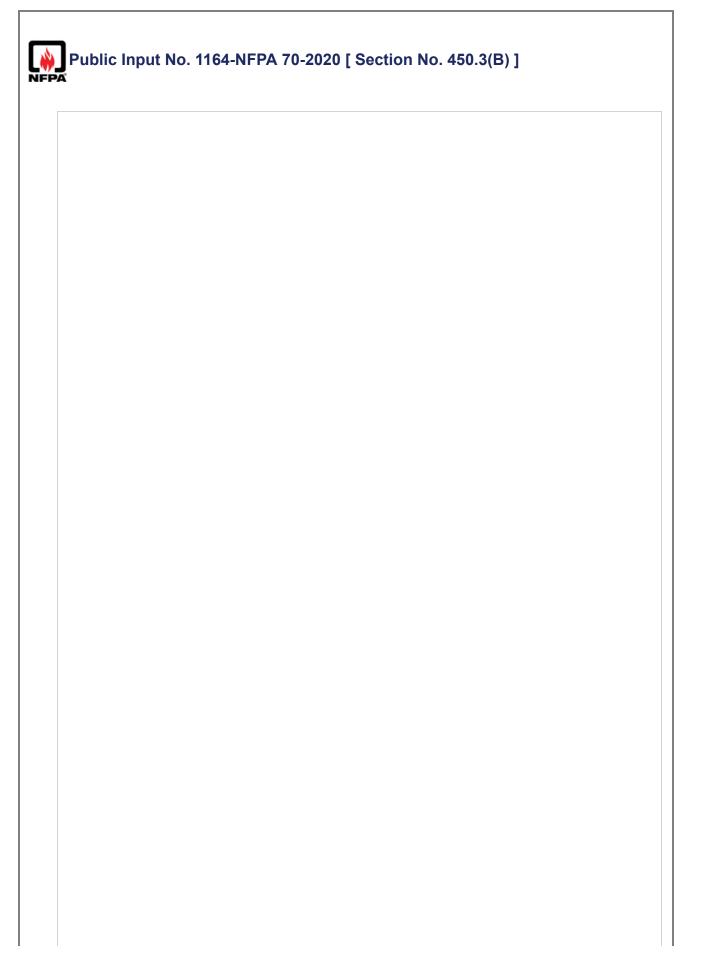
2. Where secondary overcurrent protection is required, the secondary overcurrent device shall be permitted to consist of not more than six circuit breakers or six sets of fuses grouped in one location. Where multiple overcurrent devices are utilized, the total of all the device ratings shall not exceed the allowed value of a single overcurrent device.

3. A transformer equipped with coordinated thermal overload protection by the manufacturer and arranged to interrupt the primary current shall be permitted to have primary overcurrent protection rated or set at a current value that is not more than six times the rated current of the transformer for transformers having not more than 6 percent impedance and not more than four times the rated current of the transformer for transformers having more than 6 percent but not more than 10 percent impedance.

Informational Note to Table 450.3(B): Momentary primary-side inrush currents greater than 20 times the current rating of the transformer can occur due to magnetization of the coil upon energization. Transformer primary-side inrush currents and the use of time-current coordination curves for the primary overcurrent protection device should both be considered to provide adequate performance.

Statement of Problem and Substantiation for Public Input

It is a common mistake, even among seasoned engineers, to set the overcurrent protection device rating at 1.25 times the current of the Xfmr, especially on small dry type transformers. While it does not present a dangerous condition, choosing an overcurrent device size in this manner without checking the time current curves of the overcurrent protection device may result in nuisance tripping of the breaker or blowing the fuse. This note would provide information to users not familiar with inrush saturation currents and how high they can be- even if they are just momentary.


Submitter Information Verification

Organization:	Fluor Enterprises, Inc.
Affiliation:	Associated Builders and Contractors, Inc.
Street Address:	

:06 EDT 2020

Committee Statement

Resolution: The submitters show no substantiation for safety improvement so no changes are made. The submitter of PI-415 suggests an interesting topic but provided no substantiation to the suggested change.

(B) Transformers 1000 Volts, Nominal, or Less.

Overcurrent protection shall be provided in accordance with Table 450.3(B).

Exception: Where the transformer is installed as a motor control circuit transformer in accordance with 430.72(C)(1) through (C)(5).

Table 450.3(A) Maximum Rating or Setting of Overcurrent Protection for Transformers Over 1000 Volts (as a Percentage of Transformer-Rated Current)

	Transformer Rated Impedance		Protecti	Primary Protection over 1000 Volts		<u>Secondary</u> <u>Protection (See</u> <u>Note 2.)</u>		_
Location Limitations			1000	voits	= =	Over 1000 Volts -		1000 Volts or Less
			<u>Circuit</u> Breaker (<u>See</u> Note 4.)	Rating	-	Circuit Breaker (See Note 4.)	<u>Fuse</u> Rating ⁻	<u>Circuit</u> Breaker or Fuse <u>Rating</u>
	Network		600%	300%		300%	250%	125%
Any le setiere	Not more than 6%	(See Note 1.)	(See Note 1.)	-	(See Note 1.)	(See ⁻ Note 1.)	(See Note 1.)	
Any location	More than 6%		400%	300%		250%	225%	125%
	and not more than 10%	-	(See Note 1.)	(See Note 1.)	-	(See Note 1.)	(See ⁻ Note 1.)	(See Note 1.)
		300	^{9%} 250%					
	Any	- (Se No 1.)	te (See	-				
Supervised				Not				300%
locations only (See Note 3.)	Not required		Not required	more than 6%	-	600%	300% -	(See Note 5.)
	More than 6% and not more ⁻ than 10%			300%		250%	225%	250%
			400%		-	(See Note 5.)	(See - Note 5.)	(See Note 5.)

Notes:

1. Where the required fuse rating or circuit breaker setting does not correspond to a standard rating or setting, a higher rating or setting that does not exceed the following shall be permitted:

a. The next higher standard rating or setting for fuses and circuit breakers 1000 volts and below, or

b. The next higher commercially available rating or setting for fuses and circuit breakers above 1000 volts.

2. Where secondary overcurrent protection is required, the secondary overcurrent device shall be permitted to consist of not more than six circuit breakers or six sets of fuses grouped in one location. Where multiple overcurrent devices are utilized, the total of all the device ratings shall not exceed the allowed value of a single overcurrent device. If both circuit breakers and fuses

are used as the overcurrent device, the total of the device ratings shall not exceed that allowed for fuses.

3. A supervised location is a location where conditions of maintenance and supervision ensure that only qualified persons monitor and service the transformer installation.

4. Electronically actuated fuses that may be set to open at a specific current shall be set in accordance with settings for circuit breakers.

5. A transformer equipped with a coordinated thermal overload protection by the manufacturer shall be permitted to have separate secondary protection omitted.

Table 450.3(B) Maximum Rating or Setting of Overcurrent Protection for Transformers 1000 Volts and Less (as a Percentage of Transformer-Rated Current)

	Primary Protection			Ξ	Secondary Protection (Secondary Protection (
Protection Method	<u>Currents of</u> <u>9 Amperes</u> <u>or More</u>	<u>Currents</u> Less Than 9 Amperes	<u>Currents</u> Less Than 2 Amperes	=	Currents of 9 Amperes or More	<u>Currents</u> Less Than 9 Amperes
Primary only protection	125% (See Note 1.)	167%	300%	-	Not required	Not required
Primary and secondary protection	250% (See Note 3.)	250% (See Note 3.)	250% (See Note 3.)	-	125% (See Note 1.)	167%

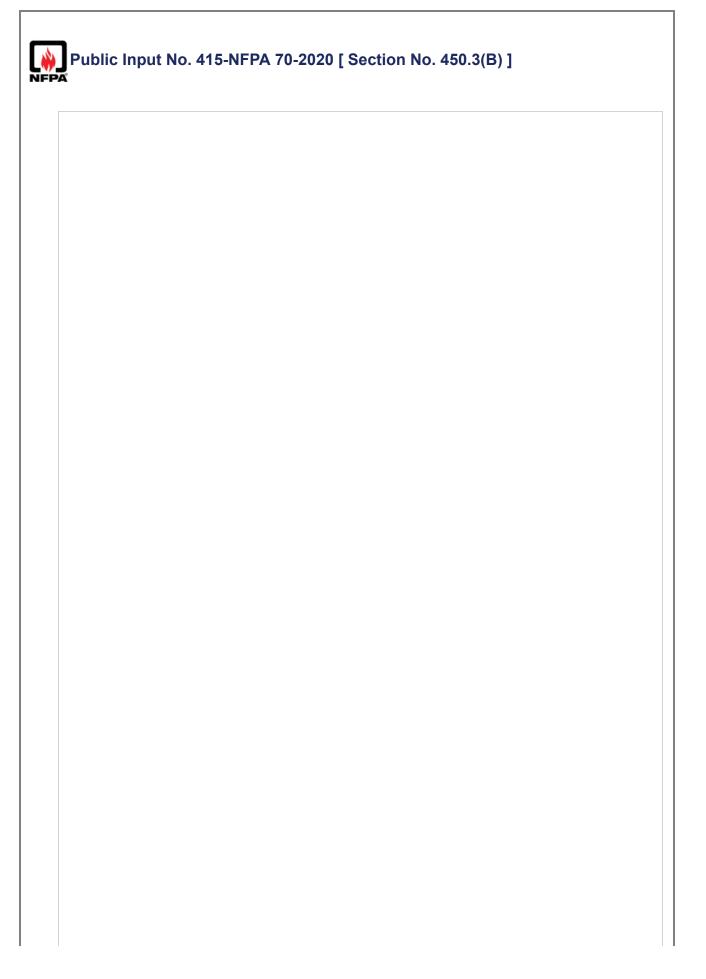
Notes:

1. Where 125 percent of this current does not correspond to a standard rating of a fuse or nonadjustable circuit breaker, a higher rating that does not exceed the next higher standard rating shall be permitted.

2. Where secondary overcurrent protection is required, the secondary overcurrent device shall be permitted to consist of not more than six circuit breakers or six sets of fuses grouped in one location. Where multiple overcurrent devices are utilized, the total of all the device ratings shall not exceed the allowed value of a single overcurrent device.

3. A transformer equipped with coordinated thermal overload protection by the manufacturer and arranged to interrupt the primary current shall be permitted to have primary overcurrent protection rated or set at a current value that is not more than six times the rated current of the transformer for transformers having not more than 6 percent impedance and not more than four times the rated current of the transformer for transformers having more than 6 percent but not more than 10 percent impedance.

Statement of Problem and Substantiation for Public Input


This would clear up confusion when using the table. Currently there is no reason to use any other row under the "Supervised Location" Section in 450.3(A) Besides the "Any" row due to the way it was written. This change still covers all transformers in a "Supervised Location" and still makes sure there is adequate overcurrent protection for any type.

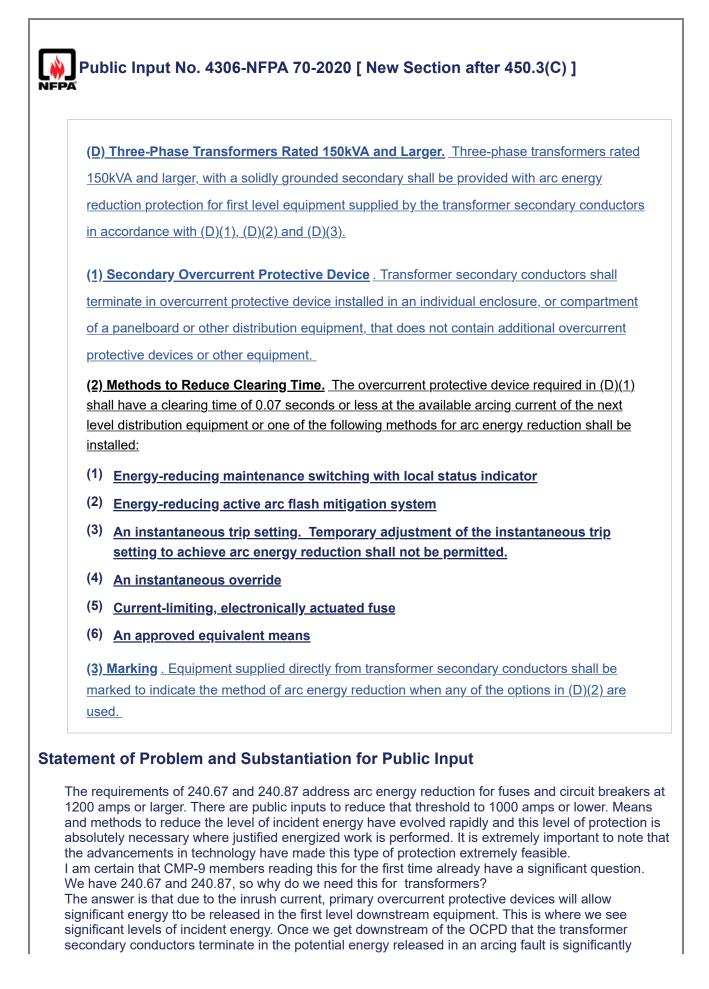
Submitter Information Verification

Submitter Full Name: Jordan LocherOrganization:E-Light ElectricAffiliation:EmployeeStreet Address:City:

State: Zip:	
Submittal Date:	Tue May 19 19:49:18 EDT 2020
Committee:	NEC-P09
Committee Stateme	ent

Resolution: The submitters show no substantiation for safety improvement so no changes are made. The submitter of PI-415 suggests an interesting topic but provided no substantiation to the suggested change.

(B)_ Transformers 1000 Volts, Nominal, or Less.


Overcurrent protection shall be provided in	accordance v	vith Table 450.3(B).
Exception: Where the transformer is instan accordance with 430.72(C)(1) through (C)		r control circuit transformer in
Table 450.3(A) Maximum Rating or Setting 1000 Volts (as a Percentage of Transforme		
Location Limitations	Trans	former Rated Impedance
-	to offen over	
<u></u>	otection over	1000 1015
Secondary	Protection (S	ee Note 2.)
	<u>Over 1000</u>	Volts
<u>10</u>	000 Volts or L	ess
<u>Circuit Breaker (See N</u>	<u>ote 4.)</u>	Fuse Rating
<u>-</u> <u>Circuit Breaker (See N</u>	ote 4.)	Fuse Rating
	Circuit Brea	aker or Fuse Rating
Any location Not more than 6		aker of Fuse Rating
<u>600%</u>		<u>300%</u>
<u>(See Note 1.)</u>		<u>(See Note 1.)</u>
<i>F.</i>		A/.
<u>300%</u>		250%
<u>(See Note 1.)</u>		<u>(See Note 1.)</u>
-		
		<u>125%</u>
		<u>(See Note 1.)</u>
More than 6%		
and not more than 10%		
-		
<u>400%</u>		<u>300%</u>
<u>(See Note 1.)</u>		<u>(See Note 1.)</u>
-		

<u>250%</u>	<u>225%</u>
<u>(See Note 1.)</u>	<u>(See Note 1.)</u>
	125%
	12070
	<u>(See Note 1.)</u>
Supervised locations only (See Note 3.)	Any
<u>300%</u>	<u>250%</u>
<u>(See Note 1.)</u>	<u>(See Note 1.)</u>
<u>Not required</u>	Not required
-	
	Not required
Not more than 6%	
	300%
<u>600%</u>	300%
300%	<u>250%</u>
<u>(See Note 5.)</u>	<u>(See Note 5.)</u>
-	
	<u>250%</u>
	<u>(See Note 5.)</u>
More than 6%	
and a share we than 100/	
and not more than 10%	
400%	300%
<u>250%</u>	225%
<u>(See Note 5.)</u>	<u>(See Note 5.)</u>
-	
<u>250%</u>	
(See Note	<u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>

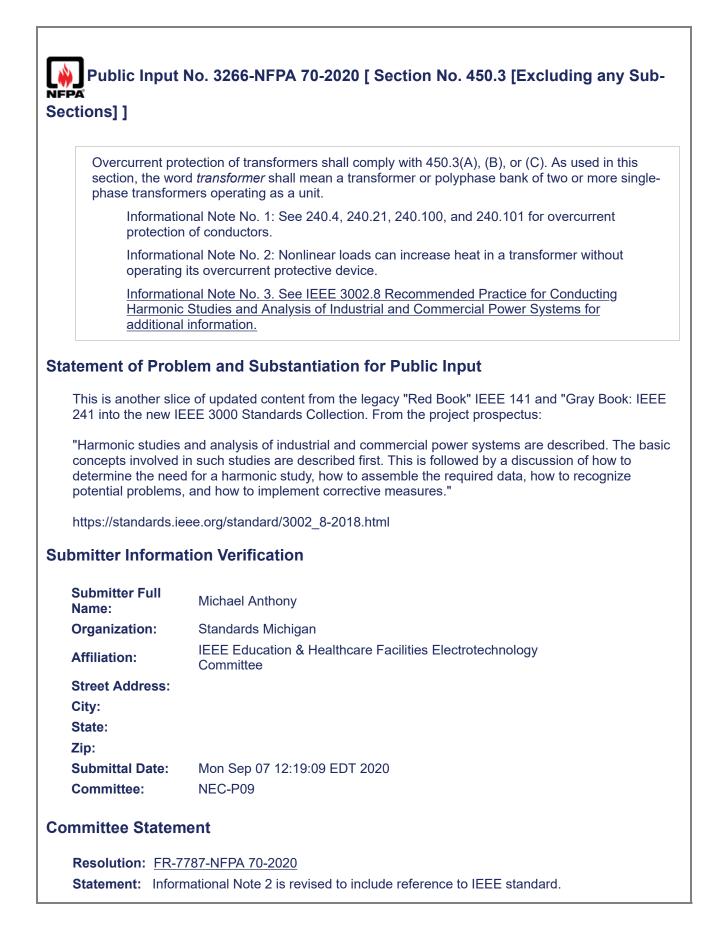
1. Where the required fuse rating or circuit breaker setting does not correspond to a standard rating or setting, a higher rating or setting that does not exceed the following shall be permitted: a. The next higher standard rating or setting for fuses and circuit breakers 1000 volts and below, or b. The next higher commercially available rating or setting for fuses and circuit breakers above 1000 volts. 2. Where secondary overcurrent protection is required, the secondary overcurrent device shall be permitted to consist of not more than six circuit breakers or six sets of fuses grouped in one location. Where multiple overcurrent devices are utilized, the total of all the device ratings shall not exceed the allowed value of a single overcurrent device. If both circuit breakers and fuses are used as the overcurrent device, the total of the device ratings shall not exceed that allowed for fuses. 3. A supervised location is a location where conditions of maintenance and supervision ensure that only qualified persons monitor and service the transformer installation. 4. Electronically actuated fuses that may be set to open at a specific current shall be set in accordance with settings for circuit breakers. 5. A transformer equipped with a coordinated thermal overload protection by the manufacturer shall be permitted to have separate secondary protection omitted. Table 450.3(B) Maximum Rating or Setting of Overcurrent Protection for Transformers 1000 Volts and Less (as a Percentage of Transformer-Rated Current) **Protection Method Primary Protection** Secondary Protection (See Note 2.) **Currents of** Currents Less Than 9 Amperes Currents Less Than 2 Amperes 9 Amperes or More **Currents of 9 Amperes or Currents Less Than** More 9 Amperes Primary only <u>167%</u> 300% <u>125% (See Note 1.)</u> protection Not required Not required Primary and secondary protection 250% (See Note 3.) 250% (See Note 3.) 250% 300% (See Note 3.) 125% (See Note 1.) 167% Notes: 1. Where 125 percent of this current does not correspond to a standard rating of a fuse or nonadjustable circuit breaker, a higher rating that does not exceed the next higher standard rating shall be permitted. 2. Where secondary overcurrent protection is required, the secondary overcurrent device shall be permitted to consist of not more than six circuit breakers or six sets of fuses grouped in one location. Where multiple overcurrent devices are utilized, the total of all the device ratings shall not exceed the allowed value of a single overcurrent device.

3. A transformer equipped with coordinated thermal overload protection by the manufacturer

protectior transform times the	and arranged to interrupt the primary current shall be permitted to have primary overcurrent protection rated or set at a current value that is not more than six times the rated current of the transformer for transformers having not more than 6 percent impedance and not more than four times the rated current of the transformer for transformers having more than 6 percent but not more than 10 percent impedance.		
Statement of	Problem and Substantiation for Public Input		
primary prote would seem	ners of 2A or less, if primary and secondary protection is provided, why is the rating of the action more restrictive than for the case where only primary protection is provided? It that there should be no safety issue with permitting the primary protection to be 300% imary and secondary protection is provided.		
Submitter Info	Submitter Information Verification		
Submitter F	III Name: Todd Sauve		
Organizatio	Rockwell Automation		
Street Addre	ess:		
City:			
State:			
Zip:			
Submittal Da	ate: Tue Feb 04 06:28:45 EST 2020		
Committee:	NEC-P09		
Committee St	atement		
Resolution:	The submitters show no substantiation for safety improvement so no changes are made. The submitter of PI-415 suggests an interesting topic but provided no substantiation to the suggested change.		

reduced.

The key here is a separate enclosure or compartment for the OCPD that the transformer secondary conductors terminate in. In most cases the fuse or circuit breaker at that point will have an instantaneous trip or override that opens in less than 0.07 seconds and no additional means of arc energy reduction would be required. The arc energy reduction methods provided are readily available and are proven technologies. List item (6) allows for any other approved method which could include an energy reduction maintenance swith installed on the transformer primary OCPD. Good code is practical, easy to read and easy to enforce. This proposed requirement is practical, it is feasible, easy to read and easy to enforce. The time has come for the installation standard to require cost effective measures to be put in place to provide installer/maintainers with the level of safety addressed in 90.1(A).


Submitter Information Verification

Submitter Full Name	: James Dollard
Organization:	IBEW Local Union 98
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Thu Sep 10 09:52:15 EDT 2020
Committee:	NEC-P09

Committee Statement

Resolution: CMP-9 chooses to resolve for the following reasons: Secondary main is not required per existing transformer protection requirements but would be required by the submitter. No justification is provided for the 0.07 second operation time of overcurrent device. There is no definition of compartment for the secondary main protection device. There is no definition of additional equipment that is excluded from protection device compartment. Articles 240.67 and 240.87 already require energy reduction methods for specific protection devices.

ctions]]	
section, the wo	otection of transformers shall comply with 450.3(A), (B), or (C). As used in this ord <i>transformer</i> shall mean a transformer or polyphase bank of two or more single- mers operating as a unit. <u>Each transformer shall be protected by an individual</u> otective device.
	onal Note No. 1: See 240.4, 240.21, 240.100 , and 240.101 - <u>and Article 241</u> for ent protection of conductors.
	onal Note No. 2: Nonlinear loads can increase heat in a transformer without i its overcurrent protective device.
atement of Prol	blem and Substantiation for Public Input
	each transformer. This often doesn"t provide protection for the smallest rated cially when there is a wide volt-ampere range among the transformers.
transformer, espectively bound to be a series of the serie	cially when there is a wide volt-ampere range among the transformers.
transformer, espective bmitter Information Submitter Full Na	cially when there is a wide volt-ampere range among the transformers. Ation Verification The me: Paul Guidry
transformer, espect bmitter Information Submitter Full Na Organization:	cially when there is a wide volt-ampere range among the transformers. Ation Verification ame: Paul Guidry Fluor Enterprises, Inc.
transformer, espect bmitter Information Submitter Full Nation Organization: Affiliation:	cially when there is a wide volt-ampere range among the transformers. Ation Verification The me: Paul Guidry
transformer, espect bmitter Information Submitter Full Na Organization: Affiliation: Street Address:	cially when there is a wide volt-ampere range among the transformers. Ation Verification ame: Paul Guidry Fluor Enterprises, Inc.
transformer, espect bmitter Information Submitter Full Nation Organization: Affiliation:	cially when there is a wide volt-ampere range among the transformers. Ation Verification ame: Paul Guidry Fluor Enterprises, Inc.
transformer, espect bmitter Information Submitter Full Nation Organization: Affiliation: Street Address: City:	cially when there is a wide volt-ampere range among the transformers. Ation Verification ame: Paul Guidry Fluor Enterprises, Inc.
transformer, espect bmitter Information Submitter Full Na Organization: Affiliation: Street Address: City: State:	cially when there is a wide volt-ampere range among the transformers. Ation Verification ame: Paul Guidry Fluor Enterprises, Inc.
transformer, espectively bound of the second	cially when there is a wide volt-ampere range among the transformers. Ation Verification Ime: Paul Guidry Fluor Enterprises, Inc. Associated Builders and Contractors
transformer, espect bmitter Information Submitter Full Nation Organization: Affiliation: Street Address: City: State: Zip: Submittal Date:	cially when there is a wide volt-ampere range among the transformers. Ation Verification ame: Paul Guidry Fluor Enterprises, Inc. Associated Builders and Contractors Sat Aug 01 22:25:23 EDT 2020 NEC-P09

Г

(C) Grounding.		
Where the secondary tie system is grounded, each transformer secondary supplying the tie system shall be grounded in accordance with the requirements of with 250.30 for separately derived systems.		
atement of Prob	lem and Substantiation for Public Input	
Deleting the words "the requirements of" does not change the meaning of the section.		
bmitter Informat	tion Verification	
Submitter Full Nar		
Submitter Full Nar Organization: Street Address:	ne: David Williams	
Submitter Full Nar Organization: Street Address: City:	ne: David Williams	
Submitter Full Nar Organization: Street Address: City: State:	ne: David Williams	
Submitter Full Nar Organization: Street Address: City:	ne: David Williams	

l

Public Input No	. 3260-NFPA 70-2020 [Section No. 450.8]
450.8 Guarding.	
Transformers shall	be guarded as specified in 450.8(A) through (D).
(A) Mechanical Pr	rotection.
	ons shall be made to minimize the possibility of damage to transformers from here the transformers are exposed to physical damage.
<u>(B)</u> <u>Fencing.</u>	
	er installations shall have perimeter fencing at an adequate distance to allow qualified persons only.
(<u>C)</u> Case or Enclo	osure.
	ers shall be provided with a noncombustible moisture-resistant case or ides protection against the accidental insertion of foreign objects.
(CD) Exposed Er	nergized Parts.
equipment within a	equipment operating at 1000 volts, nominal, or less and serving only transformer enclosure shall be permitted to be installed in the transformer sible to qualified persons only. All energized parts shall be guarded in 0.27 and 110.34.
(₽ <u>E</u>) Voltage Wa	rning.
	ge of exposed live parts of transformer installations shall be indicated by kings on the equipment or structures.
Statement of Problen	n and Substantiation for Public Input
utilities without any fen specified by IEEE stan announcements and o from them, particularly a multitude of such cor requirements. This inp	ns, particularly pad-mounted units, continue to be installed by contractors and noing to keep persons away from the units. It is accepted that the enclosures as idards are sufficient for safety. However, utilities are regularly publishing public ther communications on the dangers of these units and the need to keep away for kids. A quick internet search on "pad mounted transformer dangers" reveals mmunications. Some utilities have instituted their own mandatory fencing but proposes to make it mandatory to require fencing to protect persons from the th transformer installations.
Submitter Information	n Verification
Submitter Full Name:	Karl Cunningham
Organization:	Self Employed
Street Address:	
City:	
State:	
Zip:	Man San 07 14-25-05 EDT 2022
Submittal Date: Committee:	Mon Sep 07 11:25:05 EDT 2020 NEC-P09
Committee.	
Committee Statemen	t

Resolution: The submitter provided no substantiation for safety for other than utility owned equipment which is outside the scope of the NEC. The concern is already addressed in Articles 110.27 and 110.34.

450.9 Ventil	ation.
	n shall dispose of the transformer full-load heat losses without creating a ise that is in excess of the transformer rating.
Immers	tional Note No. 1: See IEEE C57.12.00-2015, General Requirements for Liquid- ed Distribution, Power, and Regulating Transformers, and IEEE C57.12.01-2015, I Requirements for Dry-Type Distribution and Power Transformers.
nonsinu its ratin and Dry	tional Note No. 2: Additional losses occur in some transformers where usoidal currents are present, resulting in increased heat in the transformer above g. See IEEE C57.110-2008, <i>Recommended Practice for Establishing Liquid-Filled</i> <i>r-Type Power and Distribution Transformer Capability When Supplying</i> <i>usoidal Load Currents</i> , where transformers are utilized with nonlinear loads.
blocked by w transformer.	with ventilating openings shall be installed so that the ventilating openings are not alls or other obstructions. The required clearances shall be clearly marked on the Fransformer The top surfaces of dry-type ventilated transformer enclosures that I and readily accessible shall be marked to prohibit storage.
	ecific, tops of all types of transformers would have to be marked to prohibit storage.
	lame: Agnieszka Golriz
Organization:	NECA
Organization: Street Address:	NECA
Organization: Street Address: City:	NECA
Organization: Street Address: City: State:	NECA
Organization: Street Address: City: State: Zip:	NECA
Organization: Street Address: City: State:	NECA
Organization: Street Address: City: State: Zip: Submittal Date:	NECA Tue Apr 21 14:10:01 EDT 2020 NEC-P09

450.10 Grou	Inding and Bonding.
(A) Dry-Typ	e Transformer Enclosures.
installed, a te inside the tra	ate equipment grounding conductors and supply-side bonding jumpers are rminal bar for all grounding and bonding conductor connections shall be secured nsformer enclosure. The terminal bar shall be bonded to the enclosure in vith 250.12 and shall not be installed on or over any vented portion of the
grounding a	Where a dry-type transformer is equipped with wire-type connections (leads), the nd bonding connections shall be permitted to be connected together using any of in 250.8 and shall be bonded to the enclosure if of metal.
(B) Other M	etal Parts.
and so forth,	–current-carrying metal parts of transformer installations, including fences, guards, shall be grounded and bonded under the conditions and in the manner specified equipment and other exposed metal parts in Parts V, VI, and VII of Article 250.
ubmitter Inforn	nation Verification
Submitter Full I	Jame: Mike Holt
Submitter Full I Organization: Street Address: City:	Mike Holt Enterprises Inc
Organization: Street Address: City: State:	Mike Holt Enterprises Inc
Organization: Street Address: City: State: Zip:	Mike Holt Enterprises Inc
Organization: Street Address: City: State: Zip: Submittal Date:	Mike Holt Enterprises Inc Mon Jun 01 19:46:24 EDT 2020
Organization: Street Address: City: State: Zip:	Mike Holt Enterprises Inc Mon Jun 01 19:46:24 EDT 2020 NEC-P09

Public Input No. 779-NFPA 70-2020 [New Section after 450.14]

TITLE OF NEW CONTENT

Type your content here ...

<u>450.15</u> <u>Electromagnetic Pulse (EMP) Protection.</u> Where transformers are utilized to supply the manufacturing, production, transportation, distribution, sales, and business systems in facilities that are required to be EMP-protected, EMP protection for transformers against the effects of electromagnetic pulses shall be provided. See 709.7 for levels of electromagnetic pulse protection.

This requirement shall become effective January 1, 2026.

Statement of Problem and Substantiation for Public Input

A devastating electromagnetic pulse (EMP), caused by a sun-spot or a nuclear bomb exploded high in the atmosphere, can impress 50,000 volts per meter on unprotected electrical and electronic equipment. It is similar to a radio wave impressing a very small voltage on a radio antenna, only orders of magnitude larger. The problem is that a significant EMP will fry every electrical/electronic component or piece of equipment that is not protected.

The EMP won't directly harm or injure people, but because there is no longer a working electrical infrastructure, which may take years to repair/rebuild, people will die from the lack of clean water, medicine, food, fuel, and eventual rioting due to the breakdown of society. Unclassified studies, referenced at the end of this substantiation, have estimated from 66% to 90% of the US population will die within one year if a significant sun spot were to occur or if a nuclear explosion were to occur 25 to 250 miles over the Midwest.

Our US military already "hardens" systems/buildings so that our country's critical defensive capabilities are not completely destroyed. There are two major methods of protecting electrical/electronic systems. The first is that surge protective devices are installed on all "incoming" power and communications cables, shunting overvoltages to ground. The second is that Faraday cages are installed around equipment/rooms, preventing the EMP from reaching critical equipment/components.

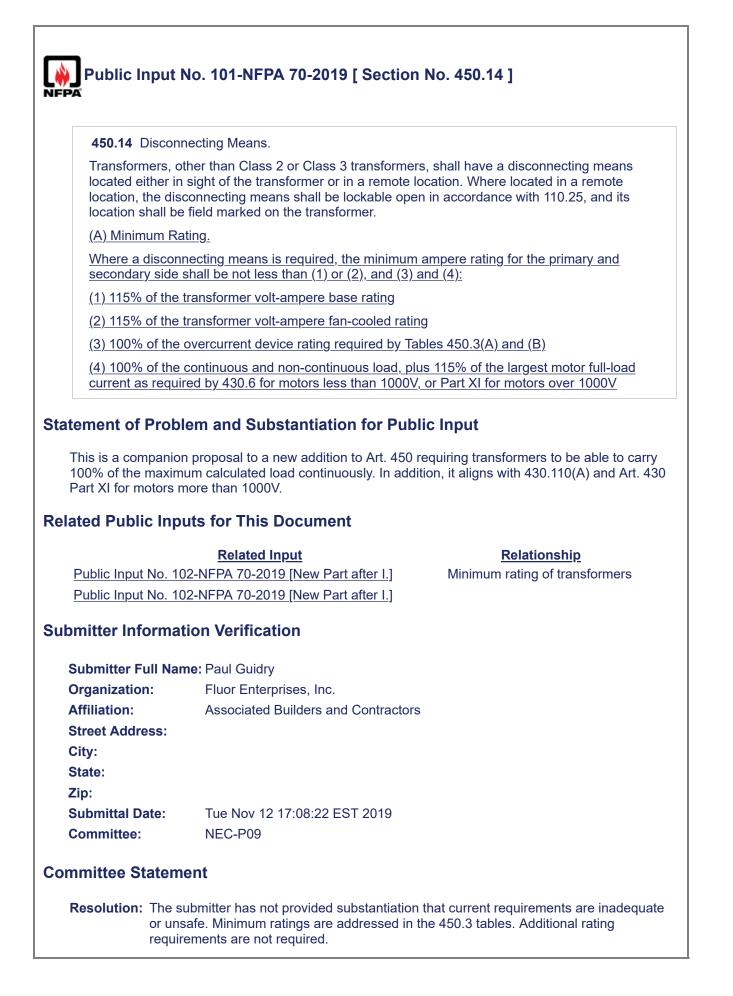
The NEC® needs to address EMP protection for equipment, systems and special occupancies that are critical to our survival. Electrical and electronic equipment can and must be protected, as has been achieved by our military. Unfortunately, there are no requirements to protect civilian electrical and electronic equipment/systems from EMPs.

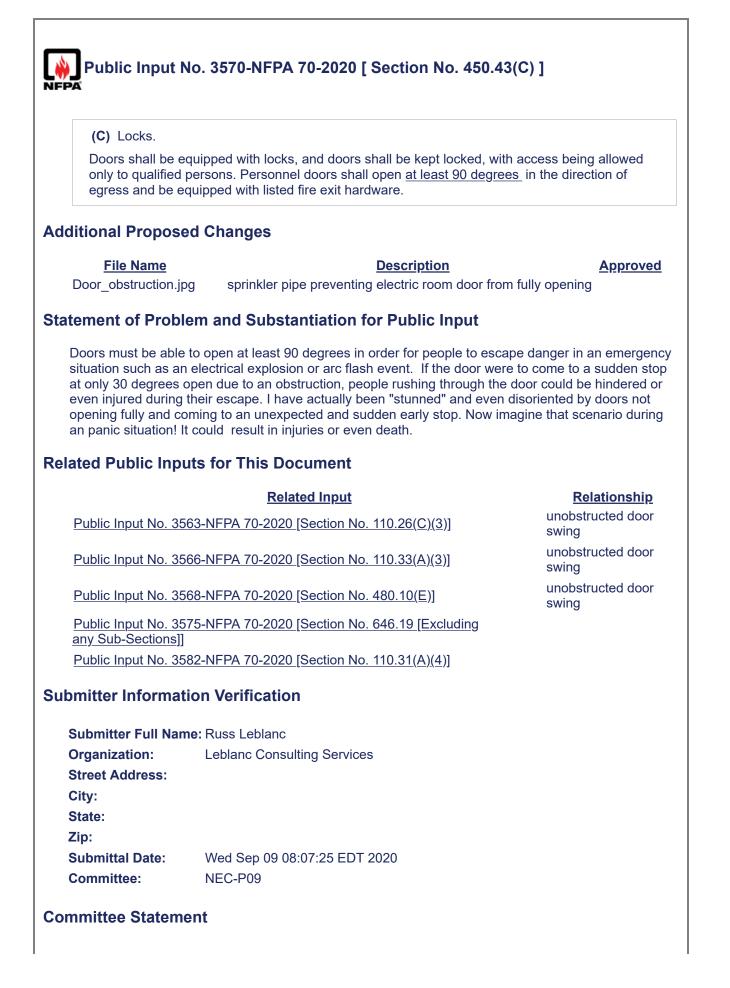
The NEC Correlating Committee has informally advised that an EMP Protection Article, if passed and adopted into the NEC®, would be most appropriately located after Article 708 (COPS). Thus, Public Input 756 has suggested a new Article 709 under jurisdiction of CMP 13, which already has purview over Emergency Systems (Article 700), Legally Required Standby Systems (Article 701), Optional Standby Systems (Article 702), and Critical Operations Power Systems (Article 708).

Levels of protection and associated protection requirements listed in the Public Input(s) are based upon the unclassified National Cybersecurity and Communications Integration Center report "Electromagnetic Pulse (EMP) Protection and Resilience Guidelines for Critical Infrastructure and Equipment". This study explains electromagnetic pulses and provides the necessary protective measures. It also contains estimates of the costs associated with properly protecting our electrical infrastructure.

The following table contains critical infrastructure components/special occupancies and the maximum time for outages caused by an EMP. Electrical components/infrastructure that is not functioning for periods longer than shown in this table may begin to cause injury or death to people and harm to society/economy.

Critical Infrastructure Component/Special Occupancy Permitted Outage Time Branch banking facilities 10 hours **Critical Operations Power Systems** 10 minutes Data centers 10 minutes Direct current microgrids 10 hours Drug stores/distribution centers 10 hours Electrically driven or controlled irrigation machines 1 week Elevators, dumbwaiters, escalators, moving walks, platform lifts, and stairway chairlifts See facility requirements Emergency systems 10 hours Energy storage systems 10 hours Fire alarm systems 1 week Fire houses/stations 10 hours Fire pumps 10 hours Food processing and storage facilities 10 hours Fuel cell systems 10 hours Generators 10 hours Grocery stores 10 hours Hardware stores/home centers 10 hours Healthcare facilities See NFPA 99 Information technology equipment 10 minutes Interconnected electric power production sources 10 minutes Jails and prisons 10 minutes Large-scale photovoltaic (PV) electric supply stations 10 hours Legally required standby systems 10 hours Modular data centers 10 minutes Motor fuel dispensing facilities 1 week Motors, motor circuits, and controllers See facility requirements Nuclear reactors 10 seconds Optional standby systems 1 week Petrochemical plants/facilities 10 hours Pharmaceutical plants/facilities 10 hours Police stations 10 minutes Solar photovoltaic (PV) systems 10 hours Stand-alone systems 10 hours Storage batteries See facility requirements Transformers See facility requirements Waste water treatment facilities 10 minutes Water supply facilities 10 hours Wind electric systems 10 hours

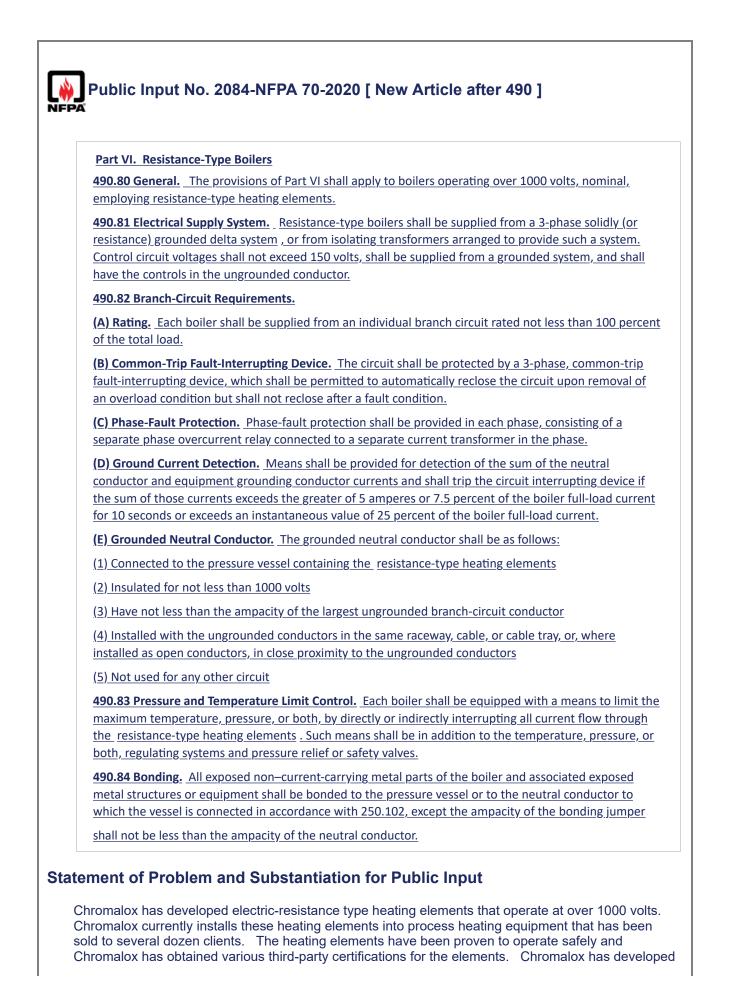

An effectivity date of January 1, 2026 is chosen to allow time for engineering and industry to adequately pan and prepare for the required changes.


Opponents of EMP protection requirements will likely charge that it is too costly to protect our critical infrastructure, and that the NEC® is not a war-time document. A close reading of 90.1 reveals that there is no mention of the "cost" of safeguarding persons and property. Neither does 90.1 mention that safeguarding persons and property is only required during peacetime. Additionally, a significant EMP event, caused by a sunspot, would be an act of God, not an act of war.

The novel, "One Second After", provides an understanding of what happens when the majority of all unprotected electrical and electronic equipment/systems is destroyed during an EMP event. An audio version of this book is available in two parts, for free, on YouTube.

This link provides the unclassified report "Electromagnetic Pulse (EMP) Protection and Resilience Guidelines for Critical Infrastructure and Equipment" https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3& ved=2ahUKEwjQhp2-77DoAhXBHM0KHboOB2QQFjACegQIBRAC&url=https%3A%2F %2Fwww.cisa.gov%2Fsites%2Fdefault%2Ffiles%2Fpublications%2F19_0307_CISA_EMP-Protection-Resilience-Guidelines.pdf&usg=AOvVaw2n7jLtJAUJtOJKHPMgWsTE

l .	
http://www.firstempco	study predicting up to 90% of our population could die from an EMP event ommission.org/uploads/1/1/9/5/119571849 _scenarios_and_combined-arms_cyber_warfare_by_peter_pry_july_2017.pdf
	classified guidelines for facility EMP protection ligence.net/DHS-FacilitiesGuidelinesEMP.pdf
https://interferenceted	Parts 1 and 2 of a national plan for EMP protection. chnology.com/a-national-plan-for-emp-protection-part-1/ chnology.com/national-plan-emp-protection-part-2-protection-buildings/
quickly defeat the Co be child's play when infrastructure remains	essed the chaos and pain caused by not having the "protections" in place to vid-19 virus. As unfortunate, costly, painful, and deadly as Covid-19 was, it would compared to a significant EMP event if our critical electrical/electronic s unprotected. Quite simply, NEC® requirements to protect electrical and from an EMP event, could literally save millions of American lives.
Related Public Input	ts for This Document
Public Input No. 756	Related Input Relationship -NFPA 70-2020 [New Section after 708.64]
Public Input No. 756	-NFPA 70-2020 [New Section after 708.64]
Submitter Information	on Verification
Submitter Full Name	e: Vincent Saporita
Organization:	Saporita Consulting
Affiliation:	Saporita Consulting
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Mon Mar 23 16:17:45 EDT 2020
Committee:	NEC-P09
Committee Stateme	nt
	quirement only affects facilities that require EMP protection. The proposed ge suggests that a design requirement should be a Code requirement.

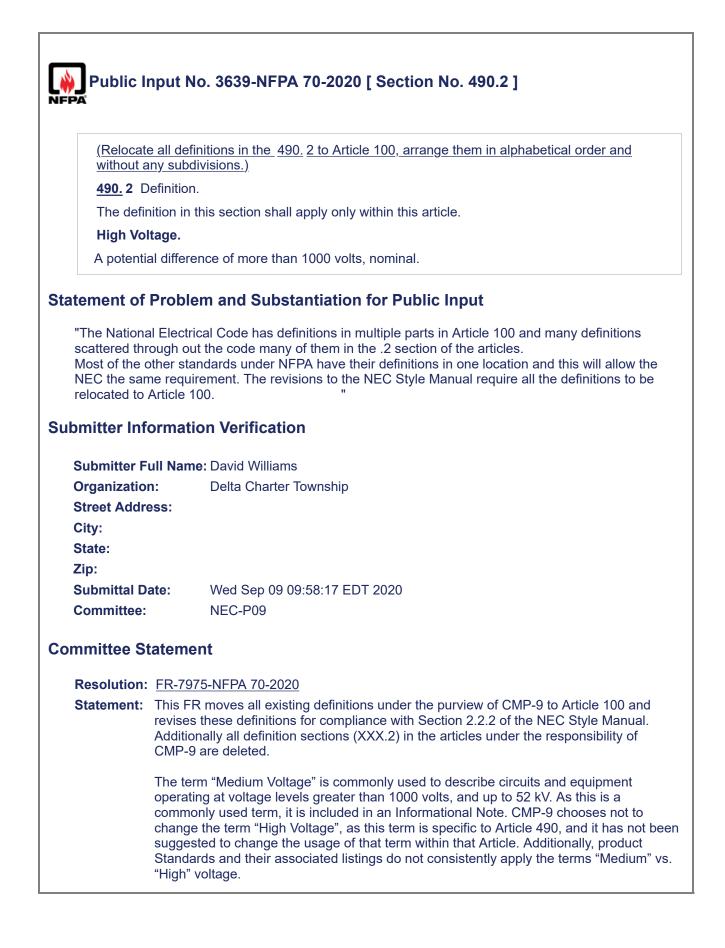


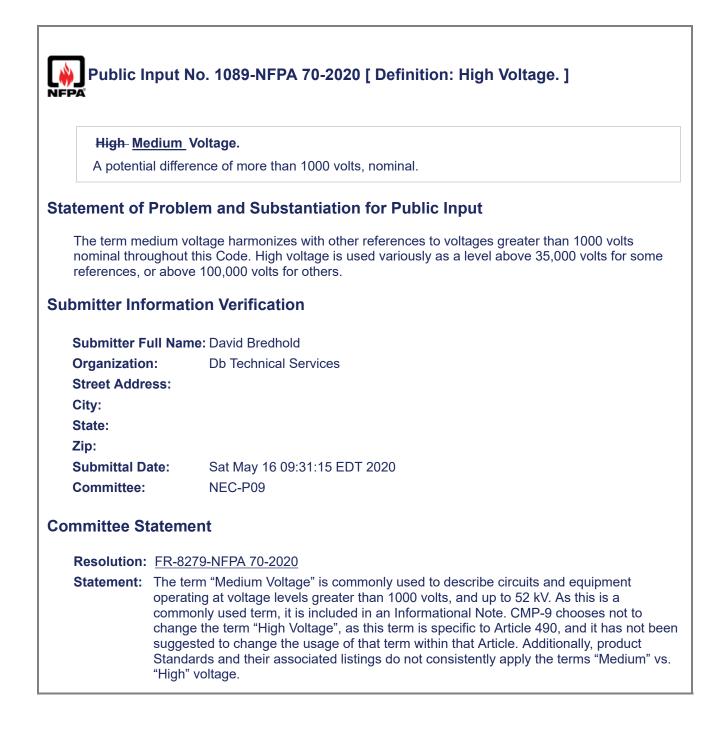
Resolution: <u>FR-7791-NFPA 70-2020</u>

Statement: CMP-9 changes the 450.43(C) title from "Locks" to "Accessibility" since the section addressed more than locks.

The revised wording ensures vault doorways open wide enough to provide proper access and egress to provide safety.

electric-resistance type boilers operating that utilize these elements operating over 1000 volts. Chromalox needs to make changes to NFPA 70 in order to obtain UL 834 certification for the boiler product line.


Submitter Information Verification


Organization:ChromaloxStreet Address:City:City:State:Zip:Wed Jul 29 13:32:15 EDT 2020Committee:NEC-P09

Committee Statement

Resolution: FR-7970-NFPA 70-2020

Statement: The use of larger resistance type boilers is becoming more prevalent as users move to de-carbonization and away from fossil fuels for heating. Other standards are referencing the NEC for evaluation and resistance type boilers operating over 1000V are not addressed in Article 490. Part V already addresses "Electrode-Type Boilers", and rather than create a new "Part VI" that has identical requirements, Part V is revised to refer to "Boilers" more generically. The existing requirements for "Electrode-Type Boilers" would apply equally to other types of Boilers, including "Resistance-Type Boilers". Changes are made throughout Part V to refer generically to "Boilers".

Public I	nput No. 4358-NFPA 70-2020 [Section No. 490.3(A)]
(A) Oil-F	Filled Equipment.
Installation <u>transform</u>	on of electrical equipment, other than transformers covered in Article 450 <u>the</u> <u>ner article</u> , containing more than 38 L (10 gal) of flammable oil per unit shall meet the ents of Parts II and III of Article 450.
Statement of	Problem and Substantiation for Public Input
exception of changing to statement of	4 of the 2020 NEC(R) Style Manual prohibits references to an entire article, with the Article 100. The first reference to Article 450 is in violation of the style manual and the more generic language will address this. I would have proposed pointing to the scope Article 450 but that scope statement includes both what is covered by the article and what ed by the article and could be confusing to the user.
Submitter Inf	ormation Verification
Submitter F	ull Name: Richard Holub
Organizatio	n: The DuPont Company, Inc.
Street Addr	ess:
City:	
State:	
Zip:	
Submittal D Committee:	
Committee:	NEC-P09
Committee S	tatement
Resolution:	FR-7960-NFPA 70-2020
	In accordance with Clause 4.1.4 of the NEC Style Manual, the reference to the entire Article 450 is removed. There is no need in referencing "transformers" in a Section that references other oil filled equipment. The revised text improves clarity.

Public Input No. 3209-NFPA 70-2020 [Section No. 490.24]

490.24 Minimum Space Separation.

In field-fabricated installations, the minimum air separation between bare live conductors and between such conductors and adjacent grounded surfaces shall not be less than the values given in Table 490.24. These values shall not apply to interior portions or exterior terminals of equipment designed, manufactured, and tested in accordance with accepted national standards.

Table 490.24 Minimum Clearance of Live Parts

	Imr	oulse			Min	imum	Clear	ance	of Li	ve Pa	arts			
<u>Nominal</u> <u>Voltage</u> <u>Rating</u>	Withsta Impuls	nd <u>, Basic</u> se Level	Ξ	Pł	nase-	to-Pha	ase	=			ase- roun		_	
(<u>kV</u>)	<u>B.I.I</u>	<u>∟ (kV</u>)	Ξ	Inde	<u>oors</u>	Ξ	<u>Outd</u>	loors	=	Indo	ors	z.	Outd	oors
	Indoors	<u>Outdoors</u>	Ξ	<u>mm</u>	<u>in.</u>	÷	<u>mm</u>	<u>in.</u>	Ξ	<u>mm</u>	<u>in.</u>	Ξ	<u>mm</u>	<u>in.</u>
2.4–4.16	60	95	-	115	4.5	-	180	7	-	80	3.0	-	155	6
7.2	75	95	-	140	5.5	-	180	7	-	105	4.0	-	155	6
13.8	95	110	-	195	7.5	-	305	12	-	130	5.0	-	180	7
14.4	110	110	-	230	9.0	-	305	12	-	170	6.5	-	180	7
23	125	150	-	270	10.5	-	385	15	-	190	7.5	-	255	10
34.5	150	150	-	320	12.5	-	385	15	-	245	9.5	-	255	10
	-	200	200 -		460	18.0 -		460	18-		335	13.0 -		335 1
46		200	-			-	460	18	-	—	—	-	335	13
	-	—	250 -			— -		535	21-		_	— -		435 1
69		250	-			-	535	21	-	—	—	-	435	17
	-		350 -		—			790	31 -		—	— -		635 2
115	—	550	-		—	-	1350	53	-	—	—	-	1070	42
138		550	-	—	—	-	1350	53		—	—	-	1070	42
	-	_	650 -			— -		1605	63 -		—	— -		1270 5
161		650	-	—	—	-	1605	63	-	—	—	-	1270	50
	-		750 -		—			1830	72-		—	— -		1475 5
230	—	750	-		—	-	1830	72	-	—	—	-	1475	58
	-		900 -		—	— -		2265	89 -		—	— -		1805 7
		1050	-			-	2670	105	-		—	-	2110	83

Note: The values given are the minimum clearance for rigid parts and bare conductors under favorable service conditions. They shall be increased for conductor movement or under unfavorable service conditions or wherever space limitations permit. The selection of the associated impulse withstand voltage for a particular system voltage is determined by the characteristics of the surge-overvoltage protective equipment.

Additional Proposed Changes

File Name Code Input.docx <u>Description</u> input to improve overvoltage protection requirements

<u>Approved</u>

Statement of Problem and Substantiation for Public Input

In the 2020 NEC cycle, ARTICLES 280 and 285 were combined to make ARTICLE 242. This was a positive change that began to address the issue of OVERVOLTAGE as a technical subject apart from particular product methods (SPDs and Surge Arresters). There are other technologies and products to address the issue of OVERVOLTAGE. This input attempts to add one such technology as well as correlate the other code references to the subject of OVERVOLTAGE, surge protective devices, and surge arresters to be consistent. This is important to allow for other technologies to be utilized without prejudice to certain products promoted by manufacturers.

Related Public Inputs for This Document

Related Input

<u>t</u>

Public Input No. 3200-NFPA 70-2020 [Section No. 242.1] Public Input No. 3202-NFPA 70-2020 [New Article after 100] Public Input No. 3203-NFPA 70-2020 [New Article after 242] Public Input No. 3205-NFPA 70-2020 [Section No. 501.35] Public Input No. 3206-NFPA 70-2020 [Section No. 502.35] Public Input No. 3208-NFPA 70-2020 [Section No. 551.72(E)] Public Input No. 3210-NFPA 70-2020 [Section No. 490.48(A)] Public Input No. 3211-NFPA 70-2020 [Section No. 620.51(E)] Public Input No. 3212-NFPA 70-2020 [Section No. 645.18] Public Input No. 3214-NFPA 70-2020 [Section No. 670.6] Public Input No. 3216-NFPA 70-2020 [Section No. 694.7(D)] Public Input No. 3217-NFPA 70-2020 [Section No. 695.15] Public Input No. 3218-NFPA 70-2020 [Section No. 700.8] Public Input No. 3219-NFPA 70-2020 [Section No. 708.20(D)]

Submitter Information Verification

Submitter Full Name	: Karl Cunningham
Organization:	Self Employed
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Sun Sep 06 18:28:08 EDT 2020
Committee:	NEC-P09

Committee Statement

Resolution: FR-7961-NFPA 70-2020

Statement: Article 242 (new to the 2020 Code) covers "surge equipment"; however, the title of the Article is "Overvoltage Protection", as that is a more generic term. This revision aligns this text with the title of Article 242, and also includes the term "surge" as this has historically been used to describe this equipment.

The use of the generic term "overvoltage protection" allows for a broader application of products that provide this protection.

Relationship

Substantiation for Changes: In the 2020 NEC cycle, ARTICLES 280 and 285 were combined to make ARTICLE 242. This was a positive change that began to address the issue of OVERVOLTAGE as a technical subject apart from particular product methods (SPDs and Surge Arresters). There are other technologies and products to address the issue of OVERVOLTAGE. This input attempts to add one such technology as well as correlate the other code references to the subject of OVERVOLTAGE, surge protective devices, and surge arresters to be consistent. This is important to allow for other technologies to be utilized without prejudice to certain products promoted by manufacturers.

ARTICLE 100 - DEFINITIONS

Voltage Stabilizing Ground Reference (VSGR) System – an engineered assembly of interconnected passive inductive devices that utilize mutual counter electro-magnetic inductance to stabilize phase voltages of a connected supply system with respect to each other and to ground.

ARTICLE 242 Overvoltage Protection

Part I. General

242.1 Scope.

This article provides the general requirements, installation requirements, and connection requirements for overvoltage protection and overvoltage protective devices. Part II covers surge-protective devices (SPDs) permanently installed on premises wiring systems of not more than 1000 volts, nominal, while Part III covers surge arresters permanently installed on premises wiring systems over 1000 volts, nominal. <u>Part IV covers Voltage</u> <u>Stabilizing Ground Reference (VSGR) systems permanently installed on premises wiring systems for any voltage.</u>

Informational Note: Article 242 combines and replaces Articles 280 and 285 in NFPA 70-2017.

242.3 Other Articles.

Equipment shall be protected against overvoltage in accordance with the article in this *Code* that covers the type of equipment or location specified in <u>Table 242.3</u>.

Table 242.3 Other Articles

Equipment	Article
Class I locations	501
Class II locations	502
Community antenna television and radio distribution systems	820
Critical operations power systems	708

Table 242.3 Other Articles

Equipment	Article
Elevators, dumbwaiters, escalators, moving walks, platform lifts, and stairway chairlifts	620
Emergency systems	700
Equipment over 1000 volts, nominal	490
Fire pumps	695
Industrial machinery	670
Information technology equipment	645
Modular data centers	646
Outdoor overhead conductors over 1000 volts	399
Radio and television equipment	810
Receptacles, cord connectors, and attachment plugs (caps)	406
Wind electric systems	694

Part II. Surge-Protective Devices (SPDs), 1000 Volts or Less Informational Note: Surge arresters 1000 volts or less are also known as Type 1 SPDs.

242.6 Uses Not Permitted.

An SPD device shall not be installed in the following:

1. (1)

Circuits over 1000 volts

2. (2)

On ungrounded systems, impedance grounded systems, or corner grounded delta systems unless listed specifically for use on these systems

3. (3)

Where the rating of the SPD is less than the maximum continuous phase-to-ground voltage at the power frequency available at the point of application

242.8 Listing.

An SPD shall be a listed device.

242.10 Short-Circuit Current Rating.

The SPD shall be marked with a short-circuit current rating and shall not be installed at a point on the system where the available fault current is in excess of that rating. This marking requirement shall not apply to receptacles.

242.12 Type 1 SPDs.

Type 1 SPDs shall be installed in accordance with 242.12(A) and (B).

242.12(A) Installation.

Type 1 SPDs shall be permitted to be connected in accordance with one of the following:

1. (1)

To the supply side of the service disconnect as permitted in 230.82(4)

2. (2)

As specified in 242.14

242.12(B) At the Service.

When installed at services, Type 1 SPDs shall be connected to one of the following:

1. (1)

Grounded service conductor

2. (2)

Grounding electrode conductor

3. (3)

Grounding electrode for the service

4. (4)

Equipment grounding terminal in the service equipment

242.14 Type 2 SPDs.

Type 2 SPDs shall be installed in accordance with 242.14(A) through (C).

242.14(A) Service-Supplied Building or Structure.

Type 2 SPDs shall be connected anywhere on the load side of a service disconnect overcurrent device required in <u>230.91</u> unless installed in accordance with <u>230.82</u>(8).

242.14(B) Feeder-Supplied Building or Structure.

Type 2 SPDs shall be connected at the building or structure anywhere on the load side of the first overcurrent device at the building or structure.

242.14(C) Separately Derived System.

The SPD shall be connected on the load side of the first overcurrent device in a separately derived system.

242.16 Type 3 SPDs.

Type 3 SPDs shall be permitted to be installed on the load side of branch-circuit overcurrent protection up to the equipment served. If included in the manufacturer's instructions, the Type 3 SPD connection shall be a minimum 10 m (30 ft) of conductor distance from the service or separately derived system disconnect.

242.18 Type 4 and Other Component Type SPDs.

Type 4 component assemblies and other component type SPDs shall only be installed by the equipment manufacturer.

242.20 Number Required.

Where used at a point on a circuit, the SPD shall be connected to each ungrounded conductor.

242.22 Location.

SPDs shall be permitted to be located indoors or outdoors and shall be made inaccessible to unqualified persons unless listed for installation in accessible locations.

242.24 Routing of Connections.

The conductors used to connect the SPD to the line or bus and to ground shall not be any longer than necessary and shall avoid unnecessary bends.

242.26 Connection.

Where an SPD device is installed, it shall comply with <u>242.12</u>, <u>242.14</u>, <u>242.16</u>, <u>242.28</u>, and <u>242.30</u>.

242.28 Conductor Size.

Line and grounding conductors shall not be smaller than 14 AWG copper or 12 AWG aluminum.

242.30 Connection Between Conductors.

An SPD shall be permitted to be connected between any two conductors — ungrounded conductor(s), grounded conductor, equipment grounding conductor, or grounding electrode conductor. The grounded conductor and the equipment grounding conductor shall be interconnected only by the normal operation of the SPD during a surge.

242.32 Grounding Electrode Conductor Connections and Enclosures.

Except as indicated in this article, SPD grounding connections shall be made as specified in Article 250, Part III. Grounding electrode conductors installed in metal enclosures shall comply with 250.64(E).

Part III. Surge Arresters, Over 1000 Volts

242.40 Uses Not Permitted.

A surge arrester shall not be installed where the rating of the surge arrester is less than the maximum continuous phase-to-ground voltage at the power frequency available at the point of application.

242.42 Surge Arrester Selection.

The surge arresters shall comply with 242.42(A) and (B).

242.42(A) Rating.

The rating of a surge arrester shall be equal to or greater than the maximum continuous operating voltage available at the point of application.

242.42(A)(1) Solidly Grounded Systems.

The maximum continuous operating voltage shall be the phase-to-ground voltage of the system.

242.42(A)(2) Impedance or Ungrounded System.

The maximum continuous operating voltage shall be the phase-to-phase voltage of the system.

242.42(B) Silicon Carbide Types.

The rating of a silicon carbide-type surge arrester shall be not less than 125 percent of the rating specified in <u>242.42(A)</u>.

Informational Note No. 1: For further information on surge arresters, see IEEE C62.11-2012, *Standard for Metal-Oxide Surge Arresters for Alternating-Current Power Circuits (>1 kV)*, and IEEE C62.22-2009, *Guide for the Application of Metal-Oxide Surge Arresters for Alternating-Current Systems*.

Informational Note No. 2: The selection of a properly rated metal oxide arrester is based on considerations of maximum continuous operating voltage and the magnitude and duration of overvoltages at the arrester location as affected by phase-to-ground faults, system grounding techniques, switching surges, and other causes. See the manufacturer's application rules for selection of the specific arrester to be used at a particular location.

242.44 Number Required.

Where used at a point on a circuit, a surge arrester shall be connected to each ungrounded conductor. A single installation of such surge arresters shall be permitted to protect a number of interconnected circuits if no circuit is exposed to surges while disconnected from the surge arresters.

242.46 Location.

Surge arresters shall be permitted to be located indoors or outdoors. Surge arresters shall be made inaccessible to unqualified persons unless listed for installation in accessible locations.

242.48 Routing of Surge Arrester Equipment Grounding Conductors.

The conductor used to connect the surge arrester to line, bus, or equipment and to an equipment grounding conductor or grounding electrode connection point as provided in <u>242.50</u> shall not be any longer than necessary and shall avoid unnecessary bends.

242.50 Connection.

The arrester shall be connected to one of the following:

1. (1)

Grounded service conductor

2. (2)

Grounding electrode conductor

3. (3)

Grounding electrode for the service

4. (4)

Equipment grounding terminal in the service equipment

242.52 Surge-Arrester Conductors.

The conductor between the surge arrester and the line, and the surge arrester and the grounding connection, shall not be smaller than 6 AWG copper or aluminum.

242.54 Interconnections.

The surge arrester protecting a transformer that supplies a secondary distribution system shall be interconnected as specified in <u>242.54(A)</u>, (B), or (C).

242.54(A) Metal Interconnections.

A metal interconnection shall be made to the secondary grounded circuit conductor or the secondary circuit grounding electrode conductor, if, in addition to the direct grounding connection at the surge arrester, the connection complies with 242.54(A)(1) or (A)(2).

242.54(A)(1) Additional Grounding Connection.

The grounded conductor of the secondary has a grounding connection elsewhere to a continuous metal underground water piping system. In urban water-pipe areas where there are at least four water-pipe connections on the neutral conductor and not fewer than four such connections in each mile of neutral conductor, the metal interconnection shall be permitted to be made to the secondary neutral conductor with omission of the direct grounding connection at the surge arrester.

242.54(A)(2) Multigrounded Neutral System Connection.

The grounded conductor of the secondary system is part of a multigrounded neutral system or static wire of which the primary neutral conductor or static wire has at least four grounding connections in each 1.6 km (1 mile) of line in addition to a grounding connection at each service.

242.54(B) Through Spark Gap or Device.

Where the surge arrester grounding electrode conductor is not connected as in 242.54(A), or where the secondary is not grounded as in 242.54(A) but is otherwise grounded as in 250.52, an interconnection shall be made through a spark gap or listed device as required by 242.54(B)(1) or (B)(2).

242.54(B)(1) Ungrounded or Unigrounded Primary System.

For ungrounded or unigrounded primary systems, the spark gap for a listed device shall have a 60-Hz breakdown voltage of at least twice the primary circuit voltage but not necessarily more than 10 kV, and there shall be at least one other ground on the grounded conductor of the secondary that is not less than 6.0 m (20 ft) distant from the surge-arrester grounding electrode.

242.54(B)(2) Multigrounded Neutral Primary System.

For multigrounded neutral primary systems, the spark gap or listed device shall have a 60-Hz breakdown of not more than 3 kV, and there shall be at least one other ground on the grounded conductor of the secondary that is not less than 6.0 m (20 ft) distant from the surge-arrester grounding electrode.

242.54(C) By Special Permission.

An interconnection of the surge-arrester ground and the secondary neutral conductor, other than as provided in <u>242.54(A)</u> or (B), shall be permitted to be made only by special permission.

242.56 Grounding Electrode Conductor Connections and Enclosures.

Except as indicated in this article, surge-arrester grounding electrode conductor connections shall be made as specified in Article <u>250</u>, Parts III and X. Grounding electrode conductors installed in metal enclosures shall comply with <u>250.64(E)</u>.

Part IV. Voltage Stabilizing Ground Reference (VSGR) systems.

242.68 Listing.

A VSGR shall be a listed device or system composed of listed components.

242.70 Short-Circuit Current Rating.

The VSGR shall be marked with a short-circuit current rating and shall not be installed at a point on the system where the available fault current is in excess of that rating.

242.71 Voltage Rating.

The rating of the VSGR shall be equal to or greater than the maximum system continuous operating voltage at the point of application.

242.72 Installation.

VSGRs shall be installed in accordance with 242.72(A) through (C).

242.72(A) Service-Supplied Building or Structure.

VSGR shall be connected anywhere on the load side of a service disconnect overcurrent device required in 230.91 unless installed in accordance with 230.82(8).

242.72(B) Feeder-Supplied Building or Structure.

VSGR shall be connected at the building or structure anywhere on the load side of the first overcurrent device at the building or structure.

242.72(C) Separately Derived System.

VSGR shall be connected on the load side of the first overcurrent device in a separately derived system.

242.82 Location.

VSGRs shall be permitted to be located indoors or outdoors and shall be made inaccessible to unqualified persons unless listed for installation in accessible locations.

242.84 Conductor Size.

Line and grounding conductors shall not be smaller than 14 AWG copper or 12 AWG aluminum.

242.90 Connection Between Conductors.

VSGR connections shall follow the manufacturer's instructions for the system connections.

242.92 Grounding Electrode Conductor Connections and Enclosures.

Except as indicated in this article, VSGR grounding connections shall be made as specified in Article 250, Part III. Grounding electrode conductors installed in metal enclosures shall comply with 250.64(E).

501.35 Overvoltage Surge Protection.

501.35(A) Class I, Division 1.

Overvoltage protection devices, surge arresters, surge-protective devices, and capacitors shall be installed in enclosures identified for Class I, Division 1 locations. Surge-protective capacitors shall be of a type designed for specific duty.

501.35(B) Class I, Division 2.

<u>Overvoltage protection devices</u>, surge arresters and surge-protective devices shall be nonarcing, such as metal-oxide varistor (MOV) sealed type, and surge-protective capacitors shall be of a type designed for specific duty. Enclosures shall be permitted to be of the general-purpose type. <u>Overvoltage Surge</u> protection of types other than described in this paragraph shall be installed in enclosures identified for Class I, Division 1 locations.

502.35 Overvoltage Surge Protection — Class II, Divisions 1 and 2.

<u>Overvoltage protection devices</u>, surge arresters and surge-protective devices installed in a Class II, Division 1 location shall be in suitable enclosures. Surge-protective capacitors shall be of a type designed for specific duty.

551.72(E) Connected Devices.

The use of autotransformers shall not be permitted. The use of listed <u>overvoltage and</u> surge protective devices shall be permitted.

Table 490.24 Minimum Clearance of Live Parts

Note: The values given are the minimum clearance for rigid parts and bare conductors under favorable service conditions. They shall be increased for conductor movement or under unfavorable service conditions or wherever space limitations permit. The selection of the associated impulse withstand voltage for a particular system voltage is determined by the characteristics of the <u>overvoltage surge</u> protective equipment.

490.48(A) Design and Documentation.

(12) Overvoltage Surge arresters

620.51(E) Overvoltage Surge Protection.

<u>Overvoltage protection shall be provided where</u> any of the disconnecting means in <u>620.51</u> has been designated as supplying an emergency system load, a legally required system load, or a critical operation power system load, listed surge protection shall be provided.

645.18 Overvoltage Surge Protection for Critical Operations Data Systems.

Overvoltage Listed surge protection shall be provided for critical operations data systems.

670.6 Surge Protection.

Industrial machinery with safety interlock control devices not effectively protected from voltage surges on the incoming supply circuit shall have overvoltage surge protection installed.

694.7(D) Overvoltage Protection Surge Protective Devices (SPD).

<u>Overvoltage protection A surge protective device</u> shall be installed between a wind electric system and any loads served by the premises electrical system. The surge protective device shall be permitted to be a <u>VSGR</u>, or a Type 3 SPD on the circuit serving a wind electric system, or a Type 2 SPD located anywhere on the load side of the service disconnect. <u>Overvoltage Surge</u> protective devices shall be installed in accordance with Part II of Article 242.

695.15 Overvoltage Surge Protection.

Overvoltage A listed surge protection device shall be provided for installed in or on the fire pump controller.

700.8 Overvoltage Surge Protection.

Overvoltage protection A listed SPD shall be provided-installed in or on for all emergency systems switchboards and panelboards.

708.20(D) <u>Overvoltage Surge</u> Protection <u>Devices</u>. Surge protection devices shall be provided at all facility distribution voltage levels

Public Input No. 867-NFPA 70-2020 [Section No. 490.24]

490.24 Minimum Space Separation.

In field-fabricated installations, the minimum air separation between bare live conductors and between such conductors and adjacent grounded surfaces shall not be less than the values given in Table 490.24. These values shall not apply to interior portions or exterior terminals of equipment designed, manufactured, and tested in accordance with accepted national standards.

Table 490.24 Minimum Clearance of Live Parts

Newsload		<u>oulse</u>				Minimum Cle	earance o	of Live Pa	r <u>ts</u>	
<u>Nominal</u> <u>Voltage</u>		<u>nd, Basic</u> se Level	-		Į	Phase-to-Phase	2	=	Phase	e-to-G
<u>Rating</u>		<u>(kV)</u>	=	Indo	oors	:	<u>Outdo</u>	<u>ors</u>	Indoors	. =
(<u>kV</u>)	Indoors	<u>Outdoors</u>	=	<u>mm</u>	<u>in.</u>	:	<u>mm</u>	<u>in.</u> _	<u>mm in.</u>	=
2.4-4.16	60 95	<u>60</u>	-	115	4.5	<u>125 180</u>	<u>5</u>	7 -	80 3.0	
7.2	75	95	-	140	5.5	<u>200 180</u>	<u>8</u>	7 -	105 4.0	
13.8	95	110	-	195	7.5	<u>230 305</u>	<u>9</u>	12 -	130 5.0	
14.4	110	110	-	230	9.0	<u>230 305</u>	<u>9</u>	12 -	170 6.5	
23	125	150	-	270	10.5	<u>315</u>	<u>12</u>	-15	190 7.5	
34.5	150	150	-	320	12.5	<u>315</u>	<u>12</u>	- 15	245 9.5	
	-	200	200 -		460	18.0	<u>420 460</u>	<u>16</u>	335	513.0
46	_	200	-			<u>420 460</u>	<u>16</u>	-18 -		
		250	-			<u>525</u>	535	21 -		
69	_	250	-			<u>525</u>	535	21 -		
		350	-			<u>730 790</u>	<u>29</u>	31 -		
115		550	-	—	—	<u>1150 1350</u>	<u>45</u>	53 -		1
138	_	550	-			<u>1150 1350</u>	<u>45</u>	53 -		1
	—	650	-			<u>1360 1605</u>	<u>54</u>	63 -		1
161	—	650	-			<u>1360 1605</u>	<u>54</u>	63 -		1
		750	-	—	—	<u>1570 1830 </u>	<u>62</u>	72 -		1
230	—	750	-			<u>1570 1830 </u>	<u>62</u>	72 -		1
	—	900	-			<u>1880 2265</u>	<u>74</u>	89 -		1
		1050	-			<u>2200 2670</u>	<u>86</u>	105 -		2

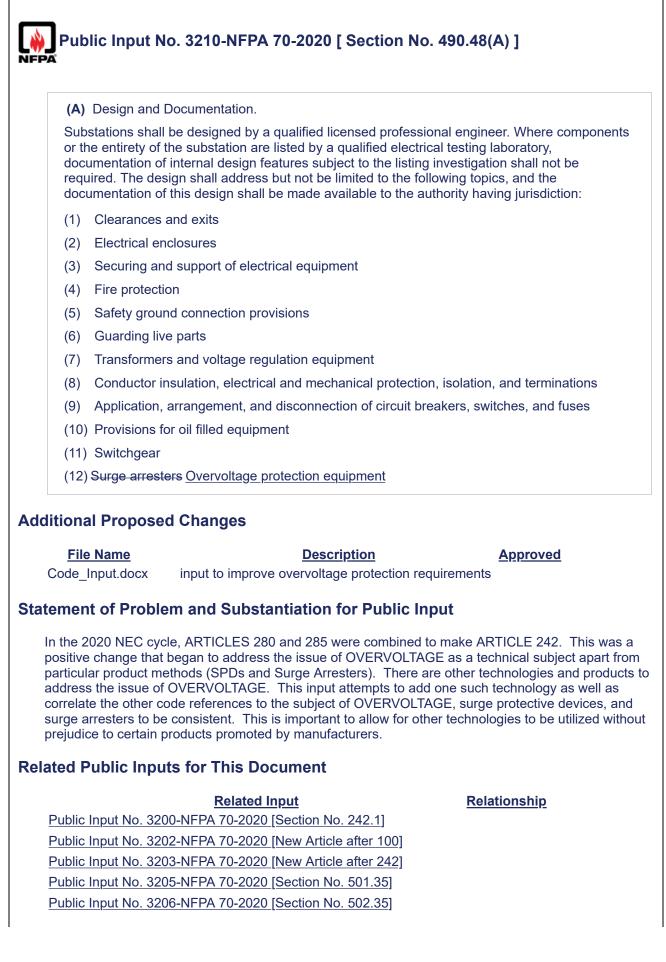
Note: The values given are the minimum clearance for rigid parts and bare conductors under favorable service conditions. They shall be increased for conductor movement or under unfavorable service conditions or wherever space limitations permit. The selection of the associated impulse withstand voltage for a particular system voltage is determined by the characteristics of the surge protective equipment.

Statement of Problem and Substantiation for Public Input

Change the "Outdoors" values in Table 490.24 to match IEEE Std 1427-2006 Table 3.

The present values in Table 490.24 appear to come from IEEE Std C37.30.1-2011 Table 14, which is intended for "station class outdoor air switches" and is not intended for field-fabricated installations. Instead, IEEE Std 1427-2006 is intended for substations in general, including field-fabricated bus structures. Therefore, it would be more appropriate for the values in NEC Table 490.24 to be reduced to the values in IEEE Std 1427-2006 Table 3. This would allow for substation buswork that was constructed to meet IEEE Std 1427 to also meet NEC Table 490.24.

Furthermore, IEEE Std 1427-2006 Table 3 includes lower BIL values (30, 34, 60, and 75 kV) than IEEE Std C37.30.1-2011 Table 14 (which starts at 95 kV BIL). Updating the NEC Table 490.24 would account for the lower clearance requirements for 2400 V and 4160 V systems.


Submitter Information Verification

Submitter Full Name	e: Andy Kunze
Organization:	Enbridge
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Tue Apr 14 09:59:00 EDT 2020
Committee:	NEC-P09

Committee Statement

Resolution: Applying Table 3 of IEEE 1427-2006 to Table 490.24 discounts the complex interaction between BIL, BSL, surge protection and many other factors in determining clearances. These factors are clearly outlined in IEEE1427-2006. Other factors that also apply that affect clearances include: Mechanical stress, animal protection, dielectric stress, installations 1km above sea level, insulation tracking, and corona / RFI. CMP-9 does not support a reduction in clearances that do not incorporate all factors indicated in IEEE 1427-2006.

490.36 Eq	uipment Grounding Conductor.
	witchgear and control assemblies shall be connected to an equipment grounding r, where permitted, the grounded conductor.
atement of P	roblem and Substantiation for Public Input
	e NFPA Style Manual, the Section Title needs to reflect the content of the rule. The rul uipment grounding conductor, not about 'Grounding.'
Ibmitter Infor	mation Verification
Submitter Full	Name: Mike Holt
• • •	
Organization:	Mike Holt Enterprises Inc
Street Addres	
Street Address City:	
Street Address City: State:	
Street Address City:	s:
Street Address City: State: Zip:	s:
Street Address City: State: Zip: Submittal Date	s: Mon Jun 01 19:52:16 EDT 2020 NEC-P09
Street Address City: State: Zip: Submittal Date Committee:	s: Mon Jun 01 19:52:16 EDT 2020 NEC-P09
Street Address City: State: Zip: Submittal Date Committee: ommittee State Resolution: <u>F</u> Statement: R	s: Mon Jun 01 19:52:16 EDT 2020 NEC-P09 tement <u>R-7963-NFPA 70-2020</u> tequirements in sections 490.36 and 490.37 address different equipment, but have the
Street Address City: State: Zip: Submittal Date Committee: Committee State Resolution: <u>F</u> Statement: R	s: Mon Jun 01 19:52:16 EDT 2020 NEC-P09 tement R-7963-NFPA 70-2020

248 of 264

3/3/2021, 2:58 PM

Public Input No. 320	8-NFPA 70-2020 [Section No. 551.72(E)]	
Public Input No. 320	9-NFPA 70-2020 [Section No. 490.24]	
Public Input No. 321	1-NFPA 70-2020 [Section No. 620.51(E)]	
Public Input No. 321	2-NFPA 70-2020 [Section No. 645.18]	
Public Input No. 321	4-NFPA 70-2020 [Section No. 670.6]	
Public Input No. 321	6-NFPA 70-2020 [Section No. 694.7(D)]	
Public Input No. 321	7-NFPA 70-2020 [Section No. 695.15]	
Public Input No. 321	8-NFPA 70-2020 [Section No. 700.8]	
Public Input No. 321	9-NFPA 70-2020 [Section No. 708.20(D)]	
Submitter Information Verification		
Submitter Full Name	: Karl Cunningham	
Organization:	Self Employed	
Organization: Street Address:	Self Employed	
•	Self Employed	
Street Address:	Self Employed	
Street Address: City:	Self Employed	
Street Address: City: State:	Self Employed Sun Sep 06 18:32:06 EDT 2020	

Committee Statement

Resolution: FR-7965-NFPA 70-2020

Statement: Article 242 (new to the 2020 Code) covers "surge equipment"; however, the title of the Article is "Overvoltage Protection", as that is a more generic term. This revision aligns this text with the title of Article 242, and also includes the term "surge" as this has historically been used to describe this equipment.

The use of the generic term "overvoltage protection" allows for a broader application of products that provide this protection.

Substantiation for Changes: In the 2020 NEC cycle, ARTICLES 280 and 285 were combined to make ARTICLE 242. This was a positive change that began to address the issue of OVERVOLTAGE as a technical subject apart from particular product methods (SPDs and Surge Arresters). There are other technologies and products to address the issue of OVERVOLTAGE. This input attempts to add one such technology as well as correlate the other code references to the subject of OVERVOLTAGE, surge protective devices, and surge arresters to be consistent. This is important to allow for other technologies to be utilized without prejudice to certain products promoted by manufacturers.

ARTICLE 100 - DEFINITIONS

Voltage Stabilizing Ground Reference (VSGR) System – an engineered assembly of interconnected passive inductive devices that utilize mutual counter electro-magnetic inductance to stabilize phase voltages of a connected supply system with respect to each other and to ground.

ARTICLE 242 Overvoltage Protection

Part I. General

242.1 Scope.

This article provides the general requirements, installation requirements, and connection requirements for overvoltage protection and overvoltage protective devices. Part II covers surge-protective devices (SPDs) permanently installed on premises wiring systems of not more than 1000 volts, nominal, while Part III covers surge arresters permanently installed on premises wiring systems over 1000 volts, nominal. <u>Part IV covers Voltage</u> <u>Stabilizing Ground Reference (VSGR) systems permanently installed on premises wiring systems for any voltage.</u>

Informational Note: Article 242 combines and replaces Articles 280 and 285 in NFPA 70-2017.

242.3 Other Articles.

Equipment shall be protected against overvoltage in accordance with the article in this *Code* that covers the type of equipment or location specified in <u>Table 242.3</u>.

Table 242.3 Other Articles

Equipment	Article
Class I locations	501
Class II locations	502
Community antenna television and radio distribution systems	820
Critical operations power systems	708

Table 242.3 Other Articles

Equipment	Article
Elevators, dumbwaiters, escalators, moving walks, platform lifts, and stairway chairlifts	620
Emergency systems	700
Equipment over 1000 volts, nominal	490
Fire pumps	695
Industrial machinery	670
Information technology equipment	645
Modular data centers	646
Outdoor overhead conductors over 1000 volts	399
Radio and television equipment	810
Receptacles, cord connectors, and attachment plugs (caps)	406
Wind electric systems	694

Part II. Surge-Protective Devices (SPDs), 1000 Volts or Less Informational Note: Surge arresters 1000 volts or less are also known as Type 1 SPDs.

242.6 Uses Not Permitted.

An SPD device shall not be installed in the following:

1. (1)

Circuits over 1000 volts

2. (2)

On ungrounded systems, impedance grounded systems, or corner grounded delta systems unless listed specifically for use on these systems

3. (3)

Where the rating of the SPD is less than the maximum continuous phase-to-ground voltage at the power frequency available at the point of application

242.8 Listing.

An SPD shall be a listed device.

242.10 Short-Circuit Current Rating.

The SPD shall be marked with a short-circuit current rating and shall not be installed at a point on the system where the available fault current is in excess of that rating. This marking requirement shall not apply to receptacles.

242.12 Type 1 SPDs.

Type 1 SPDs shall be installed in accordance with 242.12(A) and (B).

242.12(A) Installation.

Type 1 SPDs shall be permitted to be connected in accordance with one of the following:

1. (1)

To the supply side of the service disconnect as permitted in 230.82(4)

2. (2)

As specified in 242.14

242.12(B) At the Service.

When installed at services, Type 1 SPDs shall be connected to one of the following:

1. (1)

Grounded service conductor

2. (2)

Grounding electrode conductor

3. (3)

Grounding electrode for the service

4. (4)

Equipment grounding terminal in the service equipment

242.14 Type 2 SPDs.

Type 2 SPDs shall be installed in accordance with 242.14(A) through (C).

242.14(A) Service-Supplied Building or Structure.

Type 2 SPDs shall be connected anywhere on the load side of a service disconnect overcurrent device required in <u>230.91</u> unless installed in accordance with <u>230.82</u>(8).

242.14(B) Feeder-Supplied Building or Structure.

Type 2 SPDs shall be connected at the building or structure anywhere on the load side of the first overcurrent device at the building or structure.

242.14(C) Separately Derived System.

The SPD shall be connected on the load side of the first overcurrent device in a separately derived system.

242.16 Type 3 SPDs.

Type 3 SPDs shall be permitted to be installed on the load side of branch-circuit overcurrent protection up to the equipment served. If included in the manufacturer's instructions, the Type 3 SPD connection shall be a minimum 10 m (30 ft) of conductor distance from the service or separately derived system disconnect.

242.18 Type 4 and Other Component Type SPDs.

Type 4 component assemblies and other component type SPDs shall only be installed by the equipment manufacturer.

242.20 Number Required.

Where used at a point on a circuit, the SPD shall be connected to each ungrounded conductor.

242.22 Location.

SPDs shall be permitted to be located indoors or outdoors and shall be made inaccessible to unqualified persons unless listed for installation in accessible locations.

242.24 Routing of Connections.

The conductors used to connect the SPD to the line or bus and to ground shall not be any longer than necessary and shall avoid unnecessary bends.

242.26 Connection.

Where an SPD device is installed, it shall comply with <u>242.12</u>, <u>242.14</u>, <u>242.16</u>, <u>242.28</u>, and <u>242.30</u>.

242.28 Conductor Size.

Line and grounding conductors shall not be smaller than 14 AWG copper or 12 AWG aluminum.

242.30 Connection Between Conductors.

An SPD shall be permitted to be connected between any two conductors — ungrounded conductor(s), grounded conductor, equipment grounding conductor, or grounding electrode conductor. The grounded conductor and the equipment grounding conductor shall be interconnected only by the normal operation of the SPD during a surge.

242.32 Grounding Electrode Conductor Connections and Enclosures.

Except as indicated in this article, SPD grounding connections shall be made as specified in Article 250, Part III. Grounding electrode conductors installed in metal enclosures shall comply with 250.64(E).

Part III. Surge Arresters, Over 1000 Volts

242.40 Uses Not Permitted.

A surge arrester shall not be installed where the rating of the surge arrester is less than the maximum continuous phase-to-ground voltage at the power frequency available at the point of application.

242.42 Surge Arrester Selection.

The surge arresters shall comply with 242.42(A) and (B).

242.42(A) Rating.

The rating of a surge arrester shall be equal to or greater than the maximum continuous operating voltage available at the point of application.

242.42(A)(1) Solidly Grounded Systems.

The maximum continuous operating voltage shall be the phase-to-ground voltage of the system.

242.42(A)(2) Impedance or Ungrounded System.

The maximum continuous operating voltage shall be the phase-to-phase voltage of the system.

242.42(B) Silicon Carbide Types.

The rating of a silicon carbide-type surge arrester shall be not less than 125 percent of the rating specified in <u>242.42(A)</u>.

Informational Note No. 1: For further information on surge arresters, see IEEE C62.11-2012, *Standard for Metal-Oxide Surge Arresters for Alternating-Current Power Circuits (>1 kV)*, and IEEE C62.22-2009, *Guide for the Application of Metal-Oxide Surge Arresters for Alternating-Current Systems*.

Informational Note No. 2: The selection of a properly rated metal oxide arrester is based on considerations of maximum continuous operating voltage and the magnitude and duration of overvoltages at the arrester location as affected by phase-to-ground faults, system grounding techniques, switching surges, and other causes. See the manufacturer's application rules for selection of the specific arrester to be used at a particular location.

242.44 Number Required.

Where used at a point on a circuit, a surge arrester shall be connected to each ungrounded conductor. A single installation of such surge arresters shall be permitted to protect a number of interconnected circuits if no circuit is exposed to surges while disconnected from the surge arresters.

242.46 Location.

Surge arresters shall be permitted to be located indoors or outdoors. Surge arresters shall be made inaccessible to unqualified persons unless listed for installation in accessible locations.

242.48 Routing of Surge Arrester Equipment Grounding Conductors.

The conductor used to connect the surge arrester to line, bus, or equipment and to an equipment grounding conductor or grounding electrode connection point as provided in <u>242.50</u> shall not be any longer than necessary and shall avoid unnecessary bends.

242.50 Connection.

The arrester shall be connected to one of the following:

1. (1)

Grounded service conductor

2. (2)

Grounding electrode conductor

3. (3)

Grounding electrode for the service

4. (4)

Equipment grounding terminal in the service equipment

242.52 Surge-Arrester Conductors.

The conductor between the surge arrester and the line, and the surge arrester and the grounding connection, shall not be smaller than 6 AWG copper or aluminum.

242.54 Interconnections.

The surge arrester protecting a transformer that supplies a secondary distribution system shall be interconnected as specified in <u>242.54(A)</u>, (B), or (C).

242.54(A) Metal Interconnections.

A metal interconnection shall be made to the secondary grounded circuit conductor or the secondary circuit grounding electrode conductor, if, in addition to the direct grounding connection at the surge arrester, the connection complies with 242.54(A)(1) or (A)(2).

242.54(A)(1) Additional Grounding Connection.

The grounded conductor of the secondary has a grounding connection elsewhere to a continuous metal underground water piping system. In urban water-pipe areas where there are at least four water-pipe connections on the neutral conductor and not fewer than four such connections in each mile of neutral conductor, the metal interconnection shall be permitted to be made to the secondary neutral conductor with omission of the direct grounding connection at the surge arrester.

242.54(A)(2) Multigrounded Neutral System Connection.

The grounded conductor of the secondary system is part of a multigrounded neutral system or static wire of which the primary neutral conductor or static wire has at least four grounding connections in each 1.6 km (1 mile) of line in addition to a grounding connection at each service.

242.54(B) Through Spark Gap or Device.

Where the surge arrester grounding electrode conductor is not connected as in 242.54(A), or where the secondary is not grounded as in 242.54(A) but is otherwise grounded as in 250.52, an interconnection shall be made through a spark gap or listed device as required by 242.54(B)(1) or (B)(2).

242.54(B)(1) Ungrounded or Unigrounded Primary System.

For ungrounded or unigrounded primary systems, the spark gap for a listed device shall have a 60-Hz breakdown voltage of at least twice the primary circuit voltage but not necessarily more than 10 kV, and there shall be at least one other ground on the grounded conductor of the secondary that is not less than 6.0 m (20 ft) distant from the surge-arrester grounding electrode.

242.54(B)(2) Multigrounded Neutral Primary System.

For multigrounded neutral primary systems, the spark gap or listed device shall have a 60-Hz breakdown of not more than 3 kV, and there shall be at least one other ground on the grounded conductor of the secondary that is not less than 6.0 m (20 ft) distant from the surge-arrester grounding electrode.

242.54(C) By Special Permission.

An interconnection of the surge-arrester ground and the secondary neutral conductor, other than as provided in <u>242.54(A)</u> or (B), shall be permitted to be made only by special permission.

242.56 Grounding Electrode Conductor Connections and Enclosures.

Except as indicated in this article, surge-arrester grounding electrode conductor connections shall be made as specified in Article <u>250</u>, Parts III and X. Grounding electrode conductors installed in metal enclosures shall comply with <u>250.64(E)</u>.

Part IV. Voltage Stabilizing Ground Reference (VSGR) systems.

242.68 Listing.

A VSGR shall be a listed device or system composed of listed components.

242.70 Short-Circuit Current Rating.

The VSGR shall be marked with a short-circuit current rating and shall not be installed at a point on the system where the available fault current is in excess of that rating.

242.71 Voltage Rating.

The rating of the VSGR shall be equal to or greater than the maximum system continuous operating voltage at the point of application.

242.72 Installation.

VSGRs shall be installed in accordance with 242.72(A) through (C).

242.72(A) Service-Supplied Building or Structure.

VSGR shall be connected anywhere on the load side of a service disconnect overcurrent device required in 230.91 unless installed in accordance with 230.82(8).

242.72(B) Feeder-Supplied Building or Structure.

VSGR shall be connected at the building or structure anywhere on the load side of the first overcurrent device at the building or structure.

242.72(C) Separately Derived System.

VSGR shall be connected on the load side of the first overcurrent device in a separately derived system.

242.82 Location.

VSGRs shall be permitted to be located indoors or outdoors and shall be made inaccessible to unqualified persons unless listed for installation in accessible locations.

242.84 Conductor Size.

Line and grounding conductors shall not be smaller than 14 AWG copper or 12 AWG aluminum.

242.90 Connection Between Conductors.

VSGR connections shall follow the manufacturer's instructions for the system connections.

242.92 Grounding Electrode Conductor Connections and Enclosures.

Except as indicated in this article, VSGR grounding connections shall be made as specified in Article 250, Part III. Grounding electrode conductors installed in metal enclosures shall comply with 250.64(E).

501.35 Overvoltage Surge Protection.

501.35(A) Class I, Division 1.

Overvoltage protection devices, surge arresters, surge-protective devices, and capacitors shall be installed in enclosures identified for Class I, Division 1 locations. Surge-protective capacitors shall be of a type designed for specific duty.

501.35(B) Class I, Division 2.

<u>Overvoltage protection devices</u>, surge arresters and surge-protective devices shall be nonarcing, such as metal-oxide varistor (MOV) sealed type, and surge-protective capacitors shall be of a type designed for specific duty. Enclosures shall be permitted to be of the general-purpose type. <u>Overvoltage Surge</u> protection of types other than described in this paragraph shall be installed in enclosures identified for Class I, Division 1 locations.

502.35 Overvoltage Surge Protection — Class II, Divisions 1 and 2.

<u>Overvoltage protection devices</u>, surge arresters and surge-protective devices installed in a Class II, Division 1 location shall be in suitable enclosures. Surge-protective capacitors shall be of a type designed for specific duty.

551.72(E) Connected Devices.

The use of autotransformers shall not be permitted. The use of listed <u>overvoltage and</u> surge protective devices shall be permitted.

Table 490.24 Minimum Clearance of Live Parts

Note: The values given are the minimum clearance for rigid parts and bare conductors under favorable service conditions. They shall be increased for conductor movement or under unfavorable service conditions or wherever space limitations permit. The selection of the associated impulse withstand voltage for a particular system voltage is determined by the characteristics of the <u>overvoltage surge</u> protective equipment.

490.48(A) Design and Documentation.

(12) Overvoltage Surge arresters

620.51(E) Overvoltage Surge Protection.

<u>Overvoltage protection shall be provided where</u> any of the disconnecting means in <u>620.51</u> has been designated as supplying an emergency system load, a legally required system load, or a critical operation power system load, listed surge protection shall be provided.

645.18 Overvoltage Surge Protection for Critical Operations Data Systems.

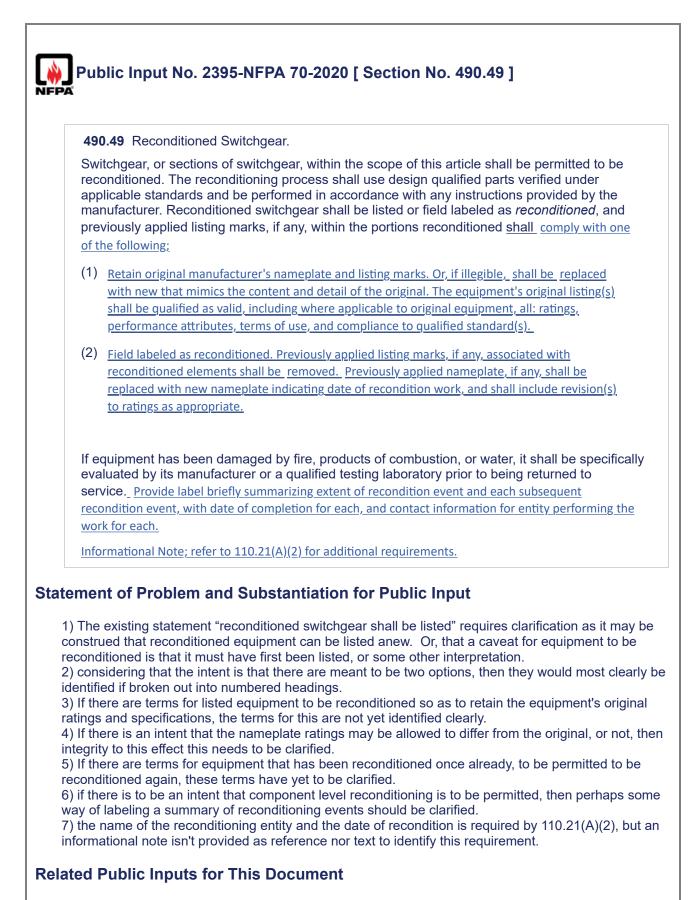
Overvoltage Listed surge protection shall be provided for critical operations data systems.

670.6 Surge Protection.

Industrial machinery with safety interlock control devices not effectively protected from voltage surges on the incoming supply circuit shall have overvoltage surge protection installed.

694.7(D) Overvoltage Protection Surge Protective Devices (SPD).

<u>Overvoltage protection A surge protective device</u> shall be installed between a wind electric system and any loads served by the premises electrical system. The surge protective device shall be permitted to be a <u>VSGR</u>, or a Type 3 SPD on the circuit serving a wind electric system, or a Type 2 SPD located anywhere on the load side of the service disconnect. <u>Overvoltage Surge</u> protective devices shall be installed in accordance with Part II of Article 242.

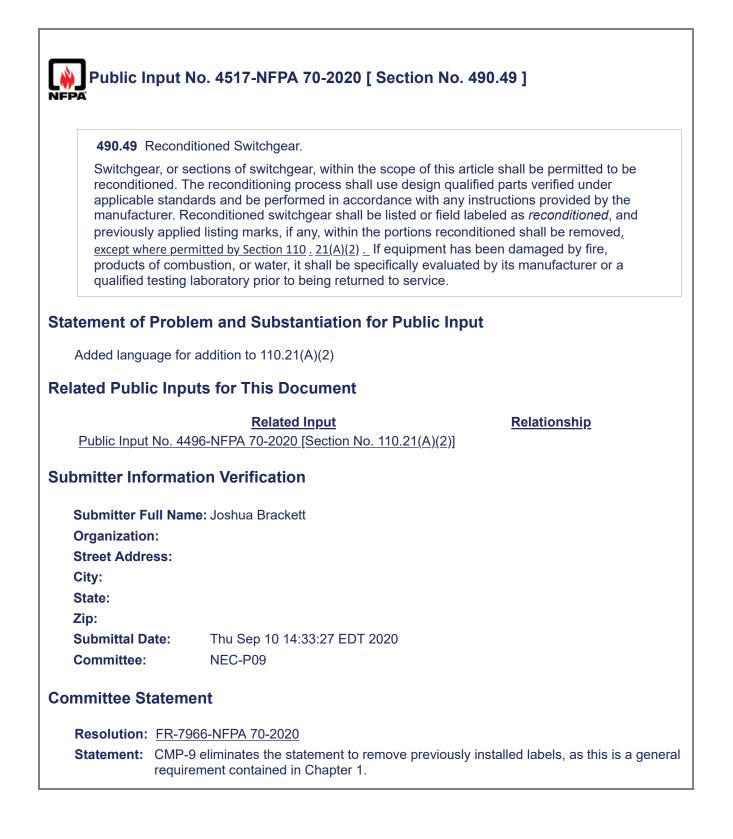

695.15 Overvoltage Surge Protection.

Overvoltage A listed surge protection device shall be provided for installed in or on the fire pump controller.

700.8 Overvoltage Surge Protection.

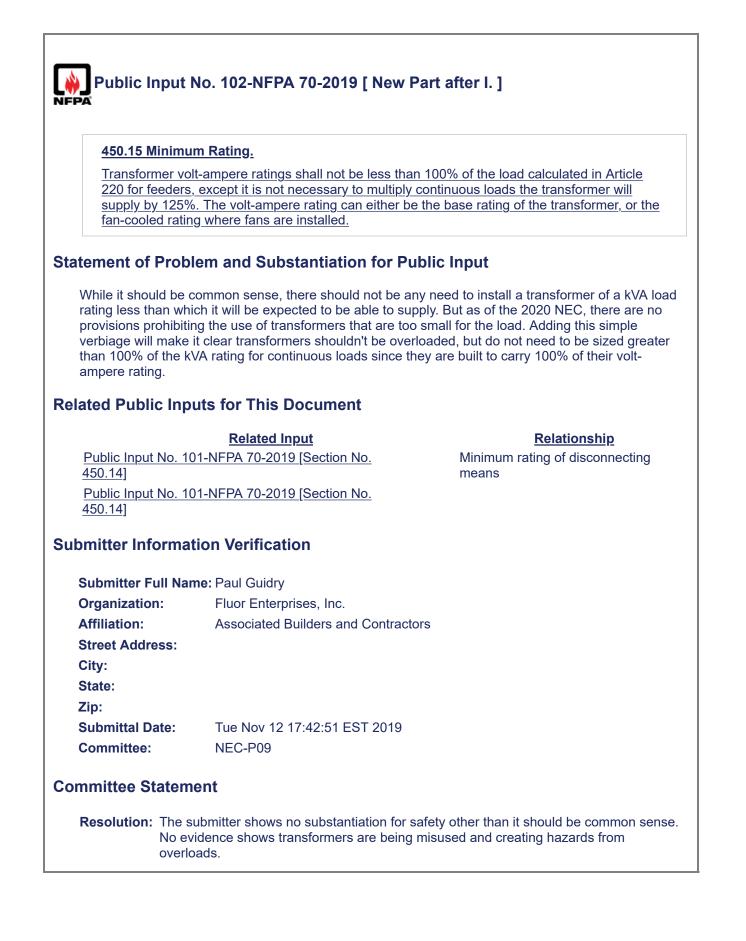
Overvoltage protection A listed SPD shall be provided-installed in or on for all emergency systems switchboards and panelboards.

708.20(D) <u>Overvoltage Surge</u> Protection <u>Devices</u>. Surge protection devices shall be provided at all facility distribution voltage levels


Related Input

Public Input No. 2298-NFPA 70-2020 [Section No. 408.8(B)] Public Input No. 2396-NFPA 70-2020 [Section No. 240.88]

<u>Relationship</u>

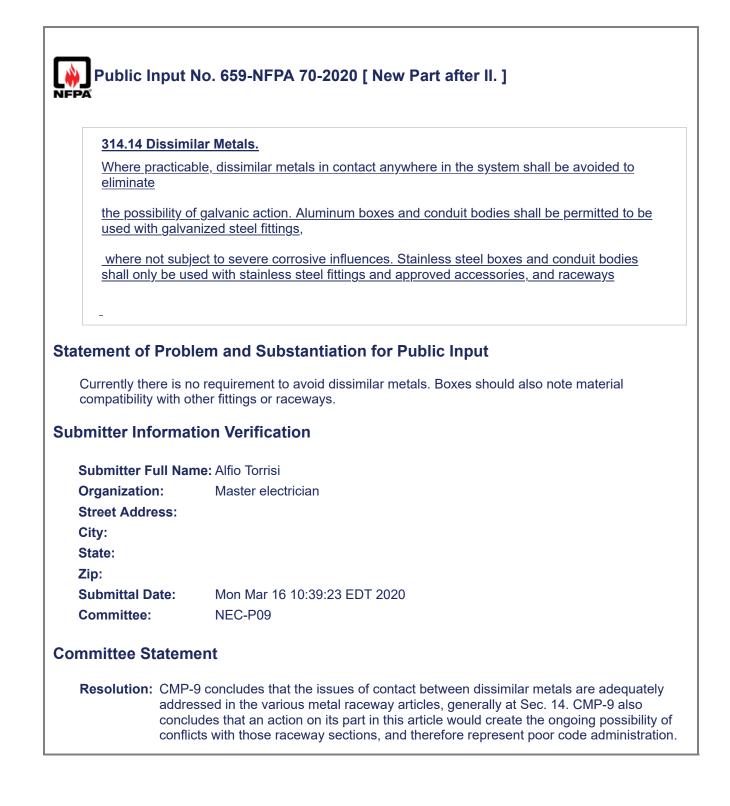

similar issues and intent similar topic

Public Input	No. 2298-NFPA 70-2020 [Section No. 408.8(B)]
Public Input	No. 2396-NFPA 70-2020 [Section No. 240.88]
Submitter Info	ormation Verification
Submitter Fu	III Name: John Blissett
Organizatior	Bernhard TME
Street Addre	SS:
City:	
State:	
Zip:	
Submittal Da	te: Tue Aug 18 18:02:51 EDT 2020
Committee:	NEC-P09
Committee St	atement
Resolution:	The proposed requirements are in conflict with requirements in 110.21. As noted in 90.3, Chapters $1 - 4$ apply generally. Changes to the general marking requirements for Reconditioned Equipment in Section 110.21(A)(2) should be submitted to CMP-1 for consideration.

	nput No. 4361-NFPA 70-2020 [Section No. 490.51(B)]
(B) Othe	er Requirements.
	rements of this part shall be additional to, or amendatory of, those prescribed in 00 through 725 of this Code . Special attention shall be paid to Article 250 .
atement of	Problem and Substantiation for Public Input
exception of not required to parts which s If the latter op	of the 2020 NEC(R) Style Manual prohibits references to an entire article, with the Article 100. Section 90.3 makes the overall code arrangement clear, so this statement is for the enforcement or usability of the code. Alternatively, if there are specific sections of should be referenced in this requirement, that could be done in lieu of deleting this section ption is chosen, other sections should be identified in the form of a table as required by and 2.3 of the Style Manual.
ubmitter Info	ormation Verification
Submitter Fu	ull Name: Richard Holub
Organization	1: The DuPont Company, Inc.
Street Addre	ess:
City:	
State:	
Zip:	
Submittal Da	ate: Thu Sep 10 11:17:25 EDT 2020
Committee:	NEC-P09
ommittee St	atement
Resolution:	FR-7967-NFPA 70-2020
	with the exception of Article 100. The intent here is to point to the bonding and groundin parts that would apply in Article 250, which is Part X since this is "high voltage

PA	
490.56 High	-Voltage Portable Cable for Main Power Supply.
the bonding a	-voltage cable supplying power to portable or mobile equipment shall comply with and grounding requirements in Parts V, VI, and X of Article 250 and the flexible ments of Article 400, Part III.
atement of Pro	oblem and Substantiation for Public Input
exception of Arti	the 2020 NEC(R) Style Manual prohibits references to an entire article, with the cle 100. I believe the intent here is to point the user to the bonding and grounding apply in Article 250, which are Parts V, VI, and X since this is "high voltage
Submitter Full I	Name: Richard Holub
Organization:	Name: Richard Holub The DuPont Company, Inc.
Organization: Street Address	Name: Richard Holub The DuPont Company, Inc.
Organization:	Name: Richard Holub The DuPont Company, Inc.
Organization: Street Address City:	Name: Richard Holub The DuPont Company, Inc.
Organization: Street Address City: State: Zip: Submittal Date:	Name: Richard Holub The DuPont Company, Inc. Thu Sep 10 11:23:14 EDT 2020
Organization: Street Address City: State: Zip:	Name: Richard Holub The DuPont Company, Inc.
Organization: Street Address City: State: Zip: Submittal Date: Committee:	Name: Richard Holub The DuPont Company, Inc. Thu Sep 10 11:23:14 EDT 2020 NEC-P09
Organization: Street Address City: State: Zip: Submittal Date: Committee:	Name: Richard Holub The DuPont Company, Inc. Thu Sep 10 11:23:14 EDT 2020 NEC-P09
Organization: Street Address City: State: Zip: Submittal Date: Committee: ommittee State Resolution: FF Statement: Se	Name: Richard Holub The DuPont Company, Inc. Thu Sep 10 11:23:14 EDT 2020 NEC-P09 Pement R-7968-NFPA 70-2020 ction 4.1.4 of the 2020 NEC® Style Manual prohibits references to an entire articles,
Organization: Street Address City: State: Zip: Submittal Date: Committee: ommittee State Resolution: FF Statement: Se wit	Name: Richard Holub The DuPont Company, Inc. Thu Sep 10 11:23:14 EDT 2020 NEC-P09 Pement R-7968-NFPA 70-2020

Part I Scope and Installation General	
tatement of Prob	lem and Substantiation for Public Input
on Parts 2.1.4 Part	livided into multiple parts and needs to comply with the revised NEC Style Manual titles shall be descriptive and as concise as possible. a article has multiple parts, Part I. shall be titled "General". "
ubmitter Informa	tion Verification
Submitter Full Na	me: David Williams
Submitter Full Nar Organization:	me: David Williams Delta Charter Township
Organization:	
Organization: Street Address:	
Organization: Street Address: City:	
Organization: Street Address: City: State:	


Public Input No. 4366-NFPA 70-2020 [Part I.]	
Part I. Scope a	nd- General
Statement of Prob	em and Substantiation for Public Input
on Parts 2.1.4 Part	ivided into multiple parts and needs to comply with the revised NEC Style Manual titles shall be descriptive and as concise as possible. article has multiple parts, Part I. shall be titled "General". "
Submitter Informat	tion Verification
Submitter Full Nar	ne: David Williams
Organization:	Delta Charter Township
Street Address:	
City: State:	
Zip:	
Submittal Date:	Thu Sep 10 11:23:06 EDT 2020
Committee:	NEC-P09
Committee Statem	ent
Resolution: FR-77	715-NFPA 70-2020
Statement: CMP-	9 is revising the title of Part I to comply with the new Style Manual, Sec. 2.4.2.1.

Public Input I	No. 4371-NFPA 70-2020 [Part I.]
Part I. – Installa	tion <u>General</u>
Statement of Probl	em and Substantiation for Public Input
on Parts 2.1.4 Part	ivided into multiple parts and needs to comply with the revised NEC Style Manual titles shall be descriptive and as concise as possible. article has multiple parts, Part I. shall be titled "General". "
Submitter Informat	tion Verification
Submitter Full Nan	ne: David Williams
Organization:	Delta Charter Township
Street Address:	
City: State:	
Zip:	
Submittal Date:	Thu Sep 10 11:25:17 EDT 2020
Committee:	NEC-P09
Committee Statem	ent
Resolution: FR-78	362-NFPA 70-2020
Statement: Per th	e style manual, where an article has multiple parts, Part I, shall be titled "General."

Public Input N	No. 4373-NFPA 70-2020 [Part I.]
Part I. General	Provisions General
Statement of Probl	em and Substantiation for Public Input
on Parts 2.1.4 Part	ivided into multiple parts and needs to comply with the revised NEC Style Manual titles shall be descriptive and as concise as possible. article has multiple parts, Part I. shall be titled "General". "
Submitter Informat	ion Verification
Submitter Full Nan	ne: David Williams
Organization:	Delta Charter Township
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Thu Sep 10 11:26:26 EDT 2020
Committee:	NEC-P09
Committee Statem	ent
Resolution: FR-77	784-NFPA 70-2020
Statement:	
CMP-	9 Edits title to Part I for clarity to meet Style Manual requirements.

Public Input N	o. 977-NFPA 70-2020 [Part I.]
Part I. General I	Provisions General
Statement of Proble	em and Substantiation for Public Input
The word "Provisions	s" is unnecessary and redundant.
Submitter Informati	on Verification
Submitter Full Nam	e: Agnieszka Golriz
Organization:	NECA
Street Address:	
City: State:	
Zip:	
Submittal Date:	Wed May 06 11:48:34 EDT 2020
Committee:	NEC-P09
Committee Stateme	nt
Resolution: FR-778	34-NFPA 70-2020
Statement:	
CMP-9	Edits title to Part I for clarity to meet Style Manual requirements.

Г

n Specifications arked with the current, voltage, and, if horsepower rated, the maximum are designed. ition, a switching device with a marked OFF position shall completely unded conductors to the load it controls. Control Switches. ritches shall be listed. Electronic control switches shall not introduce ment grounding conductor during normal operation. The requirement to no the equipment grounding conductor shall take effect on January 1, 2020. <i>nic control switches that introduce current on the equipment grounding</i>
are designed. ition, a switching device with a marked OFF position shall completely unded conductors to the load it controls. Control Switches. ritches shall be listed. Electronic control switches shall not introduce ment grounding conductor during normal operation. The requirement to no the equipment grounding conductor shall take effect on January 1, 2020.
are designed. ition, a switching device with a marked OFF position shall completely unded conductors to the load it controls. Control Switches. ritches shall be listed. Electronic control switches shall not introduce ment grounding conductor during normal operation. The requirement to no the equipment grounding conductor shall take effect on January 1, 2020.
are designed. ition, a switching device with a marked OFF position shall completely unded conductors to the load it controls. Control Switches. ritches shall be listed. Electronic control switches shall not introduce ment grounding conductor during normal operation. The requirement to no the equipment grounding conductor shall take effect on January 1, 2020.
unded conductors to the load it controls. Control Switches. vitches shall be listed. Electronic control switches shall not introduce ment grounding conductor during normal operation. The requirement to no the equipment grounding conductor shall take effect on January 1, 2020.
unded conductors to the load it controls. Control Switches. vitches shall be listed. Electronic control switches shall not introduce ment grounding conductor during normal operation. The requirement to no the equipment grounding conductor shall take effect on January 1, 2020.
ritches shall be listed. Electronic control switches shall not introduce ment grounding conductor during normal operation. The requirement to no the equipment grounding conductor shall take effect on January 1, 2020.
ment grounding conductor during normal operation. The requirement to no the equipment grounding conductor shall take effect on January 1, 2020.
nic control switches that introduce current on the equipment arounding
bermitted for applications covered by 404.2(C), Exception. Electronic at introduce current on the equipment grounding conductor shall be listed in replacement or retrofit applications only.
hes Rated 600 to 1000 Volts.
a renewable or quick-break type or the equivalent shall be provided on all 600 to 1000 volts and designed for use in breaking current over 200
ches.
not have fuses in parallel except as permitted in 240.8 -
ng Space.
ace required by 404.3 -shall meet- Table 312.6(B) -spacings to the site the line and load terminals.
and Substantiation for Public Input
uct standard (UL 20) and does not need to be repeated in the CODE.
Verification
Karl Cunningham
Self Employed
Self Employed

Committee:	NEC-P09
Committee St	atement
Resolution:	It is true that product standard organizations like UL will often extract text from the NEC to help develop product safety standards. These safety standards are written to help manufacturers and other interested parties comply with the requirements of the NEC. Part II of the article establishes overall policy parameters that provide guidance for product standards and retain their importance regardless of particular provisions within those standards. The new 404.30 on enclosure doors being added in this cycle is an example of this process at work.