Type your co	intent here
Title: Improv fires with CO	ved clarity of the terms "fire" and "extinguishment", highlighting electrostatic explosion hazard when fighting smoldering 12.
Concern:	oblom with CO, battorias, Whan liquid CO, is released, static discharges are generated. It's a known source of ignition
e.g. in NFPA This is not pr ignited due t 5.2.3 states t	77. roblem for fighting a fire with flames. But a smoldering fire will likely have filled the headspace with flammable gases. If o CO₂ injection, a confined explosion will result. NFPA 12 does not mention this hazard clearly. On the contrary, section hat CO₂ can be used for "deep-seated fires". This is a problem.
l wrote an art Hedlund FH explosion. E	ticle on an explosion caused by this phenomenon: (2018) Carbon dioxide not suitable for extinguishment of smouldering silo fires: static electricity may cause silo siomass and Bioenergy. 108:113-119. <u>https://doi.org/10.1016/j.biombioe.2017.11.009</u>
Quoting from NFPA 12 [21] the discharg	n this article: on carbon dioxide extinguishing systems provides ambiguous advice on the electrostatic hazard. Annex A states that a of liquid carbon dioxide is known to produce electrostatic
charges that The standard	, under certain conditions, could create a spark and duly refers to NFPA 77. I also specifies, that "carbon dioxide fire extinguishing systems protecting areas where explosive atmospheres could lize metal nozzles, and the entire system shall be
grounded" [[The first issu	21], Sec. 4.2.1]. ie of concern is if the reader realizes that an ignitable (and explosive) atmosphere can exist not only when flammable off vanours but also when pyrolysis gases have accumulated
The second i	issue of concern is if effective grounding is sufficient to prevent hazardous electrostatic discharges – the Bitburg
The third and seated fires i	d perhaps most important issue of concern is the standard's ill-conceived advice on the application of CO2 to "deep- involving solids subject to smoldering" [[21], Sec 5.2.3].
This is precis ignitable ran	sely the situation where pyrolysis gases may have accumulated in the headspace to an extent where they are in the ge – but the reader may not have realized this, and the standard does not identify the potential presence of flammable ses.
The nub of the standard's tee The application without flam.	ne issue may well be lack of clarity in the meaning of the terms "fire" and "extinguishment", which are not defined in the rminology section. Ion of CO2 is excellent for extinguishing a fire with flames, but unsuitable for quenching a deep-seated smouldering fire
I'm not a US issue further Frank Huess <u>fhhe@cowi.c</u> Denmark	citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund <u>com</u>
I'm not a US issue further Frank Huess <u>fhhe@cowi.c</u> Denmark atement of Pro Currently, the star	citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund com blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting
I'm not a US issue further Frank Huess <u>fhhe@cowi.c</u> Denmark tatement of Prod Currently, the star readers to explos	citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund com blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification
I'm not a US issue further Frank Huess fhhe@cowi.c Denmark atement of Prod Currently, the star readers to explos ubmitter Inform Submitter Full N	citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund com blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification ame: Frank Hedlund
I'm not a US issue further Frank Huess fhhe@cowi.c Denmark tatement of Pro Currently, the star readers to explos Jbmitter Inform Submitter Full No Organization:	citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund com blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification ame: Frank Hedlund COWI (a consultancy) & Technical University of Denmark
I'm not a US issue further Frank Huess fhhe@cowi.c Denmark tatement of Pro Currently, the star readers to explos ubmitter Inform Submitter Full N Organization: Street Address:	citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund com blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification ame: Frank Hedlund COWI (a consultancy) & Technical University of Denmark
I'm not a US issue further Frank Huess fhhe@cowi.c Denmark tatement of Pro Currently, the stat readers to explos ubmitter Inform Submitter Full N: Organization: Street Address: City: State.	citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund com blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification ame: Frank Hedlund COWI (a consultancy) & Technical University of Denmark
I'm not a US issue further Frank Huess fhhe@cowi.c Denmark tatement of Pro Currently, the star readers to explos ubmitter Inform Submitter Full N Organization: Street Address: City: State: Zip:	citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund iom blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification ame: Frank Hedlund COWI (a consultancy) & Technical University of Denmark
I'm not a US issue further Frank Huess fhhe@cowi.c Denmark tatement of Pro Currently, the star readers to explos ubmitter Inform Submitter Full N. Organization: Street Address: City: State: Zip: Submittal Date:	citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification ame: Frank Hedlund COWI (a consultancy) & Technical University of Denmark Mon Jun 04 04:25:09 EDT 2018
I'm not a US issue further Frank Huess fhhe@cowi.c Denmark tatement of Pro Currently, the star readers to explos ubmitter Inform Submitter Full N Organization: Street Address: City: State: Zip: Submittal Date: Committee:	critizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund com blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification ame: Frank Hedlund COWI (a consultancy) & Technical University of Denmark Mon Jun 04 04:25:09 EDT 2018 GFE-AAA
I'm not a US issue further Frank Huess fhhe@cowi.c Denmark tatement of Pro Currently, the star readers to explos ubmitter Inform Submitter Full N Organization: Street Address: City: State: Zip: Submittal Date: Committee State	citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund iom blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification ame: Frank Hedlund COWI (a consultancy) & Technical University of Denmark Mon Jun 04 04:25:09 EDT 2018 GFE-AAA ment
I'm not a US issue further Frank Huess fhhe@cowi.c Denmark tatement of Pro Currently, the star readers to explos ubmitter Inform Submitter Full N Organization: Street Address: City: State: Zip: Submittal Date: Committee States Resolution: FR-	Citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund comments and Substantiation for Public Input Inder gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification ame: Frank Hedlund COWI (a consultancy) & Technical University of Denmark Mon Jun 04 04:25:09 EDT 2018 GFE-AAA ment 3-NFPA 12-2019
I'm not a US issue further Frank Huess fhhe@cowi.c Denmark tatement of Pro Currently, the star readers to explos ubmitter Inform Submitter Full N Organization: Street Address: City: State: Zip: Submittal Date: Committee State! Resolution: <u>FR-</u> Statement: Sec	Citizen and have no means to enter a lengthy comments procedure for a US standard. Unfortunately, I cannot pursue this with NFPA. Hedlund com blem and Substantiation for Public Input ndard gives ill-conceived advice on the application of CO2 to "deep-seated fires involving solids subject to smoldering", not alerting ion hazard ation Verification ame: Frank Hedlund COWI (a consultancy) & Technical University of Denmark Mon Jun 04 04:25:09 EDT 2018 GFE-AAA ment 3-NFPA 12-2019 tion 5.2.3.2 is revised to clarify that it is the design concentration that must be maintained, not the minimum extinguishing concentration

2	hapter 2 Referenced Publications
2	<u>.1</u> General.
T tł	ne documents or portions thereof listed in this chapter are referenced within this standard and shall be considered part of the requirements o is document.
2	2 NFPA Publications.
N	ational Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.
N	FPA 4, Standard for Integrated Fire Protection and Life Safety System Testing, 2018 edition.
٨	FPA 70 [®] , National Electrical Code [®] , 2017 edition.
٨	EPA 72 [®] National Fire Alarm and Signaling Code [®] 2016 edition
2	3 Other Publications.
2	3.1 ANSI Publications.
Ā	merican National Standards Institute, Inc., 25 West 43rd Street, 4th Floor, New York, NY 10036.
A	NSI Z535.2, Standard for Environmental and Facility Safety Signs, 2011, Reaffirmed 2017.
2	.3.2 API Publications.
A	merican Petroleum Institute, 1220 L Street, NW, Washington, DC 20005-4070.
A	PI-ASME Code for Unfired Pressure Vessels for Petroleum Liquids and Gases, Pre–July 1, 1961.
2	3.3 ASME Publications.
A	merican Society of Mechanical Engineers, Two Park Avenue, New York, NY 10016-5990.
A	SME B31.1, <i>Power Piping- Code</i> , 2016 <u>201</u> <u>8</u> .
2	.3.4 ASTM Publications.
A	STM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.
A	STM A53/A53M, Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless, 2012 201 8.
A	STM A106/A106M, Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service, 2015 201 8.
A (\	STM A120, Specification for Pipe, Steel, Black and Hot-Dipped Zinc-Coated (Galvanized) Welded and Seamless for Ordinary Uses, 1984 /ithdrawn 1987) _ <u>Superseded by ASTM A53/A53M</u> .
A fo	STM A182/A182M, Standard Specification for Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Par r High-Temperature Service, 2016 201 <u>8</u> .
2	3.5 CGA Publications.
C	ompressed Gas Association, 14501 George Carter Way, Suite 103, Chantilly, VA 20151-2923.
C	GA G-6.2, Commodity Specification for Carbon Dioxide, 2011 <u>201 3</u> .
2	3.6 CSA Group Publications.
0	SA Group, 178 Rexdale Blvd., Toronto, ON M9W 1R3, Canada.
2	SA CZ2. 1, Canadian Electrical Code, 2013 201 <u>0</u> .
	IEEE Fublications.
~	NSI/IEEE C2. National Electrical Sofaty Code 2017
2	38 LLS Government Publications
= ∪	S. Government Publishing Office, 732 North Capitol Street, NW, Washington, DC 20401-0001
т	tle 46. Code of Federal Regulations. Part 58 20
Ť	tle 46, Code of Federal Regulations, Part 72.
т	tle 49. Code of Federal Regulations. Parts 171–190 (Department of Transportation).
С	oward, H. F., and G. W. Jones, Limits of Flammability of Gases and Vapors, U.S. Bureau of Mines Bulletin 503,1952.
z	abetakis, Michael G., Flammability Characteristics of Combustible Gases and Vapors, U.S. Bureau of Mines Bulletin 627, 1965.
2	3.9 Other Publications.
N	lerriam-Webster's Collegiate Dictionary, 11th edition, Merriam-Webster, Inc., Springfield, MA, 2003.
2	4 References for Extracts in Mandatory Sections.
N	FPA 1, Fire Code, 2018 edition.
N	FPA 122, Standard for Fire Prevention and Control in Metal/Nonmetal Mining and Metal Mineral Processing Facilities, 2015 edition.
N	FPA 820, Standard for Fire Protection in Wastewater Treatment and Collection Facilities, 2016 edition.

Submitter Information Verification

Submitter Full Name: Aaron AdamczykOrganization:[Not Specified]Street Address:-City:-State:-Zip:-Submittal Date:Sun Sep 09 02:15:52 EDT 2018Committee:GFE-AAA

Committee Statement

Resolution:FR-4-NFPA 12-2019Statement:Referenced updated editions.

Public Ir	nput No. 12-NFPA 12-2018 [Section No. 4.6.1 [Excluding any Sub-Sections]]
NFPA	
The amou hazards th completio	Int of the main supply of carbon dioxide in the system shall be at least sufficient for the largest single hazard protected or group of nat are to be protected simultaneously. The supply pipe from the tank to the hazard can contain a significant amount of CO2 at the n of a discharge and shall be considered in sizing the supply.
Statement of	Problem and Substantiation for Public Input
The supply p distance awa discharge. W available for	ipe between the low pressure CO2 tank and the hazard can contain a large volume of CO2, especially for large hazards with 4 in pipe some y. It is our understanding that the flow calculations only figure the mass of CO2 that leaves the nozzles and enters the hazard during hen the valve at the tank closes, the CO2 in the supply pipe is left abandoned in the pipe, not reliable for extinguishing and no longer another discharge from the tank. When sizing systems, this volume should be included as consumed CO2.
Submitter Info	ormation Verification
Submitter Fu	III Name: Matthew Taylor
Organization	n: Mitsubishi Hitachi Power Systems
Street Addre	ISS:
City:	
State:	
Zip:	
Submittal Da	ate: Thu Dec 27 11:49:23 EST 2018
Committee:	GFE-AAA
Committee St	atement
Resolution:	FR-5-NFPA 12-2019
Statement:	This revision recognizes that distribution systems with large internal volumes could require additional carbon dioxide.
	Additional guidance is provided for extended discharge systems to ensure that the calculated flow rates can be maintained for the design time.

5.5.2 or <u>5.5.</u> 3. (See also 5.2.1.3.) <u>d discharge systems. Annex A.5.5.2</u> <u>zards. To send a user to 5.5.3 may</u> <u>ormation.</u> otation electrical equipment". This change					
d discharge systems. Annex A.5.5.2 zards. To send a user to 5.5.3 may ormation.					
zards. To send a user to 5.5.3 may ormation. otation electrical equipment". This change					
ormation. otation electrical equipment". This change					
otation electrical equipment". This change					
otation electrical equipment". This chang					
Same issue					
Different correction in a related section of the standard.					

Public Input No	. 14-NFPA 12-2018 [Section N	No. 5.5.2.1]		
IFPA				
<u>5.5.2.1 *</u>				
For surface fires, th	ne design concentration shall be achie	ved within 1 minute from	start of discharge.	
Response time of the	he instrument shall be considered in c	determining pass/fail criter	ia for concentration testing	
(Response time of t enough to accurate full signal, and 50 s Tripoint thermal cor concentration value	the available sensors can consume si aly determine concentration with 1 min seconds to read full signal from the tim nductivity based instruments claimed a, even longer to read the actual value	gnificant portion of the dis iute. State of the art infram- te they are exposed to a f a T95 of 60 seconds, so the 2.	charge time requirement. T ad detectors can take as lo Ill concentration calibrated hey could take 60 seconds	They simply do not respond fast ng as 20 seconds to read 63% of CO2 gas sample. The older to read 95% of the full
These instrument d concentration with 6 to long lengths of tu hazard is gradually	lynamics can cause a technician to in 60 seconds on the instrument used to ubing or delays in the discharge flow, f increasing during the discharge, so th	terpret a discharge test as measure on the test. The they are just inherent in th ne driving gain in the syste	a fail because the instrum se values are independent e detectors. In practical ter em is even worse than in th	ent doesn't reach the design of any additional time delays due ms, the concentration inside a le calibration setup.
Some guidance sho concentration withir time should be add	ould be provided to accomodate the d n the hazard within 1 minute. If the av ed to the pass/fail requirement for the	elays inherent in the instruation ailable instrument takes 5 test to fairly assess the a	uments. The requirement is 0 seconds to read full signa ctual concentration inside t	s to achieve the design al, a large portion of that additional he enclosure.)
dditional Proposed	Changes			
,	File Name		Description	Approved
CO2_Analyzer_Respo	onse_Time_Characterization.pdf	Typical CO2 analyzer res	oonse time graph during a	bench test.
atement of Problem	n and Substantiation for Publ	ic Input		
The response time per duration discharges. W performance of the dev provided for backgrour	formance of CO2 concentration analy Vithout additional guidance, techniciar vices and give guidance on how to us nd for the technical committee, not to	vzers is not clearly conside ns can improperly assess e them to appropriately as be considered to be includ	ered in the standard require test results resulting in syst seess the concentration ins led in the standard.	ement for application rate for short tem rework and delays. Describe typical ide the hazard. Attached graph is
ubmitter Information	n Verification			
Submitter Full Name:	Matthew Taylor			
Organization:	Mitsubishi Hitachi Power Systems			
Street Address:				
City:				
State:				
Zip:				
Submittal Date:	Thu Dec 27 13:11:11 EST 2018			
Committee:	GFE-AAA			
ommittee Statemen	t			
Resolution: <u>FR-12-N</u> Statement: Paragrap	FPA 12-2019 bh (4) is revised to allow for difference	s in instrumentation.		

For enclosed rotating electrical equipment, a minimum concentration of 30 percent shall be maintained for the deceleration period, but not less than 20 minutes. Enclosed rotating electrical equipment includes electrical machinery like electric motors and generators. Please clarify what this section pertains to. This section and the supporting annex A.5.5.3 are routinely mis-applied to gas turbine engines are not electrical equipment. There applicable to gas turbine engines are not electrical equipment in these terms. Their hold time requirements should be considered under the provisions of NFPA 37. Ref 10/22/2015 NFPA Technical Question Response [ref. 00D5077Vx_50050hY3tt:ref]. tement of Problem and Substantiation for Public Input Clarify the definition of "enclosed rotating electrical equipment" and the applicability of this section to completely mechanical equipment like gas turbin engines. ated Public Inputs for This Document Relationship Public Input No. 9-NFPA 12-2018 [Section No. A.5.5.3] Public Input No. 10-NFPA 12-2018 [Section No. 5.4.4.2] bornitter Information Verification Submitter Full Name: Mattew Taylor Organization: Mitsubishi Hitachi Power Systems Street Address: Zip: Zip: Submittal Date: Submittal Date: Thu Dec 27 10:44:54 EST 2018	5.5.3 * Enclose	d Rotating Electrical Equipment.
tement of Problem and Substantiation for Public Input Clarify the definition of "enclosed rotating electrical equipment" and the applicability of this section to completely mechanical equipment like gas turbir engines. atted Public Inputs for This Document Acted Input Sor This	For enclosed rota than 20 minutes. this section perta integrators. Gas provisions of NFI	ating electrical equipment, a minimum concentration of 30 percent shall be maintained for the deceleration period, but not less Enclosed rotating electrical equipment includes electrical machinery like electric motors and generators. Please clarify what ins to. This section and the supporting annex A.5.5.3 are routinely mis-applied to gas turbine engines by manufacturers and turbine engines are not electrical equipment in these terms Their hold time requirements should be considered under the PA 37. Ref 10/22/2015 NFPA Technical Question Response [ref:_00D5077Vx50050hY3tt:ref].
Clarify the definition of "enclosed rotating electrical equipment" and the applicability of this section to completely mechanical equipment like gas turbin ated Public Input Sor This Document Related Input Relationship Public Input No. 9-NFPA 12-2018 [Section No. A.5.5.3] Relationship Public Input No. 10-NFPA 12-2018 [Section No. 5.4.4.2] Nomitter Information Submitter Information Verification Submitter Full Name: Matthew Taylor Organization: Mitsubishi Hitachi Power Systems Street Address:	tement of Proble	em and Substantiation for Public Input
Related Input S for This Document Relation Ship Public Input No. 9-NFPA 12-2018 [Section No. A.5.3] Public Input No. 10-NFPA 12-2018 [Section No. 5.4.4.2] omitter Information Submitter Full Name: Matthew Taylor Organization: Mitsubishi Hitachi Power Systems Street Address: City: State: Zip: State: Zip: Submittal Date: Submittal Date: Thu Dec 27 10:44:54 EST 2018 Committee: GFE-AAA	Clarify the definition engines.	of "enclosed rotating electrical equipment" and the applicability of this section to completely mechanical equipment like gas turbin
Related Input Relationship Public Input No. 9-NFPA 12-2018 [Section No. A.5.5.3] Public Input No. 10-NFPA 12-2018 [Section No. 5.4.4.2]	ated Public Inpu	its for This Document
Public Input No. 9-NFPA 12-2018 [Section No. A.5.5.3] Public Input No. 10-NFPA 12-2018 [Section No. 5.4.4.2] bmitter Information Submitter Full Name: Matthew Taylor Organization: Mitsubishi Hitachi Power Systems Street Address: City: State: Zip: Submittal Date: Thu Dec 27 10:44:54 EST 2018 Committee: GFE-AAA		Related Input Relationship
Public Input No. 10-NFPA 12-2018 [Section No. 5.4.4.2] bmitter Information Submitter Full Name: Matthew Taylor Organization: Mitsubishi Hitachi Power Systems Street Address: City: State: Zip: Submittal Date: Thu Dec 27 10:44:54 EST 2018 Committee: GFE-AAA	Public Input No. 9-N	<u>VFPA 12-2018 [Section No. A.5.5.3]</u>
Submitter Full Name: Matthew Taylor Organization: Mitsubishi Hitachi Power Systems Street Address: City: State: Zip: Submittal Date: Thu Dec 27 10:44:54 EST 2018 Committee: GFE-AAA	bmitter Informati	ion Verification
Organization: Mitsubishi Hitachi Power Systems Street Address: City: State: City: State: City: Sign: Submittal Date: Thu Dec 27 10:44:54 EST 2018 Committee: GFE-AAA	Submitter Full Nam	ie: Matthew Taylor
Street Address: City: State: Zip: Submittal Date: Thu Dec 27 10:44:54 EST 2018 Committee: GFE-AAA	Organization:	Mitsubishi Hitachi Power Systems
City: State: Zip: Submittal Date: Thu Dec 27 10:44:54 EST 2018 Committee: GFE-AAA	Street Address:	
State: Zip: Submittal Date: Thu Dec 27 10:44:54 EST 2018 Committee: GFE-AAA	City:	
Zip: Submittal Date: Thu Dec 27 10:44:54 EST 2018 Committee: GFE-AAA	State:	
Submittal Date: Thu Dec 27 10:44:54 EST 2018 Committee: GFE-AAA	Zip:	
Committee: GFE-AAA	Submittal Date:	Thu Dec 27 10:44:54 EST 2018
	Committee:	GFE-AAA

NFPA 12 Public Input with Responses (F2020 Page 9 of 30

.0.
600

Public Input No. 9-NFPA 12-2018 [Section No. A.5.5.3]

<u>A.5.5.3</u>

For enclosed recirculating-type electrical equipment, the initial discharge quantity should not be less than 1 lb (0.45 kg) of gas for each 10 ft³ (0.28 m³) of enclosed volume up to 2000 ft³ (56.6 m³). For larger volumes, 1 lb (0.45 kg) of gas for each 12 ft³ (0.34 m³) or a minimum of 200 lb (90.8 kg) should be used. Table A.5.5.3(a) and Table A.5.5.3(b) can be used as a guide to estimate the quantity of gas needed for the extended discharge to maintain a minimum concentration of 30 percent for the deceleration time. The quantity is based on the internal volume of the machine and the deceleration time, assuming average leakage. For dampered, non-recirculating-type machines, add 35 percent to the indicated quantities in Table A.5.5.3(b) for extended discharge protection.

Please clarify what type of equipment this applies to. This section is routinely mis-applied to fully mechanical equipment like gas turbine engines.

Ref NFPA Technical Question Response 10/2/2015 [ref:_00D5077Vx._50050hY3tt:ref]:

The term "enclosed rotating electrical equipment," as used in 5.5.3 of NFPA 12 (2015), refers to both generators and electric motors. The windings can produce a deep-seated fire, which will require a significant amount of carbon dioxide to cool and extinguish. In addition, electricity that is generated during the wind-down could provide a constant source of ignition/re-ignition to the fire.

Barry Chase

Fire Protection Engineer

<u>NFPA</u>

Table A.5.5.3(a) Extended Discharge Protection for Enclosed Recirculating Rotating Electrical Equipment (Cubic Feet Protected for Deceleration Time)

				Tim	Time (minutes)					
<u>lb CO 2</u>	<u>5</u>	<u>10</u>	<u>15</u>	<u>20</u>	<u>30</u>	<u>40</u>	<u>50</u>	<u>60</u>		
100	1,200	<u>1,000</u>	<u>800</u>	<u>600</u>	<u>500</u>	<u>400</u>	<u>300</u>	200		
<u>150</u>	<u>1,800</u>	<u>1,500</u>	<u>1,200</u>	<u>1,000</u>	<u>750</u>	<u>600</u>	<u>500</u>	<u>400</u>		
200	<u>2,400</u>	<u>1,950</u>	<u>1,600</u>	<u>1,300</u>	<u>1,000</u>	<u>850</u>	<u>650</u>	<u>500</u>		
250	<u>3,300</u>	2,450	2,000	<u>1,650</u>	<u>1,300</u>	<u>1,050</u>	<u>800</u>	<u>600</u>		
300	4,600	<u>3,100</u>	2,400	2,000	1,650	1,300	1,000	<u>700</u>		
350	<u>6,100</u>	<u>4,100</u>	3,000	2,500	2,000	1,650	1,200	900		
400	7,700	5,400	<u>3,800</u>	<u>3,150</u>	2,500	2,000	1,600	<u>1,200</u>		
450	<u>9,250</u>	<u>6,800</u>	4,900	<u>4,000</u>	<u>3,100</u>	2,600	<u>2,100</u>	<u>1,600</u>		
500	10,800	<u>8,100</u>	<u>6,100</u>	<u>5,000</u>	<u>3,900</u>	<u>3,300</u>	2,800	2,200		
550	12,300	<u>9,500</u>	<u>7,400</u>	<u>6,100</u>	4,900	4,200	3,600	<u>3,100</u>		
<u>600</u>	13,900	10,900	<u>8,600</u>	<u>7,200</u>	<u>6,000</u>	<u>5,200</u>	4,500	<u>3,900</u>		
<u>650</u>	15,400	12,300	<u>9,850</u>	<u>8,300</u>	<u>7,050</u>	<u>6,200</u>	<u>5,500</u>	4,800		
<u>700</u>	<u>16,900</u>	13,600	<u>11,100</u>	<u>9,400</u>	<u>8,100</u>	<u>7,200</u>	<u>6,400</u>	<u>5,600</u>		
<u>750</u>	<u>18,500</u>	15,000	<u>12,350</u>	<u>10,500</u>	<u>9,150</u>	<u>8,200</u>	<u>7,300</u>	<u>6,500</u>		
800	20,000	16,400	<u>13,600</u>	<u>11,600</u>	<u>10,200</u>	<u>9,200</u>	<u>8,200</u>	<u>7,300</u>		
<u>850</u>	<u>21,500</u>	<u>17,750</u>	<u>14,850</u>	<u>12,700</u>	<u>11,300</u>	<u>10,200</u>	<u>9,100</u>	<u>8,100</u>		
900	<u>23,000</u>	<u>19,100</u>	<u>16,100</u>	<u>13,800</u>	<u>12,350</u>	<u>11,200</u>	<u>10,050</u>	<u>9,000</u>		
<u>950</u>	<u>24,600</u>	20,500	<u>17,350</u>	14,900	13,400	12,200	<u>11,000</u>	<u>9,800</u>		
<u>1,000</u>	<u>26,100</u>	21,900	<u>18,600</u>	<u>16,000</u>	14,500	<u>13,200</u>	<u>11,900</u>	10,700		
<u>1,050</u>	27,600	23,300	<u>19,900</u>	<u>17,100</u>	15,600	14,200	<u>12,850</u>	<u>11,500</u>		
<u>1,100</u>	<u>29,100</u>	24,600	21,050	18,200	16,600	<u>15,200</u>	<u>13,750</u>	12,400		
<u>1,150</u>	<u>30,600</u>	26,000	22,300	<u>19,300</u>	<u>17,700</u>	16,200	14,700	13,200		
<u>1,200</u>	<u>32,200</u>	27,300	23,550	<u>20,400</u>	<u>18,800</u>	<u>17,200</u>	<u>15,600</u>	<u>14,100</u>		
<u>1,250</u>	<u>33,700</u>	<u>28,700</u>	24,800	<u>21,500</u>	<u>19,850</u>	<u>18,200</u>	<u>16,500</u>	14,900		
<u>1,300</u>	<u>35,300</u>	<u>30,100</u>	<u>26,050</u>	22,650	<u>20,900</u>	<u>19,200</u>	<u>17,450</u>	15,800		
<u>1,350</u>	<u>36,800</u>	<u>31,400</u>	27,300	23,750	22,000	20,200	<u>18,400</u>	<u>16,650</u>		
<u>1,400</u>	<u>38,400</u>	<u>32,800</u>	28,550	24,900	<u>23,100</u>	<u>21,200</u>	<u>19,350</u>	<u>17,500</u>		
<u>1,450</u>	<u>39,900</u>	<u>34,200</u>	<u>29,800</u>	<u>26,000</u>	24,200	22,200	<u>20,300</u>	<u>18,350</u>		
<u>1,500</u>	<u>41,400</u>	<u>35,600</u>	<u>31,050</u>	<u>27,100</u>	<u>25,250</u>	<u>23,200</u>	<u>21,200</u>	<u>19,200</u>		

Table A.5.5.3(b) Extended Discharge for Enclosed Recirculating Rotating Electrical Equipment (Cubic Meters Protected for Deceleration Time) (SI Units)

				<u>Time (mi</u>	nutes)			
<u>kg CO 2</u>	<u>5</u>	<u>10</u>	<u>15</u>	<u>20</u>	<u>30</u>	<u>40</u>	<u>50</u>	<u>60</u>
45.4	<u>34.0</u>	<u>28.3</u>	22.6	<u>17.0</u>	<u>14.2</u>	<u>11.3</u>	<u>8.5</u>	<u>5.7</u>
<u>68.1</u>	<u>50.9</u>	<u>42.5</u>	<u>34.0</u>	<u>28.3</u>	<u>21.2</u>	<u>17.0</u>	<u>14.0</u>	<u>11.3</u>
<u>90.8</u>	<u>67.9</u>	<u>55.2</u>	<u>45.3</u>	<u>36.8</u>	<u>28.3</u>	<u>24.1</u>	<u>18.4</u>	<u>14.2</u>
<u>113.5</u>	<u>93.4</u>	<u>69.3</u>	<u>56.6</u>	<u>46.7</u>	<u>36.8</u>	<u>29.7</u>	<u>22.6</u>	<u>17.0</u>
<u>136.2</u>	<u>130.2</u>	<u>87.7</u>	<u>67.9</u>	<u>56.6</u>	46.7	<u>36.8</u>	<u>28.3</u>	<u>19.8</u>
<u>158.9</u>	<u>172.6</u>	<u>116.0</u>	<u>84.9</u>	<u>70.8</u>	<u>56.6</u>	46.7	<u>34.0</u>	<u>25.5</u>
<u>181.6</u>	<u>217.9</u>	<u>152.8</u>	<u>107.5</u>	<u>89.1</u>	<u>70.8</u>	<u>56.6</u>	<u>45.3</u>	<u>34.0</u>

NFPA 12 Public Input with Responses (F2020) Page 12 of 30

	Time (minutes)							
<u>kg CO 2</u>	<u>5</u>	<u>10</u>	<u>15</u>	<u>20</u>	<u>30</u>	<u>40</u>	<u>50</u>	<u>60</u>
<u>204.3</u>	261.8	192.4	138.7	<u>113.2</u>	<u>87.7</u>	<u>73.6</u>	<u>59.4</u>	<u>45.3</u>
<u>227.0</u>	305.6	229.2	172.6	<u>141.5</u>	<u>110.4</u>	<u>93.4</u>	<u>79.2</u>	<u>62.3</u>
249.7	<u>348.1</u>	268.9	209.4	172.6	138.7	<u>118.9</u>	<u>101.9</u>	<u>87.7</u>
272.4	<u>393.4</u>	<u>308.5</u>	243.4	<u>203.8</u>	<u>169.8</u>	<u>147.2</u>	<u>127.4</u>	<u>110.4</u>
<u>295.1</u>	435.8	<u>348.1</u>	<u>278.8</u>	234.9	<u>199.5</u>	<u>175.5</u>	<u>155.7</u>	<u>135.8</u>
<u>317.8</u>	478.3	<u>384.9</u>	<u>314.1</u>	<u>266.0</u>	<u>229.2</u>	<u>203.8</u>	<u>181.1</u>	<u>158.5</u>
<u>340.5</u>	<u>523.6</u>	424.5	<u>349.5</u>	<u>297.2</u>	<u>258.9</u>	<u>232.1</u>	206.6	184.0
<u>363.2</u>	586.0	464.1	<u>384.9</u>	<u>328.3</u>	288.7	260.4	232.1	206.6
<u>385.9</u>	608.4	<u>502.3</u>	420.3	359.4	<u>319.8</u>	288.7	257.5	229.2
<u>408.6</u>	650.9	<u>540.5</u>	<u>455.6</u>	<u>390.5</u>	<u>349.5</u>	<u>317.0</u>	284.4	254.7
<u>431.3</u>	<u>696.2</u>	<u>580.2</u>	<u>491.0</u>	421.7	<u>379.2</u>	<u>345.3</u>	<u>311.3</u>	<u>277.3</u>
<u>454.0</u>	738.6	<u>619.8</u>	526.4	<u>452.8</u>	<u>410.4</u>	<u>373.6</u>	<u>336.8</u>	<u>302.8</u>
<u>476.7</u>	<u>781.1</u>	<u>659.4</u>	<u>563.2</u>	<u>483.9</u>	<u>441.5</u>	<u>401.9</u>	<u>363.7</u>	<u>325.5</u>
<u>499.4</u>	<u>823.5</u>	<u>696.2</u>	<u>595.7</u>	<u>515.1</u>	469.8	<u>430.2</u>	<u>389.1</u>	<u>350.9</u>
<u>522.1</u>	866.0	735.8	<u>631.1</u>	<u>546.2</u>	<u>500.9</u>	458.5	<u>416.0</u>	<u>373.6</u>
<u>544.8</u>	<u>911.3</u>	772.6	666.5	<u>577.3</u>	<u>532.0</u>	486.8	<u>441.5</u>	<u>399.0</u>
<u>567.5</u>	953.7	<u>812.2</u>	<u>701.8</u>	609.4	<u>561.8</u>	<u>515.1</u>	<u>467.0</u>	<u>421.7</u>
<u>590.2</u>	<u>999.0</u>	<u>851.8</u>	737.2	<u>641.0</u>	<u>591.5</u>	543.4	<u>493.8</u>	447.1
<u>612.9</u>	<u>1041.4</u>	<u>888.6</u>	772.6	<u>672.1</u>	<u>622.6</u>	<u>571.7</u>	<u>520.7</u>	<u>471.2</u>
<u>635.6</u>	1086.7	<u>928.2</u>	808.0	704.7	<u>653.7</u>	<u>600.0</u>	<u>547.6</u>	<u>495.3</u>
<u>658.3</u>	<u>1129.2</u>	<u>967.9</u>	<u>843.3</u>	<u>735.8</u>	<u>684.9</u>	<u>628.3</u>	<u>574.5</u>	<u>519.3</u>
<u>681.0</u>	<u>1171.6</u>	<u>1007.5</u>	<u>878.7</u>	<u>766.9</u>	<u>713.2</u>	<u>656.6</u>	<u>600.0</u>	<u>543.4</u>

Statement of Problem and Substantiation for Public Input

Clarify the definition of "enclosed rotating electrical equipment" and the applicability (or non-applicability) of this section to completely mechanical equipment like gas turbine engines.

Related Public Inputs for This Document

Related Input

Relationship Same issue in the body of the standard.

Public Input No. 8-NFPA 12-2018 [Section No. 5.5.3] Public Input No. 10-NFPA 12-2018 [Section No. 5.4.4.2]

Submitter Information Verification

Submitter Full Name: Matthew TaylorOrganization:Mitsubishi Hitachi Power SystemsStreet Address:City:City:State:State:Zip:Submittal Date:Thu Dec 27 11:08:08 EST 2018Committee:GFE-AAA

Committee Statement

 Resolution:
 FR-7-NFPA 12-2019

 Statement:
 This revision makes it clear that this section addresses electrical equipment and is not intended to address stationary combustion engines and gas turbines.

1	
	191

Public Input No. 13-NFPA 12-2018 [Section No. C.1]

<u>C.1</u>

Computing pipe sizes for carbon dioxide systems is complicated by the fact that the pressure drop is nonlinear with respect to the pipeline. Carbon dioxide leaves the storage vessel as a liquid at saturation pressure. As the pressure drops due to pipeline friction, the liquid boils and produces a mixture of liquid and vapor. Consequently, the volume of the flowing mixture increases and the velocity of flow must also increase. Thus, the pressure drop per unit length of pipe is greater near the end of the pipeline than it is at the beginning.

Pressure drop information for designing piping systems can best be obtained from curves of pressure versus equivalent length for various flow rates and pipe sizes. Such curves can be plotted using the theoretical equation given in 4.7.5.1. The Y and Z factors in the equation in that paragraph depend on storage pressure and line pressure. In the following equations, Z is a dimensionless ratio, and the Y factor has units of pressure times density and will therefore change the system of units. The Y and Z factors can be evaluated as follows:

 $Y = -\int_{P_1}^{P} \rho \, dP$ $Z = -\int_{P_1}^{P} \frac{d\rho}{\rho} = \ln \frac{\rho_1}{\rho}$

[C.1a]

where:

P = pressure at end of pipeline [psi (kPa)] *P*₁ = storage pressure [psi (kPa)]

 ρ = density at pressure P [lb/ft³ (kg/m³)]

 $\rho_1 =$ density at pressure P_1 [lb/ft³ (kg/m³)]

In = natural logarithm

The storage pressure is an important factor in carbon dioxide flow. In low-pressure storage, the starting pressure in the storage vessel will recede to a lower level, depending on whether all or only part of the supply is discharged. Because of this, the average pressure during discharge will be about 285 psi (1965 kPa). The flow equation is based on absolute pressure; therefore, 300 psi (2068 kPa) is used for calculations involving low-pressure systems. The mixing of absolute and gauge pressures in the standard are confusing. Recommend using psig/psia specific designators to clarify throughout.

Also, for extended discharge systems we have seen tank pressures much lower than the 285 psig (300 psia) stated. For an 8 ton tank on a 30 minute extended discharge we have seen pressure decay to under 250 psig, averaging under 270 psig. This is a significant impact on the flow rate on those nozzles, around 16% reduced flow according to T4.7.5.2.1. Recommend adding notes to caution the user to include some additional margin in the system sizing for extended discharge durations over 20 minutes.

Bleeding vapor off the vapor space of a low pressure tank has a particularly large impact on tank pressure over a long duration. Pneumatic sirens are typically plumbed off the vapor space and can have a detrimental effect on driving pressure and resulting flow. The system designer should consider this issue in the course of design. A simplified equation in the annex would be helpful to assist a designer in determining how much additional flow they should add to the discharge to compensate for reduced pressure due to vapor loss.

In high-pressure systems, the storage pressure depends on the ambient temperature. Normal ambient temperature is assumed to be 70°F (21°C). For this condition, the average pressure in the cylinder during discharge of the liquid portion will be about 750 psi (5171 kPa). This pressure has therefore been selected for calculations involving high-pressure systems.

Using the base pressures of 300 psi (2068 kPa) and 750 psi (5171 kPa), values have been determined for the Y and Z factors in the flow equation. These values are listed in Table C.1(a) and Table C.1(b).

Pressure

Table C.1(a) Values of Y and Z for 300 psi Initial Storage Pressure

	<u> </u>										
<u>Z</u>	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	
<u>300</u>	0.000	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
<u>290</u>	<u>0.135</u>	<u>596</u>	<u>540</u>	<u>483</u>	<u>426</u>	<u>367</u>	<u>308</u>	<u>248</u>	<u>187</u>	<u>126</u>	<u>63</u>
280	0.264	<u>1119</u>	<u>1070</u>	1020	<u>969</u>	<u>918</u>	<u>866</u>	<u>814</u>	<u>760</u>	<u>706</u>	<u>652</u>
270	0.387	1580	1536	1492	1448	1402	1357	<u>1310</u>	1263	<u>1216</u>	<u>1168</u>
260	0.505	1989	1950	<u>1911</u>	<u>1871</u>	1831	1790	1749	1708	1666	<u>1623</u>
250	0.620	2352	<u>2318</u>	2283	<u>2248</u>	<u>2212</u>	<u>2176</u>	<u>2139</u>	<u>2102</u>	2065	<u>2027</u>
240	<u>0.732</u>	2677	<u>2646</u>	<u>2615</u>	<u>2583</u>	2552	<u>2519</u>	<u>2487</u>	<u>2454</u>	<u>2420</u>	<u>2386</u>
<u>230</u>	<u>0.841</u>	<u>2968</u>	<u>2940</u>	<u>2912</u>	<u>2884</u>	2855	<u>2826</u>	<u>2797</u>	<u>2768</u>	<u>2738</u>	<u>2708</u>
220	<u>0.950</u>	<u>3228</u>	<u>3204</u>	<u>3179</u>	<u>3153</u>	<u>3128</u>	<u>3102</u>	<u>3075</u>	<u>3049</u>	<u>3022</u>	<u>2995</u>
210	<u>1.057</u>	<u>3462</u>	<u>3440</u>	<u>3418</u>	<u>3395</u>	<u>3372</u>	<u>3349</u>	<u>3325</u>	<u>3301</u>	<u>3277</u>	<u>3253</u>
200	<u>1.165</u>	<u>3673</u>	<u>3653</u>	<u>3632</u>	<u>3612</u>	<u>3591</u>	<u>3570</u>	<u>3549</u>	<u>3528</u>	<u>3506</u>	<u>3485</u>
<u>190</u>	<u>1.274</u>	<u>3861</u>	<u>3843</u>	<u>3825</u>	<u>3807</u>	<u>3788</u>	<u>3769</u>	<u>3750</u>	<u>3731</u>	<u>3712</u>	<u>3692</u>
<u>180</u>	<u>1.384</u>	<u>4030</u>	<u>4014</u>	<u>3998</u>	<u>3981</u>	<u>3965</u>	<u>3948</u>	<u>3931</u>	<u>3914</u>	<u>3896</u>	<u>3879</u>
170	<u>1.497</u>	<u>4181</u>	<u>4167</u>	<u>4152</u>	<u>4138</u>	<u>4123</u>	<u>4108</u>	<u>4093</u>	<u>4077</u>	<u>4062</u>	<u>4046</u>
<u>160</u>	<u>1.612</u>	<u>4316</u>	<u>4303</u>	<u>4291</u>	<u>4277</u>	4264	<u>4251</u>	<u>4237</u>	<u>4223</u>	<u>4210</u>	<u>4196</u>
<u>150</u>	<u>1.731</u>	<u>4436</u>	<u>4425</u>	<u>4413</u>	4402	<u>4390</u>	<u>4378</u>	<u>4366</u>	<u>4354</u>	<u>4341</u>	4329
Table	C.1(b) Values	s of Y and Z	for 750 psi li	nitial Storage	e Pressure						

NFPA 12 Public Input with Responses (F2020) Page 16 of 30

_						<u>(psi)</u>					
						<u>Y</u>					
Z	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	
<u>750</u>	0.000	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
<u>740</u>	<u>0.038</u>	<u>497</u>	<u>448</u>	<u>399</u>	<u>350</u>	<u>300</u>	<u>251</u>	<u>201</u>	<u>151</u>	<u>101</u>	<u>51</u>
730	<u>0.075</u>	<u>975</u>	<u>928</u>	<u>881</u>	<u>833</u>	<u>786</u>	<u>738</u>	<u>690</u>	<u>642</u>	<u>594</u>	<u>545</u>
720	<u>0.110</u>	<u>1436</u>	<u>1391</u>	<u>1345</u>	<u>1299</u>	<u>1254</u>	<u>1208</u>	<u>1161</u>	<u>1115</u>	<u>1068</u>	<u>1022</u>
<u>710</u>	<u>0.143</u>	1882	<u>1838</u>	<u>1794</u>	<u>1750</u>	<u>1706</u>	<u>1661</u>	<u>1616</u>	1572	<u>1527</u>	<u>1481</u>
700	<u>0.174</u>	<u>2314</u>	<u>2271</u>	<u>2229</u>	<u>2186</u>	<u>2143</u>	<u>2100</u>	<u>2057</u>	<u>2013</u>	<u>1970</u>	<u>1926</u>
<u>690</u>	<u>0.205</u>	<u>2733</u>	<u>2691</u>	<u>2650</u>	<u>2608</u>	<u>2567</u>	<u>2525</u>	<u>2483</u>	<u>2441</u>	<u>2399</u>	<u>2357</u>
680	<u>0.235</u>	<u>3139</u>	<u>3099</u>	<u>3059</u>	<u>3018</u>	<u>2978</u>	2937	<u>2897</u>	2856	<u>2815</u>	2774
670	0.265	<u>3533</u>	3494	<u>3455</u>	<u>3416</u>	3377	<u>3338</u>	<u>3298</u>	<u>3259</u>	<u>3219</u>	<u>3179</u>
660	0.296	<u>3916</u>	<u>3878</u>	<u>3840</u>	3802	3764	<u>3726</u>	<u>3688</u>	<u>3649</u>	<u>3611</u>	3572
<u>650</u>	0.327	4286	<u>4250</u>	<u>4213</u>	<u>4176</u>	<u>4139</u>	<u>4102</u>	4065	4028	<u>3991</u>	<u>3953</u>
<u>640</u>	<u>0.360</u>	<u>4645</u>	<u>4610</u>	<u>4575</u>	<u>4539</u>	<u>4503</u>	<u>4467</u>	<u>4431</u>	<u>4395</u>	<u>4359</u>	<u>4323</u>
<u>630</u>	<u>0.393</u>	<u>4993</u>	<u>4959</u>	<u>4924</u>	<u>4890</u>	<u>4855</u>	<u>4821</u>	<u>4786</u>	<u>4751</u>	<u>4716</u>	<u>4681</u>
<u>620</u>	<u>0.427</u>	<u>5329</u>	<u>5296</u>	<u>5263</u>	<u>5229</u>	<u>5196</u>	<u>5162</u>	<u>5129</u>	<u>5095</u>	<u>5061</u>	<u>5027</u>
<u>610</u>	<u>0.462</u>	<u>5653</u>	<u>5621</u>	<u>5589</u>	<u>5557</u>	<u>5525</u>	<u>5493</u>	<u>5460</u>	5427	<u>5395</u>	<u>5362</u>
600	<u>0.498</u>	<u>5967</u>	<u>5936</u>	<u>5905</u>	<u>5874</u>	<u>5843</u>	<u>5811</u>	<u>5780</u>	5749	<u>5717</u>	<u>5685</u>
<u>590</u>	0.535	<u>6268</u>	<u>6239</u>	<u>6209</u>	<u>6179</u>	<u>6149</u>	<u>6119</u>	<u>6089</u>	6058	<u>6028</u>	<u>5997</u>
<u>580</u>	0.572	<u>6560</u>	<u>6531</u>	6502	<u>6473</u>	6444	<u>6415</u>	<u>6386</u>	6357	<u>6328</u>	<u>6298</u>
<u>570</u>	<u>0.609</u>	<u>6840</u>	<u>6812</u>	<u>6785</u>	<u>6757</u>	<u>6729</u>	<u>6701</u>	<u>6673</u>	6645	<u>6616</u>	<u>6588</u>
<u>560</u>	<u>0.646</u>	<u>7110</u>	<u>7084</u>	7057	<u>7030</u>	<u>7003</u>	<u>6976</u>	<u>6949</u>	<u>6922</u>	<u>6895</u>	<u>6868</u>
550	<u>0.683</u>	<u>7371</u>	<u>7345</u>	7320	7294	7268	7242	<u>7216</u>	7190	<u>7163</u>	7137
540	<u>0.719</u>	7622	7597	7572	<u>7548</u>	7523	7498	7472	7447	<u>7422</u>	7396
<u>530</u>	0.756	7864	<u>7840</u>	<u>7816</u>	7792	7768	7744	7720	7696	<u>7671</u>	7647
<u>520</u>	<u>0.792</u>	<u>8098</u>	<u>8075</u>	8052	<u>8028</u>	<u>8005</u>	<u>7982</u>	<u>7958</u>	<u>7935</u>	<u>7911</u>	7888
<u>510</u>	0.827	<u>8323</u>	8301	<u>8278</u>	8256	8234	<u>8211</u>	<u>8189</u>	<u>8166</u>	<u>8143</u>	<u>8120</u>
<u>500</u>	<u>0.863</u>	<u>8540</u>	<u>8519</u>	<u>8497</u>	<u>8476</u>	<u>8454</u>	<u>8433</u>	<u>8411</u>	<u>8389</u>	<u>8367</u>	<u>8345</u>
<u>490</u>	0.898	<u>8750</u>	<u>8730</u>	<u>8709</u>	8688	8667	<u>8646</u>	8625	8604	<u>8583</u>	<u>8562</u>
480	0.933	<u>8953</u>	<u>8933</u>	<u>8913</u>	<u>8893</u>	<u>8873</u>	8852	8832	<u>8812</u>	<u>8791</u>	<u>8771</u>
470	0.967	<u>9149</u>	<u>9129</u>	<u>9110</u>	<u>9091</u>	<u>9071</u>	<u>9052</u>	<u>9032</u>	<u>9012</u>	<u>8993</u>	<u>8973</u>
460	1.002	<u>9338</u>	<u>9319</u>	<u>9301</u>	<u>9282</u>	<u>9263</u>	<u>9244</u>	<u>9225</u>	<u>9206</u>	<u>9187</u>	<u>9168</u>
450	1.038	<u>9520</u>	<u>9502</u>	9484	<u>9466</u>	<u>9448</u>	<u>9430</u>	<u>9412</u>	<u>9393</u>	<u>9375</u>	<u>9356</u>
440	<u>1.073</u>	<u>9697</u>	<u>9680</u>	<u>9662</u>	<u>9644</u>	<u>9627</u>	<u>9609</u>	<u>9592</u>	<u>9574</u>	<u>9556</u>	<u>9538</u>
430	1.109	9866	<u>9850</u>	<u>9833</u>	<u>9816</u>	<u>9799</u>	<u>9782</u>	<u>9765</u>	<u>9748</u>	<u>9731</u>	<u>9714</u>
420	<u>1.146</u>	10030	10014	<u>9998</u>	9982	9966	<u>9949</u>	<u>9933</u>	<u>9916</u>	<u>9900</u>	9883
410	1.184	10188	10173	10157	10141	10126	10110	10094	10078	10062	10046
400	1.222	10340	10325	10310	10295	10280	10265	10250	10234	10219	10204
390	1.262	10486	10472	10458	10443	10429	10414	10399	10385	10370	10355
380	1.302	10627	10613	10599	10585	10571	10557	10543	10529	10515	10501
370	1.344	10762	10749	10735	10722	10708	10695	10681	10668	10654	10641
360	1.386	10891	10878	10866	10853	10840	10827	10814	10801	10788	10775
350	1.429	11015	11003	10991	10978	10966	10954	10941	10929	10916	10904
340	1.473	11134	11122	11110	11099	11087	11075	11063	11051	11039	11027
330	1.518	11247	11236	11225	11214	11202	11191	11180	11168	11157	11145
320	1.564	11356	11345	11334	11323	11313	11302	11291	11280	11269	11258
310	1 610	11459	11449	11439	11428	11418	11408	11398	11387	11377	11366
300	1 657	11558	11548	11530	11520	11510	11509	11499	11489	11470	11469
300	1.657	11558	11548	<u>11539</u>	11529	<u>11519</u>	11509	<u>11499</u>	<u>11489</u>	<u>11479</u>	11469

For practical application, it is desirable to plot curves for each pipe size that can be used. However, the flow equation can be rearranged as shown in the following equation:

$$\frac{L}{D^{1.25}} = \frac{3647Y}{\left(\frac{Q}{D^2}\right)^2} - 8.08Z$$

[C.1b]

Thus, by plotting values of $L/D^{1.25}$ and Q/D^2 , it is possible to use one family of curves for any pipe size. Figure C.1(a) gives flow information for 0°F (-18°C) storage temperature on this basis. Figure C.1(b) gives similar information for high-pressure storage at 70°F (21°C). For an inside pipe diameter of exactly 1 in., D^2 and $D^{1.25}$ reduce to unity and cancel out. For other pipe sizes, it is necessary to convert the flow rate and equivalent length by dividing or multiplying by these factors. Table C.1(c) gives values for *D*.

Figure C.1(a) Pressure Drop in Pipeline for 300 psi (2068 kPa) Storage Pressure.

NFPA 12 Public Input with Responses (F2020) Page 17 of 30

terminal pressure for a low-pressure system consisting of a single 2 in. Schedule 40 pipeline with an equivalent length of 500 ft and a flow rate of 1000 lb/min. The flow rate and the equivalent length must be converted to terms of Figure C.1(a) as follows:

NFPA 12 Public Input with Responses (F2020) Page 18 of 30

$$\frac{Q}{D^2} = \frac{1000}{4.28} = 234 \text{ lb/min} \cdot \text{in.}^2$$

$$\frac{L}{D^{1.25}} = \frac{500}{2.48} = 201 \text{ ft/in.}^{1.25}$$
[C.1c]

From Figure C.1(a), the terminal pressure is found to be about 228 psi at the point where the interpolated flow rate of 234 lb/min intersects the equivalent length scale at 201 ft.

If this line terminates in a single nozzle, the equivalent orifice area must be matched to the terminal pressure in order to control the flow rate at the desired level of 1000 lb/min. Referring to Table 4.7.5.2.1, it will be noted that the discharge rate will be 1410 lb/min in.² of equivalent orifice area when the orifice pressure is 230 psi. The required equivalent orifice area of the nozzle is thus equal to the total flow rate divided by the rate per square inch, as shown in the following equation:

Equivalent orifice area =
$$\frac{1000 \text{ lb/min}}{1410 \text{ lb/min} \cdot \text{in.}^2} = 0.709 \text{ in.}^2$$
 [C.1d]

From a practical viewpoint, the designer would select a standard nozzle having an equivalent area nearest to the computed area. If the orifice area happened to be a little larger, the actual flow rate would be slightly higher and the terminal pressure would be somewhat lower than the estimated 228 psi (1572 kPa).

If, in the previous example, instead of terminating with one large nozzle, the pipeline branched into two smaller pipelines, it would be necessary to determine the pressure at the end of each branch line. To illustrate this procedure, assume that the branch lines are equal and consist of 11/2 in. Schedule 40 pipe with equivalent lengths of 200 ft (61 m) and that the flow in each branch line is to be 500 lb/min (227 kg/min). Converting to terms used in Figure C.1(a), the following equations result:

$$\frac{Q}{D^2} = \frac{500}{2.592} = 193 \text{ lb/min} \cdot \text{in.}^2$$

$$\frac{L}{D^{1.25}} = \frac{200}{1.813} = 110 \text{ ft/in.}^{1.25}$$
[C.1e]

From Figure C.1(a), the starting pressure of 228 psi (1572 kPa) (terminal pressure of main line) intersects the flow rate line [193 lb/min (87.6 kg/min)] at an equivalent length of about 300 ft (91.4 m). In other words, if the branch line started at the storage vessel, the liquid carbon dioxide would have to flow through 300 ft (91.4 m) of pipeline before the pressure dropped to 228 psi (1572 kPa). This length thus becomes the starting point for the equivalent length of the branch line. The terminal pressure of the branch line is then found to be 165 psi (1138 kPa) at the point where the 193 lb/min (87.6 kg/min) flow rate line intersects the total equivalent length line of 410 ft (125 m), or 300 ft + 110 ft (91 m + 34 m). With this new terminal pressure [165 psi (1138 kPa)] and flow rate [500 lb/min (227 kg/min)], the required equivalent nozzle area at the end of

each branch line will be approximately 0.567 in.² (366 mm²). This is about the same as the single large nozzle example, except that the discharge rate is cut in half due to the reduced pressure.

The design of the piping distribution system is based on the flow rate desired at each nozzle. This in turn determines the required flow rate in the branch lines and the main pipeline. From practical experience, it is possible to estimate the approximate pipe sizes required. The pressure at each nozzle can be determined from suitable flow curves. The nozzle orifice sizes are then selected on the basis of nozzle pressure from the data given in 4.7.5.2.

In high-pressure systems, the main header is supplied by a number of separate cylinders. The total flow is thus divided by the number of cylinders to obtain the flow rate from each cylinder. The flow capacity of the cylinder valve and the connector to the header vary with each manufacturer, depending on design and size. For any particular valve, dip tube, and connector assembly, the equivalent length can be determined in terms of feet of standard pipe size. With this information, the flow equation can be used to prepare a curve of flow rate versus pressure drop. This curve provides a convenient method of determining header pressure for a specific valve and connector combination.

Table C.1(d) and Table C.1(e) list the equivalent lengths of pipe fittings for determining the equivalent length of piping systems. Table C.1(d) is for threaded joints, and Table C.1(e) is for welded joints. Both tables were computed for Schedule 40 pipe sizes; however, for all practical purposes, the same figures can also be used for Schedule 80 pipe sizes.

Table C.1(d) Equivalent Lengths in Feet of Threaded Pipe Fitting

Pipe Size	Elbow Std.	Elbow Std.	Elbow	Tee	
<u>(in.)</u>	45 Degrees	90 Degrees	90 Degrees Long Radius and Tee Thru Flow	<u>Side</u>	Union Coupling or Gate Valve
<u>3/8</u>	<u>0.6</u>	<u>1.3</u>	<u>0.8</u>	<u>2.7</u>	<u>0.3</u>
<u>1/2</u>	<u>0.8</u>	<u>1.7</u>	<u>1.0</u>	<u>3.4</u>	<u>0.4</u>
<u>3/4</u>	<u>1.0</u>	<u>2.2</u>	<u>1.4</u>	<u>4.5</u>	<u>0.5</u>
<u>1</u>	<u>1.3</u>	<u>2.8</u>	<u>1.8</u>	<u>5.7</u>	<u>0.6</u>
<u>1</u> 1/4	<u>1.7</u>	<u>3.7</u>	<u>2.3</u>	<u>7.5</u>	<u>0.8</u>
<u>1</u> 1/2	<u>2.0</u>	<u>4.3</u>	<u>2.7</u>	<u>8.7</u>	<u>0.9</u>
<u>2</u>	<u>2.6</u>	<u>5.5</u>	<u>3.5</u>	<u>11.2</u>	<u>1.2</u>
<u>2 ¹/2</u>	<u>3.1</u>	<u>6.6</u>	<u>4.1</u>	13.4	<u>1.4</u>
<u>3</u>	<u>3.8</u>	<u>8.2</u>	<u>5.1</u>	<u>16.6</u>	<u>1.8</u>
<u>4</u>	<u>5.0</u>	<u>10.7</u>	<u>6.7</u>	<u>21.8</u>	<u>2.4</u>
<u>5</u>	<u>6.3</u>	<u>13.4</u>	<u>8.4</u>	<u>27.4</u>	<u>3.0</u>
<u>6</u>	<u>7.6</u>	<u>16.2</u>	<u>10.1</u>	<u>32.8</u>	<u>3.5</u>
For SI units,	1 ft = 0.3048 m	۱.			
Table C.1(e) Equivalent Le	ngths in Feet of	Welded Pipe Fitting		
Pipe Size	Elbow Std. 4	45 Degrees	Elbow Std. 90 Degrees Elb	ow	Tee Gate Valve

NFPA 12 Public Input with Responses (F2020) Page 19 of 30

<u>(in.)</u>			90 Degrees Long Radius and Tee Thru Flow	Side	
<u>3/8</u>	<u>0.2</u>	0.7	<u>0.5</u>	<u>1.6</u>	<u>0.3</u>
<u>1/2</u>	<u>0.3</u>	<u>0.8</u>	<u>0.7</u>	<u>2.1</u>	<u>0.4</u>
<u>3/4</u>	<u>0.4</u>	<u>1.1</u>	<u>0.9</u>	<u>2.8</u>	<u>0.5</u>
<u>1</u>	<u>0.5</u>	<u>1.4</u>	<u>1.1</u>	<u>3.5</u>	<u>0.6</u>
<u>1</u> 1/ <u>4</u>	<u>0.7</u>	<u>1.8</u>	<u>1.5</u>	<u>4.6</u>	<u>0.8</u>
<u>1</u> 1/2	<u>0.8</u>	<u>2.1</u>	<u>1.7</u>	<u>5.4</u>	<u>0.9</u>
<u>2</u>	<u>1.0</u>	2.8	<u>2.2</u>	<u>6.9</u>	<u>1.2</u>
<u>2 ¹/2</u>	<u>1.2</u>	<u>3.3</u>	<u>2.7</u>	<u>8.2</u>	<u>1.4</u>
<u>3</u>	<u>1.8</u>	<u>4.1</u>	<u>3.3</u>	<u>10.2</u>	<u>1.8</u>
<u>4</u>	<u>2.0</u>	<u>5.4</u>	<u>4.4</u>	<u>13.4</u>	<u>2.4</u>
<u>5</u>	<u>2.5</u>	<u>6.7</u>	<u>5.5</u>	<u>16.8</u>	<u>3.0</u>
<u>6</u>	<u>3.0</u>	<u>8.1</u>	<u>6.6</u>	<u>20.2</u>	<u>3.5</u>

For SI units, 1 ft = 0.3048 m.

For nominal changes in elevation of piping, the change in head pressure is negligible. However, if there is a substantial change in elevation, this factor should be taken into account. The head pressure correction per foot of elevation depends on the average line pressure where the elevation takes place because the density changes with pressure. Correction factors are given in Table C.1(f) and Table C.1(g) for low-pressure and high-pressure systems, respectively. The correction is subtracted from the terminal pressure when the flow is upward and is added to the terminal pressure when the flow is downward.

Table C.1(f) Elevation Correction Factors for Low-Pressure System

	<u>A</u>	verage Line Pressure				
		Elevation Correction				
psi	kPa					
	<u>psi/ft</u>	kPa/m				
00	<u>2068</u>					
	0.443	10.00				
80	<u>1930</u>					
	0.343	7.76				
.60	<u>1792</u>					
	0.265	5.99				
240	<u>1655</u>					
	0.207	4.68				
20	<u>1517</u>					
	0.167	3.78				
200	<u>1379</u>					
	0.134	3.03				
80	<u>1241</u>					
	0.107	2.42				
60	<u>1103</u>					
	0.085	1.92				
40	<u>965</u>					
0.067		1.52				
Table C.1(g) Elevation C	orrection Factors for High-Pressure S	System				
	<u>A</u>	verage Line Pressure				
		Elevation Correction				
psi		<u>kPa</u>				

NFPA 12 Public Input with Responses (F2020) Page 20 of 30

<u>750</u>	<u>5171</u>	
-		
	0.352	7.96
700	<u>4826</u>	
-		
	0.300	<u>6.79</u>
<u>650</u>	4482	
-	0.255	5 77
600	4137	<u></u>
-		
	0.215	4.86
<u>550</u>	<u>3792</u>	
-		
	0.177	4.00
500	3447	
-	0.450	0.00
150	<u>0.150</u> 3103	3.39
-	<u>5105</u>	
	0.125	2.83
400	2758	
-		
	<u>0.105</u>	<u>2.38</u>
350	2413	
-	0.085	1.92
300	2068	
-		
<u>0.070</u>		<u>1.58</u>
nent of Problem a	nd Substantiation for Public Input	
in extended discharge	systems require additional margin in the design to	compensate for tank pressures that are lower than assumed by the
sumatic sirens venting	vapor off the tank have a particularly large effect.	The result is extended discharge amounts below what is designed. Re
this to the attention of	system designers to compensate where necessar	у.

Related Input

Relationship

Public Input No. 15-NFPA 12-2018 [Section No. C.1]

Submitter Information Verification

Submitter Full Name: Matthew TaylorOrganization:Mitsubishi Hitachi Power SystemsStreet Address:-City:-State:-Zip:-Submittal Date:Thu Dec 27 11:58:53 EST 2018Committee:GFE-AAA

Committee Statement

Resolution: Regarding usage of gauge and absolute pressure in the standard, the NFPA Manual of Style does not use "psig" and "psia." The committee has formed a task group to study the usage of gauge and absolute pressures throughout the standard and to recommend clarifying language at Second Draft. Regarding the sizing of the supply for extended discharge systems, see the committee's action on A.4.6.1 (FR-5). Regarding compensation for pneumatic sirens, no simplified equation can be provided. Consult equipment manufacturers with regard to additional CO2 demand and usage.

_	

Public Input No. 15-NFPA 12-2018 [Section No. C.1]

<u>C.1</u>

Computing pipe sizes for carbon dioxide systems is complicated by the fact that the pressure drop is nonlinear with respect to the pipeline. Carbon dioxide leaves the storage vessel as a liquid at saturation pressure. As the pressure drops due to pipeline friction, the liquid boils and produces a mixture of liquid and vapor. Consequently, the volume of the flowing mixture increases and the velocity of flow must also increase. Thus, the pressure drop per unit length of pipe is greater near the end of the pipeline than it is at the beginning.

Pressure drop information for designing piping systems can best be obtained from curves of pressure versus equivalent length for various flow rates and pipe sizes. Such curves can be plotted using the theoretical equation given in 4.7.5.1. The Y and Z factors in the equation in that paragraph depend on storage pressure and line pressure. In the following equations, Z is a dimensionless ratio, and the Y factor has units of pressure times density and will therefore change the system of units. The Y and Z factors can be evaluated as follows:

 $Y = -\int_{P_1}^{P} \rho \, dP$ $Z = -\int_{\rho_1}^{\rho} \frac{d\rho}{\rho} = \ln \frac{\rho_1}{\rho}$

[C.1a]

where:

P=pressure at end of pipeline [psi (kPa)]

*P*₁ = storage pressure [psi (kPa)]

 ρ = density at pressure P [lb/ft³ (kg/m³)]

 $P_1 = \text{density at pressure } P_1 [\text{lb/ft}^3 (\text{kg/m}^3)]$

In = natural logarithm

The storage pressure is an important factor in carbon dioxide flow. In low-pressure storage, the starting pressure in the storage vessel will recede to a lower level, depending on whether all or only part of the supply is discharged. Because of this, the average pressure during discharge will be about 285 psi (1965 kPa). The flow equation is based on absolute pressure; therefore, 300 psi (2068 kPa) is used for calculations involving low-pressure systems.

In high-pressure systems, the storage pressure depends on the ambient temperature. Normal ambient temperature is assumed to be 70°F (21°C). For this condition, the average pressure in the cylinder during discharge of the liquid portion will be about 750 psi (5171 kPa). This pressure has therefore been selected for calculations involving high-pressure systems.

Using the base pressures of 300 psi (2068 kPa) and 750 psi (5171 kPa), values have been determined for the Y and Z factors in the flow equation. These values are listed in Table C.1(a) and Table C.1(b).

Pressure

Table C.1(a) Values of Y and Z for 300 psi Initial Storage Pressure

						<u>(psi)</u>					
						<u>Y</u>					
Z	<u>0</u>	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	
<u>300</u>	0.000	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
<u>290</u>	<u>0.135</u>	<u>596</u>	<u>540</u>	<u>483</u>	<u>426</u>	<u>367</u>	<u>308</u>	<u>248</u>	<u>187</u>	<u>126</u>	<u>63</u>
<u>280</u>	<u>0.264</u>	<u>1119</u>	<u>1070</u>	<u>1020</u>	<u>969</u>	<u>918</u>	<u>866</u>	<u>814</u>	<u>760</u>	<u>706</u>	<u>652</u>
<u>270</u>	<u>0.387</u>	<u>1580</u>	<u>1536</u>	<u>1492</u>	<u>1448</u>	<u>1402</u>	<u>1357</u>	<u>1310</u>	<u>1263</u>	<u>1216</u>	<u>1168</u>
<u>260</u>	<u>0.505</u>	<u>1989</u>	<u>1950</u>	<u>1911</u>	<u>1871</u>	<u>1831</u>	<u>1790</u>	<u>1749</u>	<u>1708</u>	<u>1666</u>	<u>1623</u>
<u>250</u>	<u>0.620</u>	<u>2352</u>	<u>2318</u>	<u>2283</u>	<u>2248</u>	<u>2212</u>	<u>2176</u>	<u>2139</u>	<u>2102</u>	<u>2065</u>	<u>2027</u>
<u>240</u>	<u>0.732</u>	<u>2677</u>	<u>2646</u>	<u>2615</u>	<u>2583</u>	<u>2552</u>	<u>2519</u>	<u>2487</u>	<u>2454</u>	<u>2420</u>	<u>2386</u>
<u>230</u>	<u>0.841</u>	<u>2968</u>	<u>2940</u>	<u>2912</u>	<u>2884</u>	<u>2855</u>	<u>2826</u>	<u>2797</u>	<u>2768</u>	<u>2738</u>	<u>2708</u>
220	<u>0.950</u>	<u>3228</u>	<u>3204</u>	<u>3179</u>	<u>3153</u>	<u>3128</u>	<u>3102</u>	<u>3075</u>	<u>3049</u>	<u>3022</u>	<u>2995</u>
210	1.057	<u>3462</u>	<u>3440</u>	<u>3418</u>	<u>3395</u>	<u>3372</u>	<u>3349</u>	<u>3325</u>	<u>3301</u>	<u>3277</u>	<u>3253</u>
200	<u>1.165</u>	<u>3673</u>	<u>3653</u>	<u>3632</u>	<u>3612</u>	<u>3591</u>	<u>3570</u>	<u>3549</u>	<u>3528</u>	<u>3506</u>	<u>3485</u>
<u>190</u>	<u>1.274</u>	<u>3861</u>	<u>3843</u>	<u>3825</u>	<u>3807</u>	<u>3788</u>	<u>3769</u>	<u>3750</u>	<u>3731</u>	<u>3712</u>	<u>3692</u>
<u>180</u>	<u>1.384</u>	<u>4030</u>	<u>4014</u>	<u>3998</u>	<u>3981</u>	<u>3965</u>	<u>3948</u>	<u>3931</u>	<u>3914</u>	<u>3896</u>	<u>3879</u>
<u>170</u>	<u>1.497</u>	<u>4181</u>	<u>4167</u>	<u>4152</u>	<u>4138</u>	<u>4123</u>	<u>4108</u>	<u>4093</u>	<u>4077</u>	<u>4062</u>	<u>4046</u>
<u>160</u>	<u>1.612</u>	<u>4316</u>	<u>4303</u>	<u>4291</u>	<u>4277</u>	<u>4264</u>	<u>4251</u>	<u>4237</u>	<u>4223</u>	<u>4210</u>	<u>4196</u>
150	<u>1.731</u>	<u>4436</u>	4425	<u>4413</u>	4402	<u>4390</u>	<u>4378</u>	<u>4366</u>	<u>4354</u>	<u>4341</u>	<u>4329</u>
Table	C.1(b) Valu	es of Yand Z	Z for 750 psi	Initial Storaç	ge Pressure						
						Pressure					
						<u>(psi)</u>					
						Y					
<u>Z</u>	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	
750	0.000	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
<u>740</u>	0.038	<u>497</u>	<u>448</u>	<u>399</u>	<u>350</u>	<u>300</u>	<u>251</u>	<u>201</u>	<u>151</u>	<u>101</u>	<u>51</u>
730	0.075	<u>975</u>	<u>928</u>	<u>881</u>	<u>833</u>	786	738	<u>690</u>	<u>642</u>	<u>594</u>	<u>545</u>

NFPA 12 Public Input with Responses (F2020) Page 24 of 30

1208

1161

1115

1068

1022

1254

720

0.110

1436

1391

1345

1299

						<u>Y</u>					
Z	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	
<u>710</u>	<u>0.143</u>	1882	<u>1838</u>	<u>1794</u>	<u>1750</u>	1706	<u>1661</u>	<u>1616</u>	1572	1527	<u>1481</u>
<u>700</u>	<u>0.174</u>	<u>2314</u>	<u>2271</u>	<u>2229</u>	<u>2186</u>	<u>2143</u>	<u>2100</u>	<u>2057</u>	<u>2013</u>	<u>1970</u>	<u>1926</u>
<u>690</u>	<u>0.205</u>	2733	<u>2691</u>	2650	2608	2567	2525	<u>2483</u>	<u>2441</u>	<u>2399</u>	2357
<u>680</u>	0.235	<u>3139</u>	<u>3099</u>	3059	<u>3018</u>	2978	2937	<u>2897</u>	2856	<u>2815</u>	2774
<u>670</u>	0.265	3533	3494	3455	<u>3416</u>	3377	<u>3338</u>	<u>3298</u>	3259	<u>3219</u>	<u>3179</u>
<u>660</u>	0.296	<u>3916</u>	<u>3878</u>	<u>3840</u>	3802	3764	<u>3726</u>	<u>3688</u>	<u>3649</u>	<u>3611</u>	3572
<u>650</u>	0.327	4286	<u>4250</u>	<u>4213</u>	<u>4176</u>	<u>4139</u>	<u>4102</u>	4065	4028	<u>3991</u>	<u>3953</u>
<u>640</u>	<u>0.360</u>	<u>4645</u>	<u>4610</u>	<u>4575</u>	<u>4539</u>	<u>4503</u>	<u>4467</u>	<u>4431</u>	<u>4395</u>	<u>4359</u>	<u>4323</u>
<u>630</u>	0.393	<u>4993</u>	<u>4959</u>	<u>4924</u>	4890	4855	4821	4786	<u>4751</u>	<u>4716</u>	<u>4681</u>
<u>620</u>	0.427	<u>5329</u>	<u>5296</u>	<u>5263</u>	<u>5229</u>	<u>5196</u>	<u>5162</u>	<u>5129</u>	5095	<u>5061</u>	<u>5027</u>
<u>610</u>	0.462	<u>5653</u>	5621	<u>5589</u>	5557	5525	<u>5493</u>	<u>5460</u>	5427	<u>5395</u>	<u>5362</u>
600	<u>0.498</u>	5967	<u>5936</u>	<u>5905</u>	<u>5874</u>	<u>5843</u>	<u>5811</u>	<u>5780</u>	<u>5749</u>	<u>5717</u>	<u>5685</u>
<u>590</u>	<u>0.535</u>	<u>6268</u>	<u>6239</u>	<u>6209</u>	<u>6179</u>	<u>6149</u>	<u>6119</u>	<u>6089</u>	<u>6058</u>	<u>6028</u>	<u>5997</u>
<u>580</u>	<u>0.572</u>	<u>6560</u>	<u>6531</u>	<u>6502</u>	<u>6473</u>	<u>6444</u>	<u>6415</u>	<u>6386</u>	<u>6357</u>	<u>6328</u>	<u>6298</u>
570	0.609	6840	6812	6785	6757	6729	6701	6673	6645	6616	6588
<u>560</u>	0.646	<u>7110</u>	7084	7057	7030	7003	<u>6976</u>	<u>6949</u>	<u>6922</u>	<u>6895</u>	<u>6868</u>
<u>550</u>	0.683	7371	7345	7320	7294	7268	7242	<u>7216</u>	7190	7163	<u>7137</u>
<u>540</u>	<u>0.719</u>	7622	7597	7572	<u>7548</u>	7523	7498	7472	7447	7422	<u>7396</u>
<u>530</u>	0.756	7864	7840	7816	7792	7768	7744	7720	7696	7671	7647
<u>520</u>	<u>0.792</u>	<u>8098</u>	<u>8075</u>	<u>8052</u>	<u>8028</u>	<u>8005</u>	<u>7982</u>	<u>7958</u>	<u>7935</u>	<u>7911</u>	<u>7888</u>
<u>510</u>	<u>0.827</u>	<u>8323</u>	<u>8301</u>	<u>8278</u>	<u>8256</u>	<u>8234</u>	<u>8211</u>	<u>8189</u>	<u>8166</u>	<u>8143</u>	<u>8120</u>
<u>500</u>	0.863	8540	<u>8519</u>	8497	8476	8454	<u>8433</u>	<u>8411</u>	8389	8367	8345
<u>490</u>	0.898	8750	8730	8709	8688	8667	8646	8625	8604	8583	8562
<u>480</u>	0.933	8953	8933	<u>8913</u>	8893	8873	8852	8832	8812	8791	8771
<u>470</u>	0.967	<u>9149</u>	<u>9129</u>	<u>9110</u>	<u>9091</u>	9071	<u>9052</u>	<u>9032</u>	<u>9012</u>	<u>8993</u>	<u>8973</u>
<u>460</u>	<u>1.002</u>	<u>9338</u>	<u>9319</u>	<u>9301</u>	<u>9282</u>	<u>9263</u>	<u>9244</u>	<u>9225</u>	<u>9206</u>	<u>9187</u>	<u>9168</u>
<u>450</u>	<u>1.038</u>	<u>9520</u>	<u>9502</u>	<u>9484</u>	<u>9466</u>	<u>9448</u>	<u>9430</u>	<u>9412</u>	<u>9393</u>	<u>9375</u>	<u>9356</u>
<u>440</u>	1.073	9697	<u>9680</u>	<u>9662</u>	<u>9644</u>	9627	<u>9609</u>	<u>9592</u>	<u>9574</u>	<u>9556</u>	<u>9538</u>
<u>430</u>	<u>1.109</u>	9866	<u>9850</u>	<u>9833</u>	<u>9816</u>	<u>9799</u>	<u>9782</u>	<u>9765</u>	<u>9748</u>	<u>9731</u>	<u>9714</u>
<u>420</u>	<u>1.146</u>	10030	10014	<u>9998</u>	<u>9982</u>	<u>9966</u>	<u>9949</u>	<u>9933</u>	<u>9916</u>	<u>9900</u>	<u>9883</u>
<u>410</u>	<u>1.184</u>	10188	10173	10157	10141	10126	<u>10110</u>	10094	10078	10062	10046
<u>400</u>	<u>1.222</u>	<u>10340</u>	<u>10325</u>	<u>10310</u>	<u>10295</u>	<u>10280</u>	<u>10265</u>	<u>10250</u>	<u>10234</u>	<u>10219</u>	<u>10204</u>
<u>390</u>	1.262	10486	10472	<u>10458</u>	10443	10429	<u>10414</u>	<u>10399</u>	10385	<u>10370</u>	<u>10355</u>
<u>380</u>	<u>1.302</u>	10627	<u>10613</u>	<u>10599</u>	10585	10571	10557	10543	10529	<u>10515</u>	<u>10501</u>
<u>370</u>	<u>1.344</u>	10762	10749	<u>10735</u>	10722	10708	<u>10695</u>	<u>10681</u>	10668	10654	<u>10641</u>
<u>360</u>	<u>1.386</u>	<u>10891</u>	<u>10878</u>	<u>10866</u>	10853	10840	10827	<u>10814</u>	10801	<u>10788</u>	<u>10775</u>
<u>350</u>	<u>1.429</u>	<u>11015</u>	11003	<u>10991</u>	10978	10966	10954	<u>10941</u>	10929	<u>10916</u>	10904
<u>340</u>	<u>1.473</u>	<u>11134</u>	<u>11122</u>	<u>11110</u>	<u>11099</u>	<u>11087</u>	<u>11075</u>	<u>11063</u>	<u>11051</u>	<u>11039</u>	<u>11027</u>
<u>330</u>	<u>1.518</u>	11247	<u>11236</u>	<u>11225</u>	<u>11214</u>	<u>11202</u>	<u>11191</u>	<u>11180</u>	<u>11168</u>	<u>11157</u>	<u>11145</u>
<u>320</u>	1.564	<u>11356</u>	<u>11345</u>	<u>11334</u>	<u>11323</u>	<u>11313</u>	<u>11302</u>	<u>11291</u>	<u>11280</u>	<u>11269</u>	<u>11258</u>
<u>310</u>	<u>1.610</u>	11459	<u>11449</u>	<u>11439</u>	11428	<u>11418</u>	<u>11408</u>	<u>11398</u>	11387	<u>11377</u>	<u>11366</u>
<u>300</u>	<u>1.657</u>	<u>11558</u>	<u>11548</u>	<u>11539</u>	<u>11529</u>	<u>11519</u>	<u>11509</u>	<u>11499</u>	<u>11489</u>	<u>11479</u>	<u>11469</u>

For practical application, it is desirable to plot curves for each pipe size that can be used. However, the flow equation can be rearranged as shown in the following equation:

$$\frac{L}{D^{1.25}} = \frac{3647Y}{\left(\frac{Q}{D^2}\right)^2} - 8.08Z$$

[C.1b]

Thus, by plotting values of $L/D^{1.25}$ and Q/D^2 , it is possible to use one family of curves for any pipe size. Figure C.1(a) gives flow information for 0°F (-18°C) storage temperature on this basis. Figure C.1(b) gives similar information for high-pressure storage at 70°F (21°C). For an inside pipe diameter of exactly 1 in., D^2 and $D^{1.25}$ reduce to unity and cancel out. For other pipe sizes, it is necessary to convert the flow rate and equivalent length by dividing or multiplying by these factors. Table C.1(c) gives values for *D*.

Figure C.1(a) Pressure Drop in Pipeline for 300 psi (2068 kPa) Storage Pressure.

NFPA 12 Public Input with Responses (F2020) Page 25 of 30

terminal pressure for a low-pressure system consisting of a single 2 in. Schedule 40 pipeline with an equivalent length of 500 ft and a flow rate of 1000 lb/min. The flow rate and the equivalent length must be converted to terms of Figure C.1(a) as follows:

$$\frac{Q}{D^2} = \frac{1000}{4.28} = 234 \text{ lb/min} \cdot \text{in.}^2$$

$$\frac{L}{D^{1.25}} = \frac{500}{2.48} = 201 \text{ ft/in.}^{1.25}$$
[C.1c]

From Figure C.1(a), the terminal pressure is found to be about 228 psi at the point where the interpolated flow rate of 234 lb/min intersects the equivalent length scale at 201 ft.

If this line terminates in a single nozzle, the equivalent orifice area must be matched to the terminal pressure in order to control the flow rate at the desired level of 1000 lb/min. Referring to Table 4.7.5.2.1, it will be noted that the discharge rate will be 1410 lb/min in.² of equivalent orifice area when the orifice pressure is 230 psi. The required equivalent orifice area of the nozzle is thus equal to the total flow rate divided by the rate per square inch, as shown in the following equation:

Equivalent orifice area =
$$\frac{1000 \text{ lb/min}}{1410 \text{ lb/min} \cdot \text{in.}^2} = 0.709 \text{ in.}^2$$
 [C.1d]

From a practical viewpoint, the designer would select a standard nozzle having an equivalent area nearest to the computed area. If the orifice area happened to be a little larger, the actual flow rate would be slightly higher and the terminal pressure would be somewhat lower than the estimated 228 psi (1572 kPa).

If, in the previous example, instead of terminating with one large nozzle, the pipeline branched into two smaller pipelines, it would be necessary to determine the pressure at the end of each branch line. To illustrate this procedure, assume that the branch lines are equal and consist of 11/2 in. Schedule 40 pipe with equivalent lengths of 200 ft (61 m) and that the flow in each branch line is to be 500 lb/min (227 kg/min). Converting to terms used in Figure C.1(a), the following equations result:

$$\frac{Q}{D^2} = \frac{500}{2.592} = 193 \text{ lb/min} \cdot \text{in.}^2$$

$$\frac{L}{D^{1.25}} = \frac{200}{1.813} = 110 \text{ ft/in.}^{1.25}$$
[C.1e]

From Figure C.1(a), the starting pressure of 228 psi (1572 kPa) (terminal pressure of main line) intersects the flow rate line [193 lb/min (87.6 kg/min)] at an equivalent length of about 300 ft (91.4 m). In other words, if the branch line started at the storage vessel, the liquid carbon dioxide would have to flow through 300 ft (91.4 m) of pipeline before the pressure dropped to 228 psi (1572 kPa). This length thus becomes the starting point for the equivalent length of the branch line. The terminal pressure of the branch line is then found to be 165 psi (1138 kPa) at the point where the 193 lb/min (87.6 kg/min) flow rate line intersects the total equivalent length line of 410 ft (125 m), or 300 ft + 110 ft (91 m + 34 m). With this new terminal pressure [165 psi (1138 kPa)] and flow rate [500 lb/min (227 kg/min)], the required equivalent nozzle area at the end of

each branch line will be approximately 0.567 in.² (366 mm²). This is about the same as the single large nozzle example, except that the discharge rate is cut in half due to the reduced pressure.

The design of the piping distribution system is based on the flow rate desired at each nozzle. This in turn determines the required flow rate in the branch lines and the main pipeline. From practical experience, it is possible to estimate the approximate pipe sizes required. The pressure at each nozzle can be determined from suitable flow curves. The nozzle orifice sizes are then selected on the basis of nozzle pressure from the data given in 4.7.5.2.

In high-pressure systems, the main header is supplied by a number of separate cylinders. The total flow is thus divided by the number of cylinders to obtain the flow rate from each cylinder. The flow capacity of the cylinder valve and the connector to the header vary with each manufacturer, depending on design and size. For any particular valve, dip tube, and connector assembly, the equivalent length can be determined in terms of feet of standard pipe size. With this information, the flow equation can be used to prepare a curve of flow rate versus pressure drop. This curve provides a convenient method of determining header pressure for a specific valve and connector combination.

Table C.1(d) and Table C.1(e) list the equivalent lengths of pipe fittings for determining the equivalent length of piping systems. Table C.1(d) is for threaded joints, and Table C.1(e) is for welded joints or grouped fittings. Both tables were computed for Schedule 40 pipe sizes; however, for all practical purposes, the same figures can also be used for Schedule 80 pipe sizes.

Table C.1(d) Equivalent Lengths in Feet of Threaded Pipe Fitting

Pipe Size	Elbow Std.	Elbow Std.	Elbow	Tee	
<u>(in.)</u>	45 Degrees	90 Degrees	90 Degrees Long Radius and Tee Thru Flow	Side	Union Coupling or Gate Valve
<u>3/8</u>	<u>0.6</u>	<u>1.3</u>	<u>0.8</u>	<u>2.7</u>	<u>0.3</u>
<u>1/2</u>	<u>0.8</u>	<u>1.7</u>	<u>1.0</u>	<u>3.4</u>	<u>0.4</u>
<u>3/4</u>	<u>1.0</u>	<u>2.2</u>	<u>1.4</u>	<u>4.5</u>	<u>0.5</u>
<u>1</u>	<u>1.3</u>	<u>2.8</u>	<u>1.8</u>	<u>5.7</u>	<u>0.6</u>
<u>1</u> <u>1/4</u>	<u>1.7</u>	<u>3.7</u>	<u>2.3</u>	<u>7.5</u>	<u>0.8</u>
<u>11/2</u>	<u>2.0</u>	<u>4.3</u>	<u>2.7</u>	8.7	<u>0.9</u>
2	<u>2.6</u>	<u>5.5</u>	<u>3.5</u>	<u>11.2</u>	<u>1.2</u>
<u>2 ¹/2</u>	<u>3.1</u>	<u>6.6</u>	<u>4.1</u>	<u>13.4</u>	<u>1.4</u>
<u>3</u>	<u>3.8</u>	<u>8.2</u>	<u>5.1</u>	<u>16.6</u>	<u>1.8</u>
<u>4</u>	<u>5.0</u>	<u>10.7</u>	<u>6.7</u>	<u>21.8</u>	<u>2.4</u>
<u>5</u>	<u>6.3</u>	<u>13.4</u>	<u>8.4</u>	<u>27.4</u>	<u>3.0</u>
<u>6</u>	<u>7.6</u>	<u>16.2</u>	<u>10.1</u>	<u>32.8</u>	<u>3.5</u>
For SI units,	1 ft = 0.3048 m	۱.			
Table C.1(e) Equivalent Le	ngths in Feet of	Welded Pipe Fitting		
Pipe Size	Elbow Std. 4	45 Degrees	Elbow Std. 90 Degrees Elb	ow	Tee Gate Valve

NFPA 12 Public Input with Responses (F2020) Page 27 of 30

6/28/2019, 1:11 PM

<u>(in.)</u>			90 Degrees Long Radius and Tee Thru Flow	Side	
<u>3/8</u>	<u>0.2</u>	<u>0.7</u>	<u>0.5</u>	<u>1.6</u>	<u>0.3</u>
<u>1/2</u>	<u>0.3</u>	<u>0.8</u>	<u>0.7</u>	<u>2.1</u>	<u>0.4</u>
<u>3/4</u>	<u>0.4</u>	<u>1.1</u>	<u>0.9</u>	<u>2.8</u>	<u>0.5</u>
<u>1</u>	<u>0.5</u>	<u>1.4</u>	<u>1.1</u>	<u>3.5</u>	<u>0.6</u>
<u>11/4</u>	<u>0.7</u>	<u>1.8</u>	<u>1.5</u>	<u>4.6</u>	<u>0.8</u>
<u>1</u> 1/2	<u>0.8</u>	<u>2.1</u>	<u>1.7</u>	<u>5.4</u>	<u>0.9</u>
<u>2</u>	<u>1.0</u>	<u>2.8</u>	<u>2.2</u>	<u>6.9</u>	<u>1.2</u>
<u>2 ¹/2</u>	<u>1.2</u>	<u>3.3</u>	2.7	<u>8.2</u>	<u>1.4</u>
<u>3</u>	1.8	<u>4.1</u>	<u>3.3</u>	10.2	<u>1.8</u>
<u>4</u>	<u>2.0</u>	<u>5.4</u>	<u>4.4</u>	<u>13.4</u>	<u>2.4</u>
<u>5</u>	<u>2.5</u>	<u>6.7</u>	<u>5.5</u>	<u>16.8</u>	<u>3.0</u>
<u>6</u>	<u>3.0</u>	<u>8.1</u>	<u>6.6</u>	<u>20.2</u>	<u>3.5</u>

For SI units, 1 ft = 0.3048 m.

For nominal changes in elevation of piping, the change in head pressure is negligible. However, if there is a substantial change in elevation, this factor should be taken into account. The head pressure correction per foot of elevation depends on the average line pressure where the elevation takes place because the density changes with pressure. Correction factors are given in Table C.1(f) and Table C.1(g) for low-pressure and high-pressure systems, respectively. The correction is subtracted from the terminal pressure when the flow is upward and is added to the terminal pressure when the flow is downward.

Table C.1(f) Elevation Correction Factors for Low-Pressure System

		Average Line Pressure	
-		Elevation Correction	
nsi		kPa	
-			
	p	<u>psi/ft kPa/m</u>	
300	<u>2068</u>		
-	0.443	10.00	
280	<u>1930</u>	10.00	
-			
	<u>0.343</u>	7.76	
260	<u>1792</u>		
-	0.265	5.99	
240	1655		
-			
000	0.207	<u>4.68</u>	
-	<u>1517</u>		
	0.167	3.78	
200	<u>1379</u>		
-			
180	<u>0.134</u> 1241	3.03	
-	1271		
	<u>0.107</u>	<u>2.42</u>	
160	<u>1103</u>		
-	0.085	1 02	
<u>140</u>	<u>965</u>	1.92	
-			
0.067		<u>1.52</u>	
Table C.1(g) Elevation (Correction Factors for High-Press	sure System	
		Average Line Pressure	
-			
psi		<u>Kra</u>	

NFPA 12 Public Input with Responses (F2020) Page 28 of 30

Case D11 0.352 7.96 0.362 7.96 0.300 6.79 200 44826 0.300 6.79 200 4482 0.2255 5.77 200 4137 0.2255 5.77 200 4137 0.215 4.86 550 3792 0.1177 4.00 300 3.39 450 3103 1 1.125 2.83 2.0105 2.83 2.38 400 2758 1 1.92 0.020 2.085 1.92 0.035 0.035 1.92 0.000 2.085 1.92 1.92 0.0015 2.38 2.0105 2.38 2.0105 1.92 0.0205 1.92 0.0206 1.92 0.070 1.58	750	5171	<u>NI G/III</u>
0.352 7.96 700 4626 0.300 6.79 650 4482 0.255 5.77 800 4137 0.255 5.77 800 4137 0.215 4.86 559 3.792 0.177 4.00 500 3447 0.177 4.00 500 3.39 500 3.103 1 1 0.150 3.39 500 2.58 1 1 0.125 2.83 200 2.68 0.105 2.38 500 2.08 0.005 1.92 0.00 2.068 1 1.92 0.00 2.068 1 9.2 0.070 1.58 1 1.92 0.0105 2.38 0.02068 1.92 0.070	<u>100</u>	<u>5171</u>	
USANA L.SM 00 4626 - 0.300 650 4482 - - 0 2255 5.77 5.77 000 4137 - - 0 215 4.86 550 3792 - - - 0 0.177 4.00 500 3447 - 0 0.150 3.39 450 3.03 - 0 0.150 2.83 000 2758 - - - - 0 0.105 2.38 300 2.068 1.92 000 2.068 1.92 0.070 1.58 - nettof Problem and Substantiation for Public Input 1.92 - 0.070 1.58 - - 0.070 1.58 - - 1.50 <td< td=""><td>-</td><td>0.352</td><td>7.96</td></td<>	-	0.352	7.96
000 920 0.300 6.79 650 4482 - - 0.255 5.77 600 4137 - - 0.255 5.77 600 4137 - - 0.215 4.86 550 3792 - - 0.177 4.00 500 3447 - - 0.150 3.39 450 3103 - - 0.152 2.83 400 2758 - - 0.105 2.38 350 2413 - - 0.0268 1.92 000 2068 - - 0.070 1.58 reincodef Broblem and Substantiation for QUD*2 in Figures C.1(a) and C.1(b) are incomplete.2) It is unclear which table for equiv< thread ware includes an option for groowed fittings, like those from Wictaulic. These fittings are fairly commonly used	700	4926	<u>1.30</u>
0.300 6.79 650 4482 0.255 5.77 600 4137 0.215 4.86 550 3792 0.215 4.86 550 3792 0.177 4.00 500 3447 0.150 3.39 450 3103 - - 0.152 2.83 400 2.758 - - 0.105 2.38 500 2413 - - 0.025 1.92 300 2068 - - 0.070 1.58 Nent of Problem and Substantiation for Public Input pisues addressed in this submittat: 1) The units for QDP2 in Figures C. 1(a) and C. 1(b) are incomplete. 2) It is unclear which table for equiv yits (C. 1(a) or C. 1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease atlaton and maintenance, especially for larger there have seed different tables for thres for thres for thee giving usere includes an option for grooved fittings and sele	-	4020	
650 4482 0.255 5.77 600 4137 - - 0.215 4.86 550 3792 - - 0.177 4.00 500 3447 - - 0.177 4.00 500 3447 - - 0.150 3.39 450 3103 - - 0.125 2.83 400 2758 - - 0.105 2.38 350 2413 - - 0.0265 1.92 300 2068 - - 0.070 1.58 noncore (10) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore pipion, We have seen different integrators use different		0.300	6.79
- 0.255 5.77 600 4137 - - 0.215 4.86 550 3792 - 0.177 4.00 500 3447 - - 0.177 4.00 500 3447 - - 0.150 3.39 450 3103 - - 0.125 2.83 400 2758 - - 0.105 2.38 350 2413 - - 0.025 1.92 300 2068 - - 0.070 1.58 Related input We have seed ifferent itagrase faily commonit useful for eaguing things are faily commonity useful for eaguing things are faily commonity useful for eaguing the correst eagues and potion for growed fittings. Nike those from Victualic. These fittings are faily commonity useful for eaguing the correst eagues and potion for growed fittings and selects one of these tables for the set fittings. It would than an intenance, especially for largere tore pipion, We have seend ifferent itagraters use different it	650	4482	<u></u>
0.255 5.77 600 4137 0.215 4.86 550 3792 - - 0.177 4.00 500 3447 - - 0.150 3.39 450 3103 - - 0.150 2.83 400 2758 - - 0.105 2.38 350 2413 - - 0.085 1.92 300 2068 - - 0.070 1.58 nent of Problem and Substantiation for Public Input to issues addressed in this submittal: 1) The units for O/D*2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equiv ghrs (C.1(a) or C.1(a) or C.1(b) are interpretor sue offferent victaulic. These fittings are tables for the calculations. d Public Inputs for This Document Related negut Related Input Related negut Nor C.3 Unrelated recommendation in the same section.	-		
600 4137 0.215 4.86 550 3792 0.177 4.00 0.00 3447 0.177 4.00 0.00 3447 0.150 3.39 450 3103 - - 0.150 3.39 450 3103 - - 0.125 2.83 400 2758 - - 0.105 2.38 550 2.068 - - 0.005 1.92 300 2068 - - 0.070 1.58 rent of Problem and Substantiation for Public Input pissues addressed in this submittai: 1) The units for OUD*2 in Figures C. 1(a) and C. 1(b) are incomplete. 2) It is unclear which table for equiver includes an option for growed fittings, like those from Victure. These fittings are fairly commony used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would drad included guidance on which is appropriate. For reference. I believe at least one manufact		0.255	5.77
0.215 4.86 550 3792 - 4.00 0.177 4.00 500 3447 - - 0.150 3.39 450 3103 - - 0.125 2.83 400 2758 - - 0.105 2.38 350 2413 - - 0.095 1.92 300 2068 - - 0.070 1.58 nent of Problem and Substantiation for Public Input issues addressed in this submittal: 1) The units for Q/D*2 in Figures C. 1(a) and C. 1(b) are incomplete. 2) It is unclear which table for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would drade for ease allation and maintenance, especially for larger bore oping. We have seen different integrators use different tables for these fittings. It would drade included guidance on which is appropriate. For reference, I believe at least one maintacturer's version of low pressure CO2 flow calculations. d Public Inputs for This Document Relationship bile Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelat	600	<u>4137</u>	
0.215 4.86 550 3792 - 4.00 500 3447 - - 0.150 3.39 450 3103 - - 0.155 2.83 400 2758 - - 0.105 2.38 350 2413 - - 0.085 1.92 300 2068 - - 0.070 1.58 nent of Problem and Substantiation for Public Input sisues addressed in this submittal: 1) The units for Q/D'2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equiviry this (C.1(d) or C.1(e) ishould be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these grow which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calcu ware includes an option for grooved fittings and selects one of these tables for the calculations. d Public Inputs for This Document Related Input Related Input Nurelated recommendation in the same section.	-		100
550 3/92 - 0.177 4.00 500 3447 - - 0.150 3.39 450 3103 - - 0.125 2.83 400 2758 - - 0.105 2.38 350 2413 - - 0.025 1.92 300 2068 - - 0.085 1.92 300 2068 - - - - 0.070 1.58 - 0.105 2.38 attriation for Public Input - 1.58 - - - - - - - - - - - - - - - - - - - - - - - - - - - -		0.215	<u>4.86</u>
0.177 4.00 500 3447 0.150 3.39 450 3103 - - 0.125 2.83 400 2758 - - 0.105 2.38 350 2413 - - 0.085 1.92 300 2068 - - 0.070 1.58 nent of Problem and Substantiation for Public Input > bisues addressed in this submittal: 1) The units for Q/D*2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equiv yins (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would dard included guidance on which is appropriate. For reference, I believe at least one manufacture? sension of low pressure CO2 flow calcu ware includes an option for grooved fittings and selects one of these tables for the calculations. d Public Inputs for This Document Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.	550	3792	
500 3447 - 0.150 3103 3.39 450 3103 - 0.125 2.83 2.83 400 2758 - 0.105 2.38 2413 - 0.085 300 2068 - 0.085 0.070 1.58 nent of Problem and Substantiation for Public Input sisues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equivity this (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings, it would our calculations. d Public Inputs for This Document Related Input Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1]	-	0.177	4.00
. 0.150 3.39 450 3103 . 0.125 2.83 400 2758 . 0.105 2.38 350 2413 . 0.085 1.92 300 2068 . 0.070 1.58 nent of Problem and Substantiation for Public Input bissues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equivity the (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have see different integrators use different tables for these fittings. It would dorad included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calcuware includes an option for grooved fittings and selects one of these tables for the calculations. d Public Inputs for This Document Related Input Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.	500	3447	
0.150 3.39 450 3103 0.125 2.83 400 2758 0.105 2.38 350 2413 - - 0.085 1.92 300 2068 - - 0.070 1.58 In submittal: 1) The units for O/D^2 in Figures C. 1(a) and C. 1(b) are incomplete. 2) It is unclear which table for equivality for C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore priping. We have seen different integrators use different tables for these fittings. It would drad included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calcow ware includes an option for grooved fittings and selects one of these tables for the calculations. d Public Inputs for This Document Related Input Related Input Related Input Nettorship Unrelated recommendation in the same section.	-		
450 3103 - 0.125 2.83 400 2758 - - 0.105 2.38 350 2413 - - 0.085 1.92 300 2068 - - 0.070 1.58 nent of Problem and Substantiation for Public Input 1.58 0.070 1.58 nent of Problem and Substantiation for Public Input pisues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equiving the for expression of propriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would drad included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations. d Public Inputs for This Document Related Input Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.		<u>0.150</u>	<u>3.39</u>
0.125 2.83 400 2758 0.105 2.38 350 2413 0.085 1.92 300 2068 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.070 1.58 0.085 1.92 10 issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equivies this (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would dradrad included guida	<u>450</u>	<u>3103</u>	
0.125 2.83 400 2758 . 0.105 2.38 2413 . 0.085 300 2068 . 0.070 1.58 0.070 . 1.58 . 0.070 1.58 0.070 . 1.58 . 0.070 . 1.58 . 0.070 . 1.58 . 0.070 . 1.58	-		
400 2758 - 0.105 2.38 350 2413 - 0.085 1.92 300 2068 - - 0.070 1.58 nent of Problem and Substantiation for Public Input > issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equivity gths (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allaltion and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would read included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calcul ware includes an option for grooved fittings and selects one of these tables for the calculations. d Public Inputs for This Document Related Input Related Input Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.		<u>0.125</u>	<u>2.83</u>
0.105 2.38 350 2413 0.085 1.92 300 2068 0.070 1.58 0.070 1.58 nent of Problem and Substantiation for Public Input o issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equivity gths (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would did did did didude guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations. d Public Inputs for This Document Related Input Related Input Nerted Input No. 13-NFPA 12-2018 [Section No. C.1]	400	2758	
0.105 2.38 350 2413 . 0.085 0.085 1.92 300 2068 . . 0.070 1.58 nent of Problem and Substantiation for Public Input o issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equive gths (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for easily for larger bore piping. We have seen different integrators use different tables for these fittings. It would near dincluded guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations. d Public Inputs for This Document Related Input Relationship bic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.	-		
330 2413 0.085 1.92 300 2068 0.070 1.58 nent of Problem and Substantiation for Public Input o issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equiv. gits (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would had included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations. d Public Inputs for This Document Related Input Related Input Relationship Unrelated recommendation in the same section. Unrelated recommendation in the same section.	050	0.105	2.38
0.085 1.92 300 2068 0.070 1.58 0.070 1.58 nent of Problem and Substantiation for Public Input o issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equiv. gths (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would ndard included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations and potion for grooved fittings and selects one of these tables for the calculations. d Public Inputs for This Document Related Input Related Input Related Input Nerlated recommendation in the same section.	350	2413	
300 2068 0.070 1.58 nent of Problem and Substantiation for Public Input p issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equivity the (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would hadred included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations and provide fittings and selects one of these tables for the calculations. of Public Inputs for This Document Related Input Related Input Relationship Unrelated recommendation in the same section. Unrelated recommendation in the same section.	-	0.085	1.92
0.070 1.58 nent of Problem and Substantiation for Public Input o issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equiv. gths (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would adard included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations ware includes an option for grooved fittings and selects one of these tables for the calculations. rd Public Inputs for This Document Related Input Related Input Relationship Unrelated recommendation in the same section.	300	2068	
0.070 1.58 nent of Problem and Substantiation for Public Input o issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equiv. gths (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease allation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would adard included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations are includes an option for grooved fittings and selects one of these tables for the calculations. d Public Inputs for This Document Related Input Related Input Relationship Unrelated recommendation in the same section.	-		
nent of Problem and Substantiation for Public Input D issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equiv. gths (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease iallation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would ndard included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations. ware includes an option for grooved fittings and selects one of these tables for the calculations. d Public Inputs for This Document Related Input Blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.	<u>0.070</u>		<u>1.58</u>
In the construction of the problem and Substantiation for Public Input In problem and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would near included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations and problem for grooved fittings and selects one of these tables for the calculations. In Public Inputs for This Document Related Input Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.			
b issues addressed in this submittal: 1) The units for Q/D^2 in Figures C.1(a) and C.1(b) are incomplete. 2) It is unclear which table for equivi- gths (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease callation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would ndard included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calcu- tware includes an option for grooved fittings and selects one of these tables for the calculations. d Public Inputs for This Document <u>Related Input</u> <u>Blic Input No. 13-NFPA 12-2018 [Section No. C.1]</u> Unrelated recommendation in the same section.	nent of Problem and	Substantiation for Public	Input
In this submittai: 1) The units for Q/D*2 in Figures C. 1(a) and C. 1(b) are incomplete. 2) it's unclear which table for equivisity (C.1(d) or C.1(e)) should be used when using grooved fittings, like those from Victaulic. These fittings are fairly commonly used for ease itallation and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would hadre included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations. d Public Inputs for This Document Related Input Related Input Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.			in Figure 0.4(-) and 0.4(b) and incomplete 0) this works which table for a wind
allalion and maintenance, especially for larger bore piping. We have seen different integrators use different tables for these fittings. It would near included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculated series an option for grooved fittings and selects one of these tables for the calculations. d Public Inputs for This Document Related Input Related Input Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.	aths (C.1(d) or C.1(e)) sho	uld be used when using arooved	fittings, like those from Victaulic. These fittings are fairly commonly used for ease of
Included guidance on which is appropriate. For reference, I believe at least one manufacturer's version of low pressure CO2 flow calculations. Index of the calculations of the calculations. Index of the calculations of the calculations. Index of the calculation. Index of the calculation in the same section.	tallation and maintenance	especially for larger bore piping.	We have seen different integrators use different tables for these fittings. It would he
Related Input Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.	ndard included guidance o tware includes an option f	on which is appropriate. For refere	ence, I believe at least one manufacturer's version of low pressure CO2 flow calcula e of these tables for the calculations
Related Input Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.			
Related Input Relationship blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.	ed Public Inputs for 1	his Document	
blic Input No. 13-NFPA 12-2018 [Section No. C.1] Unrelated recommendation in the same section.	Rela	ted Input	Relationship
	blic Input No. 13-NFPA 12	-2018 [Section No. C.1]	Unrelated recommendation in the same section.
		TICATION	

Sub

Submitter Full Name	: Matthew Taylor
Organization:	Mitsubishi Hitachi Power Systems
Street Address:	
City:	
State:	
Zip:	
Submittal Date:	Fri Dec 28 15:16:27 EST 2018
Committee:	GFE-AAA

Committee Statement

Resolution: FR-9-NFPA 12-2019

Statement: This revision corrects the units for Q/D^2 in Figures C.1(a) and C.1(b), which should be lb/min-in^2.

Additional guidance is provided for calculating systems that use fittings not addressed by the existing tables.

	erties of CO2	
Type your conte	ent hereAdd tables and gra	phs excerpted from ch 45 in the SFPE Handbook
ditional Proposed Changes		
File Name	Description	Approved
image001.png	Properties of CO2	
image002.png	Saturation Properties of CO)2
image004.png	Properties of superheated C	CO2
image005.png	Solubility of CO2 in water	
image006 ppg		
Image006.png tement of Prob NFPA 12-18 currer information for the Standards. The pr	ntly does not include basic ph subject agent(s). The proposed added information are	n for Public Input ysical property information for CO2. This is at odds with NFPA 12A,12B and 2001 which do include tha sed change seeks to add physical property information for CO2 in line with what is done for related NFF e extracts from ch 45 in teh SFPE Handbook.
Image006.png tement of Prob NFPA 12-18 currer information for the Standards. The pr omitter Informa	ntly does not include basic ph subject agent(s). The proposed added information are tition Verification	n for Public Input ysical property information for CO2. This is at odds with NFPA 12A,12B and 2001 which do include tha sed change seeks to add physical property information for CO2 in line with what is done for related NFF e extracts from ch 45 in teh SFPE Handbook.
Image006.png tement of Prob NFPA 12-18 currer information for the Standards. The pr omitter Informa Submitter Full Nat	Item and Substantiation ntly does not include basic ph subject agent(s). The propose roposed added information are ntion Verification me: Steven Hodges	n for Public Input ysical property information for CO2. This is at odds with NFPA 12A,12B and 2001 which do include tha sed change seeks to add physical property information for CO2 in line with what is done for related NFF e extracts from ch 45 in teh SFPE Handbook.
Image006.png tement of Prob NFPA 12-18 currer information for the Standards. The pr omitter Informa Submitter Full Nar Organization:	Ition Verification me: Steven Hodges Alion Science And Techn	n for Public Input ysical property information for CO2. This is at odds with NFPA 12A,12B and 2001 which do include tha sed change seeks to add physical property information for CO2 in line with what is done for related NFF e extracts from ch 45 in teh SFPE Handbook.
Image006.png tement of Prob NFPA 12-18 currer information for the Standards. The pr omitter Informa Submitter Full Nar Organization: Affiliation:	Item and Substantiation http://does.not.include.basic.ph subject agent(s). The propose roposed added information are httion Verification me: Steven Hodges Alion Science And Techn US Army TARDEC	n for Public Input ysical property information for CO2. This is at odds with NFPA 12A,12B and 2001 which do include tha sed change seeks to add physical property information for CO2 in line with what is done for related NFF e extracts from ch 45 in teh SFPE Handbook.
Image006.png tement of Prob NFPA 12-18 currer information for the Standards. The pr Dmitter Informa Submitter Full Nat Organization: Affiliation: Street Address:	Alem and Substantiation http://does.not.include.basic.ph subject agent(s). The propose roposed added information are httion Verification me: Steven Hodges Alion Science And Techn US Army TARDEC	n for Public Input ysical property information for CO2. This is at odds with NFPA 12A,12B and 2001 which do include tha sed change seeks to add physical property information for CO2 in line with what is done for related NFF e extracts from ch 45 in teh SFPE Handbook.
Image006.png tement of Prob NFPA 12-18 currer information for the Standards. The pr pmitter Informa Submitter Full Nat Organization: Affiliation: Street Address: City:	Alem and Substantiation ntly does not include basic ph subject agent(s). The propose roposed added information are ntion Verification me: Steven Hodges Alion Science And Techn US Army TARDEC	n for Public Input ysical property information for CO2. This is at odds with NFPA 12A,12B and 2001 which do include tha sed change seeks to add physical property information for CO2 in line with what is done for related NFF e extracts from ch 45 in teh SFPE Handbook.
Image006.png tement of Prob NFPA 12-18 currer information for the Standards. The pr Dimitter Informa Submitter Full Nat Organization: Affiliation: Street Address: City: State:	It was and Substantiation It was not include basic ph subject agent(s). The propose roposed added information are attion Verification me: Steven Hodges Alion Science And Techn US Army TARDEC	n for Public Input ysical property information for CO2. This is at odds with NFPA 12A,12B and 2001 which do include tha sed change seeks to add physical property information for CO2 in line with what is done for related NFF e extracts from ch 45 in teh SFPE Handbook.
Image006.png tement of Prob NFPA 12-18 currer information for the Standards. The pr pmitter Informa Submitter Full Nat Organization: Affiliation: Street Address: City: State: Zip: Distribute Full	Item and Substantiation ntly does not include basic ph subject agent(s). The propose roposed added information are ation Verification me: Steven Hodges Alion Science And Techn US Army TARDEC	n for Public Input ysical property information for CO2. This is at odds with NFPA 12A,12B and 2001 which do include tha sed change seeks to add physical property information for CO2 in line with what is done for related NFF e extracts from ch 45 in teh SFPE Handbook.
Image006.png tement of Prob NFPA 12-18 currer information for the Standards. The pr pmitter Informa Submitter Full Nat Organization: Affiliation: Street Address: City: State: Zip: Submittal Date:	Alem and Substantiation ntly does not include basic ph subject agent(s). The propose roposed added information and ation Verification me: Steven Hodges Alion Science And Techn US Army TARDEC Fri Dec 07 08:47:48 EST	n for Public Input ysical property information for CO2. This is at odds with NFPA 12A,12B and 2001 which do include tha sed change seeks to add physical property information for CO2 in line with what is done for related NFF e extracts from ch 45 in teh SFPE Handbook.